
Visual Exploration of Tile Level Datasets
Seth Cooper

1
, Faisal Abutarab

2
, Emily Halina

2
and Nathan Sturtevant

2

1Northeastern University, USA
2University of Alberta, Canada

Abstract

Datasets of game levels are increasingly used, for example as training data for PCGML algorithms, outputs from exhaustive

PCG, or pre-computed parts of larger levels. However, tools for exploring these datasets are limited. In this work we describe

an interactive tool for visual exploration of large tile level datasets. The level explorer currently supports level elements

including both image- and text-based tile grids, path graph edges, and string tags. The level explorer visualizes the levels

and allows the user to select elements that they would like to be present, and filters the dataset to find all levels consistent

with the user’s selection. We also describe an efficient encoding scheme used for level filtering, along with example cases of

several games, demonstrating handling of datasets consisting of up to millions of levels.

Keywords
levels, datasets, visualization

1. Introduction
Many game AI algorithms are increasingly being built

upon level datasets. This ranges from training data for

Procedural Content Generation via Machine Learning

(PCGML) [1], to the pre-computation of level segments

or scenes for later use [2, 3]. Many PCG AI approaches

also produce or analyze datasets of levels, such as results

of exhaustive PCG [4] or expressive range analysis [5]

and quality-diversity approaches [6].

Existing datasets include general repositories with lev-

els from multiple games, such as the video game level

corpus (VGLC) [7], as well as datasets for specific games

such as the boxoban [8] dataset of Sokoban levels, The

Windmill [9] database of levels for The Witness, or levels

for Angry Birds [10].

However, tools that support visual understanding of

such level datasets are limited. Thus, in this work we

present an interactive tool for visualization and explo-

ration of level datasets; the level explorer can scale to

datasets that number into the hundreds of thousands or

millions of levels. The level explorer has support for a va-

riety of level elements: 2D grids of tiles containing images

and/or text, path edges, and tags. The tool both visual-

izes these elements for levels in the dataset and allows

interactive filtering based on levels containing selected

elements.

While the level explorer is in its early stages, there are

AIIDE Workshop on Experimental Artificial Intelligence in Games,
October 08, 2023, University of Utah, Utah, USA
$ se.cooper@northeastern.edu (S. Cooper); abutarab@ualberta.ca

(F. Abutarab); ehalina@ualberta.ca (E. Halina);

nathanst@ualberta.ca (N. Sturtevant)

� 0000-0003-4504-0877 (S. Cooper); 0009-0004-3408-7092

(E. Halina); 0000-0003-4318-2791 (N. Sturtevant)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

many potential uses. It could be useful for level designers

to understand and explore levels in their games, as a sup-

plementary visualization for expressive range analysis,

or for the development of level sets for benchmarking al-

gorithms. The level explorer itself could also be thought

of as a level editor, where it is backed by levels that have

been pre-generated and evaluated for particular proper-

ties. It may help address the “fundamental tension” of

PCGML [11]: given a large enough training dataset, it

may be practical to find desired levels in the dataset, as

compared to training a generator.

2. Related Work
Recently, researchers have built level editors that use an

AI system to support a mixed-initiative process in which

human designers and the AI system work together to

create levels [12, 13]. Although our tool was primarily

designed to help designers explore datasets, it can also

be considered a kind of level editor. The level explorer

is similar to a number of existing mixed-initiative level

editors. The mixed-initiative map editor Envoi relies on

an Answer Set Programming (ASP) constraint-based gen-

erator that designers can modify in two ways: by adding

rules (such as adjacency rules) on the layout of a map and

by adding locked tiles that cannot be overwritten [14, 15].

Designers can press a button to generate a complete level

that satisfies the designer-specified constraints. Similarly,

our tool allows designers to filter a space of content (the

input dataset), and then explore content from the filtered

space. miWFC is a mixed-initiative editor that supports

designers in using Wave Function Collapse (WFC) [16],

a PCG technique closely related to constraint-based PCG

methods [17]. The editor provides a “pencil” tool that

allows designers to manually place tiles, and a side panel

that shows the tiles possible for the cell the designer is

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:se.cooper@northeastern.edu
mailto:abutarab@ualberta.ca
mailto:ehalina@ualberta.ca
mailto:nathanst@ualberta.ca
https://orcid.org/0000-0003-4504-0877
https://orcid.org/0009-0004-3408-7092
https://orcid.org/0000-0003-4318-2791
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


  

block

XX X X
-{ - }
-- - -

XX X X
-{ X }
-- - -

XX X
-{ }
-- -

- { } X v
o
i
d

0,0

...

...1 0 0 0 0 00

- { } X v
o
i
d

1,2

...1 0 0 0 0 00

...1 0 0 0 0 00

1 0 0 0 0 00

0 0 1 0 1 00

0 1 0 0 0 001 0 0 0 0 00

...

...

- { } X v
o
i
d

2,3

...

...

0 0 1 1 0 00

0 0 1 1 0 00

0 0 0 0 0 10

1
,0

→
1

,10,0

1
,1

→
1

,2

1
,2

→
1

,3

1
,1

→
0

,2

0
,2

→
1

,3

1 1 1 0 0 0

bl
o

ck

1 1 10 0 1

1 1 0 0 0 0

Image grid
and path

Text
grid

Tags

Levels Encoding Visualization

Figure 1: Example of encoding three small levels from a platformer game. The left side shows the levels; the middle, a
summary of their encoded bit stings; and the right, how they would be visualized in the level explorer. Each location in the
grid is encoded using 7 bits. There are 5 unique edges, each given their own bit, and the second level has a “block” tag, given 1
bit. As the third level is smaller than the others, it is padded with void tiles in the last column. Image tiles from Kenney [24].

Dataset Levels Rows×Cols Bits Tile Edge Tag Encode Filter Source
mario 8,011,401 14× 16 3082 2464 (11) 612 6 1.2h 4.57s n-gram enumerated; VGLC 1-1 [7, 25]

boxoban 1,504,332 10× 10 500 500 (5) 0 0 5.1m 0.25s boxoban [8, 26]; Kenney [24]
witness 755,932 6× 6 712 648 (18) 64 0 1.7m 0.15s enumerated [27]
cave 36,000 15× 15 7111 6525 (29) 586 0 37.3s 0.06s generated [28]; Kenney [24]
lode 150 22× 32 5632 5632 (8) 0 0 0.3s 0.03s VGLC [7, 29]

Table 1
Summary of datasets. Tile bits shows total tile bits and, in parenthesis, per-location tile bits. Encode is time to encode, not
including time to generate or convert level file formats (which in some cases could take considerably longer); average of three.
Filter is time to filter based on a selection, also including time for encoding selection into bitstring and processing remaining
bitstring for visualization; average of five after loading and the first filter (which was noticeably slower).

hovered over. Our tool also allows users to see which

tiles are possible at each cell, but we present it in a differ-

ent manner. The way we show what tiles are possible in

each cell is influenced by Oskar Stålberg, who visualized

WFC by displaying all tiles available in each cell [18]. The

Anhinga level editor [19] uses exhaustive PCG to search

though and evaluate all possible single-tile changes from

the current level.

The level explorer also allows designers to filter levels

by gameplay—that is, they can specify that levels must

contain (partial) paths as a solution. This allows design-

ers to work backwards from a path to a level design that

can be solved by the specified full or partial path. Existing

work has looked at generating levels from gameplay spec-

ifications (such as beat structure [20], streamlines that

represent player traces [21], or taking path constraints

as input to a generator [22]) and evolving gameplay spec-

ifications to create levels [23].

3. Description
Here we give a general description of the level explorer,

including level encoding, filtering, and visualization.

Level Encoding — For efficient filtering by level ele-

ments, levels are encoded as bitstrings. The encoding

process takes all the levels to be encoded as input, as cer-

tain properties of the encoding need to know information

about all levels (e.g. all the edges and tags used across

all levels). The encoding process outputs the bitstring

encoding of each level, as well as metadata needed to

decode the bitstrings back into levels. An example of the

encoding technique is shown in Figure 1, showing three

levels, parts of their encodings, and how they would be

visualized. The level representation is based on that used

by the Sturgeon level generation system [28] but is flexi-

ble enough to support a variety of tile-based games. Level

elements are encoded into the bitstring as follows.

Tile grids: Levels are defined by a 2D grid of tiles. Each

tile can be associated with an image and/or text “function”

(e.g. start, goal, solid, passable, etc). During encoding,

each location in the grid gets its own bit substring. In a

location’s substring, each bit can represent an image, text,

or both. The encoding is done such that any tiles that

have a unique image-text pair get both encoded in single

bit, but tiles that share their image or text with another

tile have each encoded as a separate bit. In the example,

the sky image and - text only ever occur together, and

thus are encoded together as a single bit. However, the

X text can occur with either the ground or block

images, and so each of these text or image possibilities

gets its own bit (3 in all). Thus, when present in a level,



Initial view.

User selects a tile (pipe top-right ) and the
“No gap” tag; mouses over path edge (pink).

User selects edge, remaining edges appear.

User selects more tiles (Mario , flag , and ? block ).

Figure 2: Sample mario interaction.

tiles encoded as a single bit will have that bit set to 1, and

those that have their text and image in different bits will

have both corresponding bits set to 1. Variable level sizes

are handled by padding the grid with a special void tile,

which gets its own bit.

Path edges: Levels can also be associated with paths.

boxoban witness

cave

lode

Figure 3: Initial views for different games. Notably, in
witness, paths go along edges between tiles. In cave, both
image and text tiles are displayed; the X text corresponds to
several different images, and the image tiles and path edges
are abstracted.

Paths are directed sequences of edges through the level

grid (although they do not have to use integer coordi-

nates), typically used to represent a possible solution to

the level. During the encoding, unique edges across all

levels are tracked. Each edge gets its own bit, set to 1 if

present in the level.

Tags: Levels can also be tagged with strings. In the

example, the second level was tagged with “block” since

there is a block in it. Similar to edges, during encoding

each unique tag gets its own bit, set to 1 if present in the

level.

Level Filtering — Once levels have been encoded into

bitstrings, the level explorer can filter them to select levels



that contain certain elements. An efficient implementa-

tion is built in Python using numpy [30].

The core of the filtering algorithm is shown in Algo-

rithm 1. It takes as input a bitstring-encoded selection

(𝑠𝑒𝑙) of elements to be present in the levels, along with

the level bitstrings themselves (𝑙𝑒𝑣). First, all level bit-

strings are bitwise AND-ed with, and compared to, the

selection. This results in a Boolean array with True cor-

responding to levels that pass the filter (𝑟𝑚𝑛𝐿𝑒𝑣). This

array is then multiplied with the level bitstrings and the

result is bitwise OR-ed together. This results in a bitstring

with 1s set for elements that exist in any remaining level

(𝑟𝑚𝑛𝐵𝑖𝑡).

Level Visualization — The visualization displays the

bitstring representing all the possible elements that re-

main. For example, a single location can have multiple

tiles remaining. The level explorer visualization is interac-

tive, and the basic form of interaction is using the mouse

to select or de-select level elements, which launches a

filtering based on the new selection and an update of

the display. As filtering is not instantaneous for larger

datasets, the computation happens in a thread, and re-

cent selections are cached. Here we describe the basic

approach to visualization.

Tile grids: At each location in the grid, all the possible

tiles at that location are shown as a subgrid. Separate

grids are displayed for image and text grids; however, if

all the tiles are unique image-text pairs, only the image

grid is shown by default. If there are too many tiles in

one location, they are shown as an abstracted tile. If an

abstracted location is moused over, all the tiles at that

location are shown again so they can be selected.

Path edges: Directed edges are shown as arrows over

the grid. If there are too many edges in the entire visual-

ization to show at once, all edges are abstracted by only

showing edge “source” positions as dots. If the mouse

gets close to a dot, the edges coming out of that dot are

shown.

Tags: Tags are shown as checkboxes in the interface.

Checkboxes that do not correspond to remaining bits in

the filtered levels are greyed out.

Additionally, the interface contains buttons to clear the

selection, undo/redo, make a random selection, or finish

the level by selecting a remaining level at random. The

user can also change modes and displays, which impacts

how tiles and edges are shown and selected. The filtered

levels can also be exported.

As the user mouses over the level visualization, ele-

ments that would be selected are highlighted. The user’s

tile and edge selection is shown as dotted lines at the

location of the tile or edge. For tiles, the lines are differ-

ent depending on if it was directly selected by the user,

indirectly selected by selecting a tile of another type (e.g.

an image that is indirectly selected by the selection of

Algorithm 1 Filtering level bit strings

In: 𝑠𝑒𝑙: bitstring of selected elements

𝑙𝑒𝑣: array of level bitstrings

Out: 𝑟𝑚𝑛𝐿𝑒𝑣: array of remaining levels

𝑟𝑚𝑛𝐵𝑖𝑡: bit string of remaining elements

𝑟𝑚𝑛𝐿𝑒𝑣 ← 𝑚𝑎𝑝𝐸𝑞𝑢𝑎𝑙(𝑚𝑎𝑝𝐴𝑁𝐷(𝑠𝑒𝑙, 𝑙𝑒𝑣), 𝑠𝑒𝑙)
𝑟𝑚𝑛𝐵𝑖𝑡← 𝑟𝑒𝑑𝑢𝑐𝑒𝑂𝑅(𝑟𝑚𝑛𝐿𝑒𝑣 × 𝑙𝑒𝑣)

text), or selected by finishing the level. The number of

remaining levels is also shown.

4. Datasets
Here we describe some sample datasets we have used

with the level explorer. A video of interactions with the

datasets is available at https://osf.io/fcyjt/.

mario: Super Mario Bros. [25] levels generated by

enumerating all possible via a 3-gram [31] based on level

1-1 from the VGLC [7], resulting in around 8 million lev-

els. Paths through levels were added using A* pathfind-

ing [32], and tags were added for the presence and ab-

sence of some tiles and level and path features.

boxoban: The boxoban [8] dataset of around 1.5 mil-

lion Sokoban [26] levels; image tiles from Kenney [24].

witness: Black and white square puzzles based on

The Witness [27]. Levels 4× 4 and smaller, going from

bottom-left to top-right, with exactly one solution were

enumerated [4], resulting in around 750 thousand levels.

In this dataset, path edges go along the borders between

tiles. To make it look more like puzzles in the game, a

border of “padding” tiles was added around each level.

cave: A custom cave exploration game. Levels were

generated by Sturgeon [28], generating a thousand levels

each with rows and columns ranging from 10–15, result-

ing in 36 thousand levels. Generated levels also provide

a solution path, though not necessarily the shortest. The

solid text tile X has a several image tiles depending on

its location relative to other solid tiles. Image tiles from

Kenney [24].

lode: As a smaller dataset, the VGLC [7] Lode Run-

ner [29] dataset, consisting of 150 levels.

A sample interaction with the mario dataset is shown

in Figure 2. Initial views for the other games are shown

in Figure 3. A summary of the datasets, including time

to encode and filter them during interaction, is provided

in Table 1.

5. Discussion and Conclusion
Thus far we have implemented the level explorer, worked

out some technical aspects of the user interface, and

supported datasets into the millions of levels. When

https://osf.io/fcyjt/


interacting with the level explorer, we found that it can

be useful for a quick visual summary of datasets; for

example, what areas are reachable by paths, available

pipe heights in mario, and the fact that there are never

boxes in corners in boxoban. We found that in smaller

datasets (i.e. lode) it is possible to very quickly end up

with only one level remaining, e.g. when selecting player

location. Thus a tool like this may be more useful when

datasets are larger, or benefit from indicating how many

remaining levels contain each element. In the current

setup, the level explorer only determines which elements

remain, but not how many remaining levels each element

is in; though possible, we we found counting remaining

levels for each element to be notably slower. We are also

interested in support for more complex filters, such as

the absence of elements. In the future, we are interested

in a user study to understand the usefulness of the level

explorer and how it compares to other tools.

Acknowledgements
We would like to thank Matthew Guzdial and Eugene

Chen for their discussions and feedback on the project.

References
[1] A. Summerville, S. Snodgrass, M. Guzdial,

C. Holmgård, A. K. Hoover, A. Isaksen, A. Nealen,

J. Togelius, Procedural Content Generation via

Machine Learning (PCGML), IEEE Transactions on

Games 10 (2018) 257–270.

[2] M. C. Green, L. Mugrai, A. Khalifa, J. Togelius,

Mario level generation from mechanics using scene

stitching, arXiv:2002.02992 [cs] (2020).

[3] C. F. Biemer, S. Cooper, On linking level segments,

in: 2022 IEEE Conference on Games (CoG), 2022,

pp. 199–205.

[4] N. R. Sturtevant, M. J. Ota, Exhaustive and semi-

exhaustive procedural content generation, AAAI

Conference on Artificial Intelligence and Interac-

tive Digital Entertainment; Fourteenth Artificial

Intelligence and Interactive Digital Entertainment

Conference (2018).

[5] G. Smith, J. Whitehead, Analyzing the expressive

range of a level generator, in: Proceedings of the

2010 Workshop on Procedural Content Generation

in Games, PCGames ’10, 2010, pp. 1–7.

[6] D. Gravina, A. Khalifa, A. Liapis, J. Togelius,

G. N. Yannakakis, Procedural Content Generation

through Quality Diversity, in: 2019 IEEE Confer-

ence on Games (CoG), 2019, pp. 1–8.

[7] A. J. Summerville, S. Snodgrass, M. Mateas, S. On-

tañón, The VGLC: The Video Game Level Corpus,

arXiv:1606.07487 [cs] (2016).

[8] A. Guez, M. Mirza, K. Gregor, R. Kabra, S. Racaniere,

T. Weber, D. Raposo, A. Santoro, L. Orseau, T. Ec-

cles, G. Wayne, D. Silver, T. Lillicrap, V. Valdes, An

investigation of model-free planning: boxoban lev-

els, https://github.com/deepmind/boxoban-levels/,

2018.

[9] thefifthmatt, The Windmill, https://windmill.

thefifthmatt.com/, 2023.

[10] A. Zafar, S. Hassan, Q. S. uddin, Corpus for Angry

Birds Level Generation, in: 2019 2nd International

Conference on Computing, Mathematics and Engi-

neering Technologies, 2019, pp. 1–4.

[11] I. Karth, A. M. Smith, Addressing the fundamental

tension of PCGML with discriminative learning, in:

Proceedings of the 14th International Conference

on the Foundations of Digital Games, 2019, pp. 1–9.

[12] G. N. Yannakakis, A. Liapis, C. Alexopoulos, Mixed-

initiative co-creativity, in: M. Mateas, T. Barnes,

I. Bogost (Eds.), Proceedings of the 9th International

Conference on the Foundations of Digital Games,

2014.

[13] G. Lai, F. F. Leymarie, W. Latham, On mixed-

initiative content creation for video games, IEEE

Transactions on Games 14 (2022) 543–557.

[14] D. Carpenter, J. T. Bacher, H. Crain, C. Martens, Ca-

sual creation of tile maps via authorable constraint-

based generators, in: 1st Workshop on Program-

ming Languages and Interactive Entertainment,

2021.

[15] H. Crain, D. Carpenter, C. Martens, Evaluating a

casual procedural generation tool for tabletop role-

playing game maps, in: 2022 IEEE Symposium on

Visual Languages and Human-Centric Computing

(VL/HCC), IEEE, 2022, pp. 1–6.

[16] T. S. L. Langendam, R. Bidarra, miWFC - designer

empowerment through mixed-initiative wave func-

tion collapse, in: Proceedings of the 17th Interna-

tional Conference on the Foundations of Digital

Games, 2022, pp. 1–8.

[17] I. Karth, A. M. Smith, WaveFunctionCollapse is con-

straint solving in the wild, in: Proceedings of the

12th International Conference on the Foundations

of Digital Games, 2017, pp. 1–10.

[18] O. Stålberg, Wave Function Collapse in Bad

North, url: https://www.youtube.com/watch?v=

0bcZb-SsnrA, 2018.

[19] N. R. Sturtevant, N. Decroocq, A. Tripodi, C. Yang,

M. Guzdial, A demonstration of Anhinga: A mixed-

initiative epcg tool for snakebird, in: Artificial

Intelligence and Interactive Digital Entertainment,

2020, pp. 328–330.

[20] G. Smith, J. Whitehead, M. Mateas, Tanagra: A

mixed-initiative level design tool, in: Proceedings

of the Fifth International Conference on the Foun-

dations of Digital Games, 2010, pp. 209–216.

https://github.com/deepmind/boxoban-levels/
https://windmill.thefifthmatt.com/
https://windmill.thefifthmatt.com/
https://www.youtube.com/watch?v=0bcZb-SsnrA
https://www.youtube.com/watch?v=0bcZb-SsnrA


[21] L. N. Ferreira, Streamlevels: Using visualization

to generate platform levels, ACM Computers in

Entertainment (2015).

[22] S. Cooper, M. Guzdial, path2level: Constraint-based

level generation from paths, in: 2023 IEEE Confer-

ence on Games (CoG), 2023.

[23] D. Karavolos, A. Liapis, G. N. Yannakakis, Evolving

missions to create game spaces, in: 2016 IEEE Con-

ference on Computational Intelligence and Games,

IEEE, 2016, pp. 1–8.

[24] Kenney, Free game assets, https://www.kenney.nl/

assets, 2022.

[25] Nintendo, Super Mario Bros., 1985. Game [NES].

[26] Thinking Rabbit, Sokoban, 1928. Game.

[27] Thekla, Inc., The Witness, 2016. Game.

[28] S. Cooper, Sturgeon: Tile-based procedural level

generation via learned and designed constraints,

Proceedings of the AAAI Conference on Artificial

Intelligence and Interactive Digital Entertainment

18 (2022) 26–36.

[29] D. Smith, Lode Runner, 1983. Game.

[30] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gom-

mers, P. Virtanen, D. Cournapeau, E. Wieser, J. Tay-

lor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,

M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del

Río, M. Wiebe, P. Peterson, P. Gérard-Marchant,

K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi,

C. Gohlke, T. E. Oliphant, Array programming

with NumPy, Nature 585 (2020) 357–362.

[31] S. Dahlskog, J. Togelius, M. J. Nelson, Linear levels

through n-grams, in: Proceedings of the 18th Inter-

national Academic MindTrek Conference: Media

Business, Management, Content & Services, 2014,

pp. 200–206.

[32] A. J. Summerville, S. Philip, M. Mateas, MCMCTS

PCG 4 SMB: Monte Carlo tree search to guide plat-

former level generation, Proceedings of the AAAI

Conference on Artificial Intelligence and Interac-

tive Digital Entertainment (2015).

https://www.kenney.nl/assets
https://www.kenney.nl/assets

	1 Introduction
	2 Related Work
	3 Description
	4 Datasets
	5 Discussion and Conclusion

