CEUR-WS.org/Vol-3627/paper05.pdf

C

CEUR

Workshop
Proceedings

Migration Process from Monolithic to Micro
Frontend Architecture in Mobile Applications

Quentin Capdepon®?*, Nicolas Hlad!, Abdelhak-djamel Seriai’ and
Moustapha Derras’

IBerger—Levrault, Toulouse, France
?LIRMM, University of Montpellier, France

Abstract

Today mobile applications are often monolithic architecture that are complex to maintain, especially
when they reach an industrial scale. Micro FrontEnd (MFE) architecture offers an opportunity to re-
architecture systems into smaller units. However this re-architecturing is often manual and as yet to be
adapted on mobile application developpement. This paper introduces early ideas and plan to migrate
monolithic mobile architecture to MFEs using the model-driven engineering (MDE). Our approach is
tailor to work for mobile Flutter application and uses a Dart meta-model based on Famix. Alongside our
process description, we expose the MFE identification challenges, limitations, and future work needed
to achieve it. If implemented, this migration would have the potential to leverage MFE’s advantages to
mobile applications, leading to improvement in the development practices at an industrial scale.

Keywords

Micro frontends Architecture, Architecture migration, Model Driven Engineering, Moose Famix

1. Introduction

Mobile applications are an essential part of our daily lives, with 225 billion downloads globally
in 2022 '. However, industrial mobile applications become more complex. For instance, our
industrial partner Carl Software/Berger-Levrault commercializes a GMAO Flutter mobile appli-
cation of over 400k lines of code. Its developers reported maintainability and scalability issues,
which they attributed to the monolithic architecture of their application.

Flutter is a multi-platform SDK developed by Google [1]. It allows the creation of natively
compiled mobile, web, and desktop apps from a single code base developed in Dart #. Unfortu-
nately, Flutter applications tend to have a monolithic architecture, a design notorious for its
complexity in being maintained and evolved over time [2].

In our work, we look at ways to modularize the initial monolithic architecture by utilizing

IWST 2023: International Workshop on Smalltalk Technologies. Lyon, France; August 29th-31st, 2023
*Corresponding author.
& qeapdepon@lirmm.fr (Q. Capdepon); nicolas. hlad@berger-levrault.com (N. Hlad); Abdelhak.Seriai@lirmm.fr
(A. Seriai); mustapha.derras@berger-levrault.com (M. Derras)
&} https://www.lirmm.fr/~seriai (A. Seriai); https://www.research-bl.com (M. Derras)
® 0000-0003-4989-2508 (N. Hlad); 0000-0003-1961-1410 (A. Seriai)
© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

==] CEUR Workshop Proceedings (CEUR-WS.org)
"https://www.statista.com/topics/1002/ mobile-app-usage/
*https://web.archive.org/web/20230504145028/https://en.wikipedia.org/wiki/Dart_(programming_language)

mailto:qcapdepon@lirmm.fr
mailto:nicolas.hlad@berger-levrault.com
mailto:Abdelhak.Seriai@lirmm.fr
mailto:mustapha.derras@berger-levrault.com
https://www.lirmm.fr/~seriai
https://www.research-bl.com
https://orcid.org/0000-0003-4989-2508
https://orcid.org/0000-0003-1961-1410
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org
https://web.archive.org/web/20230504145028/https://en.wikipedia.org/wiki/Dart_(programming_language)

micro frontend (MFE) architecture. This architecture is particularly suited to our needs : i) MFE
modularizes frontend applications, which corresponds to the nature of mobile applications [3];
ii) MFE are loose modules, which contributes to their development autonomy, thus facilitating
their maintainability [4]; iii) MFE can be composed to form a global application and have a
reusability potential in different apps. However, using MFE presents two problems : a) Today,
MEE architecture is mainly used in the industry for web applications; b) In the domain of mobile
applications, the scientific literature lacks significant contributions addressing the migration
from monolithic architecture to MFE architecture.

As part of our initial work, we developed an MFE shell for mobile called MicroFrontendShell
with our industrial partner Berger-Levraut. The shell is a key component of the MFE architecture.
It is a container application that provides the framework for loading and managing multiple
MFEs within one front-end application. The Shell manages a consistent user experience across
all micro frontends, managing routing and page transitions, and facilitating communication
between different micro frontends °. Thus, our goal is to design a migration process that will
target an MFE architecture compatible with the shell.

Our migration approach is a work-in-progress concept and this paper only presents a plan to
achieve it using existing Pharo tools. We focus on the identification steps, the transformation
and generating Dart source code from the obtained model is out of the scope of this paper.
In this early work contribution, we propose : i) a general description of a migration process
based on a model-driven engineering (MDE) approach using Moose*; ii) implementation details
regarding the technologies best suited for the MFE identification step; and iii) a discussion on
the challenges regarding the feasibility of our migration process and the feasibility of MFE on
mobile in general.

Our paper is structured as follows: section 2 provides a background on the monolith and
microarchitectures concepts; section 3 gives an overview of our migration approach and its
steps; section 4 discusses the identification steps and its challenges; Finally, section 5 examines
the limitations of our process, and section 6 presents the related works to our paper.

2. Background

In this section, we provide background on micro frontend and monolithic architectures.

Monolithic Architecture. Monolithic architecture has historically been present in most
programming languages and applications [5]. The entire application presenting itself as a
single, cohesive unit. While its easy implementation is advantageous in the early stages of a
software application’s life, it can pose significant challenges in evolution and maintenance for
larger applications. The presence of legacy code from years of iterative development makes it
difficult to maintain and evolve the monolith. Thus, monolithic architecture is often identified
as the cause of slower development cycles, a higher risk of errors, and difficulties in scaling the
application [2, 5].

*https://web.dev/learn/pwa/architecture/
*https://modularmoose.org/research

https://web.dev/learn/pwa/architecture/
https://modularmoose.org/research

Routing

/\ Composition Communication
000 eoo [ece] [eoe)
PAGE C PAGE C
PAGE A PAGE B Fragment Fragment :
B B
Fragment A <> Fragment A

Figure 1: Core concept of micro frontend by M.Geers [3]

Micro frontend. Micro frontend architectures are a way of building front-end applications
as a collection of loosely coupled, standalone modules, each called micro frontend. Each MFE is
a discrete feature or business capability of an application that is designed, tested, implemented,
and maintained independently of other modules. This architectural approach is recognized
for improving the agility as well as the scalability of front-end development, increasing team
autonomy by allowing each MFE to be owned and managed by a separate team [4]. Micro
frontend being directly linked to the frontend, they are easier to consider as Pages (i.e. an entire
Single Page Application) or Fragments (i.e. a widget that composed a page) [3]. MFEs are not
limited to the UI page or Ul fragment: their perimeter includes all the stacks that start from the
Ul to the database. This allows each team responsible for the MFE to fully own their stack, thus
being independent.

To integrate the micro frontends into a unified user interface, a MFE architecture typically uses
three core concepts: routing, composition, and communication. These concepts are illustrated in
Figure 1. Routing refers to the mechanism by which the user navigates between micro frontends.
Each MFE typically has its routing configuration, dynamically or statically loaded depending
on application requirements. Composition refers to the act of combining multiple MFE to
form a Ul page. On one hand, we talk about server-side composition when the composition is
made on the server before it is sent to the client. On the other hand, a client-side composition
is when a shell is required to collect and assemble all the MFEs by executing a script on the
client side. Finally, communication refers to how MFEs exchange data and events with each
other. This communication can be direct, with MFEs communicating with each other without
any intermediary, or indirect, with MFEs going through a remote backend or a local shell to
exchange their messages [3].

3. Migration Process Overview

Our migration process is illustrated in Figure 2. It is composed of the following steps.

Step 1: Analysis. The first step takes the monolithic Dart source code as input and outputs
an instantiated DartFamix model from it. Pre-requirements for this step are the creation of a
Dart parser, the definition of a Dart metamodel (based on Famix), and the implementation of a
Famix Dart importer (to instantiate the Famix Dart metamodel). Figure 2 illustrates this step
by analyzing the dart code of a class C1 and turning it into a Famix Dart model. This model
captures the dependencies of the entities following the Famix Meta model [6].

Step 2: Identification. The identification step requires as input the Famix Dart model
instantiated from the monolith and outputs the clustering of the model’s entities to create a
MEE architecture. Visualizations are essential in our migration process for informing developers
about the impact of changes on the architecture. This step’s pre-requirements are the creation
of visualizations, the definition of clustering metrics, and the ability to label model entities
according to the clustering. The identification process includes the detection of dependencies,
points of interest for grouping, the detection of possible clustering, the creation of visualiza-
tions, and the computation of cohesion metrics [7], all of them are hinted at in section 4. It
also detects inter-group dependencies which are seen as violations and are resolved by the
transformation step. As in Figure 2, the identification clusters the model entities here based
on their proximities with class C1 and C2. Thus, in this example, creating two micro frontend
candidates: MFEI and MFE2. Here a violation appears from the invocation that remains from
M1 to M2. Re-architecturing the monolith imply to transforming this invocation inside the new
MEFE architecture.

Step 3: Transformation. The third step, transformation, takes as input the clusters of
entities from the identification and outputs a refactored model for the MFE which resolves
the violations. This step requires the definition of rules for inter-grouping violations and their
resolution. The transformation involves reordering the model entities according to each cluster.
Our interest is to find automated ways to resolve most of the violations. However, it is likely
that some will involve the developer’s input [8]. In our example, we see that there is still a
dependency between MFET and MFE2. The transformation goal is to resolve this violation by,
for instance, redirecting the dependencies through our MicroFrontendShell. Once resolved, a
code source exporter will generate the MFEs code, ready to be deployed.

The migration from a monolithic architecture to micro frontends introduces various challenges
that must be addressed to ensure a successful transition. Since this paper focuses on early work,
it only covers the identification step and leaves the transformation for future works

4. ldentification

This section discusses ideas and challenges related to the identification phases within our
migration process. This step constitutes the core of our future work and involves the scientific
challenges we strive to address. We also assume that we have a tool that parses Dart code and
produces a Famix model for Dart, as shown in section 3.

To migrate monolithic Dart code to MFE, we need to tackle the challenges depicted in Figure 2,
which are part of the identification step: i) Creating visualizers of our Dart model; ii) Clustering
the model entities to identify potential MFE.

The identification step is a semi-automatic process involving automated techniques and
expert validation. The main objective is to propose a rearrangement of the entities within
the model, aiming to create clusters of entities to modularize the initial architecture into an
MEFE architecture. The validation based on the expert’s approval is essential since architectural
migration is a risky process [9]. Thus, supports like visualizations help experts in their decision-
making.

2) Identification

/ 1) Analvsis\ / \
BN %\

tributes methods

attributes methods | \
class C1 { I \ -— ion—
var Al; invocation invoeation
void M1{ |
Al = O; | 1
c2.m20); X X invocation
} invocation (Violation)
l

c2
Example of Dart code _methods_
methods

A Famix Dart Model obtained E
MFE 2

Example of identification from the model

MFE 1
\ Resolving vieolation

attributes methods with the Shell

MFE 1 \ \ T mmmEEEEEE N 3) Transformation
Flutter —invocation— -

<«<—Deployment [..]— SHELL

(which is also
a set of Famix
Dart entites)

MFE 2
Flutter

I

|

I

I

I

I

I

|

@ =
- T methodS m——.—]
i

MFE 2

Figure 2: Migration overview illustrated on a basic example

4.1. Clustering

With this step, we aim to propose a clustering approach that maximizes key principles of MFE
architecture. We translate these principles into three criteria, defined as followed :

The Cohesion, ensures that each MFE encapsulates its functionality, user interface, and assets.
Within an MFE architecture, features represent self-contained units of functionality. We aim
to use the import declaration within a Dart file to determine which files are required to run a
particular feature, thus forming an initial grouping of MFEs candidates. Expert validation is
required to evaluate the feasibility and the cohesiveness of the MFEs candidates.

The Modularity, implies the creation of loosely coupled modules through clustering. To
get modular MFEs candidates, we need to visualize the violation between all the different
MFEs candidates and resolve them, which may involve decoupling business code, duplicating
existing code, establishing communication protocols for data sharing, and generating code. By
employing this technique, we want to address the MFE principle of independent development

and deployment of individual front-end modules.

The Reusability, is centered around maximizing the reusability of the candidate MFE. This
principle emphasizes that an MFE should be self-contained and capable of independent use
and development. The objective is to develop MFEs that can be utilized both individually and
in collaboration with other MFEs across various projects, including those originating from
different monolithic architectures. To achieve this, we want to analyze the Dart code to identify
fragments that indicate the presence of user screens, mains, and data sharing. This fragment will
help us to build a complete and feasible MFEs cluster. Expert validation is necessary to evaluate
the potential for reusing the proposed clusters and ensuring their autonomy and compatibility
for integration into various contexts.

This joint effort enables us to improve and refine our yet-to-be-determined metrics. However,
it is important to note that interaction and adjustments made by experts (with the help of our
visualization) can introduce new violations.

4.2. Roassal visualizer

Our first challenge concerns the creation of interactive visualization that helps expert validation
of the MFE architecture during the identification. We need to investigate diverse approaches for
representing the structure and dependencies within the Dart model. To do so, we must be able
to represent the monolith from different points of view to allow them to make the best decisions
about the MFEs to be created. Among these views, our work will focus on views that expose
the fundamental principles of MFE (routing, communication, composition). We can mention a
view highlighting the navigation between the monolith’s screens and a second highlighting
the relationship between the monolith’s code and the developers’ work. Here we present two
possible visualizations for the identification: one focuses on the frontend navigation; and one
on the git contribution. Potential visualizations for the identification process could include
navigation and a git contribution representation.

4.2.1. Navigation Graph.

This visualization represents the navigation flow within an application. This visualization can
show how different screens or components are accessed and navigated, providing insights into
the overall structure of the application and potential boundaries for MFE separation. Though,
designing a navigation flow graph for a Dart application in Flutter poses challenges due to the
widget composition employed in Flutter. Getting information about widget types is essential, but
it is only available in a widget tree, which is constructed at compilation time. Thus, a dynamic
analysis of the runtime application is required to extract the widget tree. Here, the challenge
is to combine the Dart model obtain by static analysis, with the navigation model obtained
by dynamic analysis. It requires efficiently merging the information of these two analyses to
capture how the model entities are grouped and accessed during navigation.

The concept of this visualization is represented in Figure 3. Inside we see a basic music player
application concept with three screens: a list of albums, a list of songs within an album, and a
media player. The lateral navigation indicates that the application provides a way to navigate
freely between the green and the blue screens (e.g. using a bottom navigation bar). While the

Lateral navigation——»

Artist screen

[SEUT media player

] screen

/

[album2

[album3 J

Forward
navigation navigate To
'player’
loading widget
album3 screen from 'player’
L
(] e 1
[50n93] |:| MFE 2
di 1 /' screen navigation
media player
\ 4 WIdQEt / navigation's violation

Figure 3: A concept for the Navigation visualization

forward navigation indicates that album screen is only accessible after selecting an album inside
artist screen. In this clustering example, Album and Artist screen is associated with MFE1, while
the media player is associated with MFE2. We see the navigation represented as an arrow. In
this concept, we represent the navigation between the two MFEs as a violation (in red) since
it creates direct dependencies between the two MFEs. Thus, experts can discuss the initial
clustering and decide if media player should belong within artist and album screen MFE.

4.2.2. Git Contribution Analysis

This visualization can leverage data from version control systems like Git to analyze developer
contributions to specific files. This visualization provides insights into which developers have
worked on different parts of the codebase. Additionally, it helps identify potential boundaries
for the MFE division. Separating the team that works on different parts of the monolith
becomes essential in achieving one of the key principles of MFE architecture. To successfully
implement an MFE architecture, each MFE will require a dedicated team of developers who have
previously worked on the corresponding codebase. This ensures that the team possesses the
necessary expertise and knowledge to effectively maintain and enhance their respective MFE.

This promotes independent development and the overall success of the architectural approach.

Our future works focus on implementing these two visualizations using Roassal. Roassal al-
lows the creation of interactive visualizations within Pharo and links them to a model. Therefore,
we can propose expert interaction and translate these interactions to our model using Roassal.
As for any work on software visualization, the challenge is to fine-tune our visualization so that
it offers meaningful information for the experts. Thus, we need to conduct an evaluation of our
work with real-life developers and industrial projects, which is often the most challenging part
of software engineering research.

5. Limitations

Our migration approach has limitations that we anticipate and will need to address. These
limitations can be classified into three categories related to different stages of the migration
process.

Firstly, there is a risk of frequent changes in the Dart grammar and the Flutter framework,
which can make some of the features on which the identification is based obsolete °°. The cre-
ation and maintainability of a parser and meta-model for Dart is in itself a challenge considering
the rapid evolution of this language. Let alone that Flutter is also evolving. This limitation
could be addressed by regularly updating the identification tool to ensure compatibility with
the latest versions of the Dart language and Flutter framework.

Secondly, the non-autonomous deployment of MFE is a significant limitation of the approach.
All MFEs are natively integrated into the deployed app, which contradicts the "autonomous
deployment" aspect of a micro frontend. However, this constraint is intrinsic to the native
mobile platforms of today (10S and Android) and cannot be bypassed. A potential solution path
could be to use a platform such as Shorebird’ that seems to allow Dart code injection within an
already deployed app.

Thirdly, when performing a static analysis only on the Dart part, we are not able to analyze
Flutter platform-specific code and configuration files. The platform-specific code, written in
languages like Kotlin, Java, Objective-C, or Swift, and the configuration file (pubspec.yaml)
provide important insights into the application’s behavior and dependencies. Analyzing only
the Dart code would provide a partial understanding of the codebase, potentially missing issues
or behaviors specific to the platform or configuration. Therefore, the restricted analysis scope
of Flutter’s static analysis tools limits the comprehensive assessment of the application’s overall
code quality and behavior.

6. Related Works

Peltonen and al.[4] conduct a literature review on the adoption of MFE in the industry. They
show that most teams adopt MFE to reduce the maintenance complexity of their frontend
application. In his book, Geers offers an extended definition of MFE based on his extensive

*https://docs.flutter.dev/release/breaking-changes
Shttps://docs.flutter.dev/release/archive
"https://github.com/shorebirdtech/shorebird

https://docs.flutter.dev/release/breaking-changes
https://docs.flutter.dev/release/archive
https://github.com/shorebirdtech/shorebird

industrial experience [3]. We took inspiration from his work and we work on adapting its
definition for mobile using Flutter. In papers and keynotes, Mezzalira et al. share their experience
on anti-patterns in MFE [10, 11]. We plan to study these anti-patterns since they may help us
identify violation rules during our migration process. Unfortunately, we have yet to find studies
or reports that cover MFE on mobile.

We found two industrial frameworks for MFE on mobile. The first one by Braz, is an open-
source Flutter package to organize a Flutter project as a set of MFE, called micro apps [12].
The second is an extension of the MFE framework of ionics [13] where MFEs are embedded for
mobile applications. However, both frameworks only focus on mobile MFEs built from scratch,
whereas our goal is to build them from our migration process. In future works, we will look at
the implementation of Braz and study how our micro app deployment target differs from his
proposal.

Finally, our migration process takes inspiration from works on migrating monolith to mi-
croservice [14, 15, 16, 17, 18]. Noticeably, we adapt to mobile MFE the work of Zaragoza in
[8], who presents a similar migration approach for microservices from the identification to the
deployment.

7. Conclusion

Our article presents a novel approach for migrating monolithic mobile Flutter applications
to micro apps using MDE. The migration consists of three steps: analysis, identification, and
transformation. We describe several challenges, such as developing new visualization and
clustering. Our goal is to develop this migration approach for the next three years, with
a release of the Dart Famix meta-model by the end of 2023. After that, we plan to focus on
clustering methods and study anti-patterns in MFE to detect violation rules during the migration
process. Once we reach the deployment step, we intend to study the impact of micro frontends
on mobile app development. We especially, want to investigate the impact of MFE architecture
on performance, user experience, and developer productivity. With this research, we aim to
provide a practical and effective solution for migrating monolithic mobile applications to micro
apps using MDE.

References

[1] Flutter, Flutter releases, 2018. URL: https://docs.flutter.dev/release/archive.

[2] N.Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara, F. Montesi, R. Mustafin, L. Safina,
Microservices: Yesterday, Today, and Tomorrow, Springer, 2017, p. 195-216. URL: https:
//doi.org/10.1007/978-3-319-67425-4_12. doi:10.1007/978-3-319-67425-4_12.

[3] M. Geers, Micro Frontends in Action, manning publications ed., 2020. URL: https://livebook.
manning.com/book/micro-frontends-in-action/.

[4] S. Peltonen, L. Mezzalira, D. Taibi, Motivations, benefits, and issues for adopting micro-
frontends: A multivocal literature review, Information and Software Technology 136 (2021)
106571. d0i:10.1016/j.infsof.2021.106571.

[5] R. Stephens, Beginning Software Engineering, 1st ed., Wrox Press Ltd., GBR, 2015.

https://docs.flutter.dev/release/archive
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
http://dx.doi.org/10.1007/978-3-319-67425-4_12
https://livebook.manning.com/book/micro-frontends-in-action/
https://livebook.manning.com/book/micro-frontends-in-action/
http://dx.doi.org/10.1016/j.infsof.2021.106571

(6]
(7]

(8]

(9]

[13]

[14]

[15]

[16]

[17]

(18]

S. Tichelaar, S. Ducasse, S. Demeyer, Famix and xmi, in: Proceedings Seventh Working
Conference on Reverse Engineering, 2000, p. 296-298. d0i:10.1109/WCRE. 2000.891485.
J. Al Dallal, L. C. Briand, A precise method-method interaction-based cohesion metric for
object-oriented classes, ACM Transactions on Software Engineering and Methodology
(TOSEM) 21 (2012) 1-34.

P. Zaragoza, A.-D. Seriai, A. Seriai, H.-L. Bouziane, A. Shatnawi, M. Derras, Refactoring
monolithic object-oriented source code to materialize microservice-oriented architecture,
in: ICSOFT, 2021, p. 78-89. d0i:10.5220/0010557800780089.

A. Selmadji, A. Seriai, H. Bouziane, R. O. Mahamane, P. Zaragoza, C. Dony, From monolithic
architecture style to microservice one based on a semi-automatic approach, in: 2020 IEEE
International Conference on Software Architecture, ICSA 2020, Salvador, Brazil, March
16-20, 2020, IEEE, 2020, pp. 157-168. URL: https://doi.org/10.1109/ICSA47634.2020.00023.
d0i:10.1109/ICSA47634.2020.00023.

D. Taibi, L. Mezzalira, Micro-frontends: Principles, implementations, and pitfalls, ACM
SIGSOFT Software Engineering Notes 47 (2022) 25-29. doi:10.1145/3561846.3561853.
L. Mezzalira, Microfrontends anti-patterns: Seven years in the trenches, 2022. URL: https:
//www.infoq.com/presentations/microfrontend-antipattern/.

E. Braz, Flutter micro app - a package to speed up the creation of micro frontend(or
independent features) structure in flutter applications, 2022. URL: https://web.archive.org/
web/20220804142023/https://flutterrepos.com/lib/emanuel-braz-flutter_micro_app.
Ionic, Micro frontend architecture for mobile web apps - ionic portals, 2022. URL: https:
//ionic.io/portals.

F. Auer, V. Lenarduzzi, M. Felderer, D. Taibi, From monolithic systems to microservices:
An assessment framework, Information and Software Technology 137 (2021) 106600.
d0i:10.1016/j.infsof.2021.106600.

A. Bucchiarone, N. Dragoni, S. Dustdar, S. T. Larsen, M. Mazzara, From monolithic to
microservices: An experience report from the banking domain, IEEE Softw. 35 (2018)
50-55.doi:10.1109/MS.2018.2141026.

R. Capuano, H. Muccini, A systematic literature review on migration to microser-
vices: a quality attributes perspective, in: IEEE 19th International Conference on Soft-
ware Architecture Companion, ICSA Companion 2022, Honolulu, HI, USA, March 12-
15, 2022, IEEE, 2022, p. 120-123. URL: https://doi.org/10.1109/ICSA-C54293.2022.00030.
d0i:10.1109/ICSA-C54293.2022.00030.

F. Freitas, A. Ferreira, J. Cunha, Refactoring java monoliths into executable microservice-
based applications, in: C. D. Vasconcellos, K. G. Roggia, P. Bousfield, V. Collereii, J. P.
Fernandes, M. Pereira (Eds.), SBLP’21: 25th Brazilian Symposium on Programming Lan-
guages, Joinville, Brazil, 27 September 2021 - 1 October 2021, ACM, 2021, p. 100-107. URL:
https://doi.org/10.1145/3475061.3475086. d0i:10.1145/3475061.3475086.

M. Brito, J. Cunha, J. a. Saraiva, Identification of microservices from monolithic appli-
cations through topic modelling, in: Proceedings of the 36th Annual ACM Symposium
on Applied Computing, SAC ’21, Association for Computing Machinery, New York, NY,
USA, 2021, p. 1409-1418. URL: https://doi.org/10.1145/3412841.3442016. doi:10. 1145/
3412841.3442016.

http://dx.doi.org/10.1109/WCRE.2000.891485
http://dx.doi.org/10.5220/0010557800780089
https://doi.org/10.1109/ICSA47634.2020.00023
http://dx.doi.org/10.1109/ICSA47634.2020.00023
http://dx.doi.org/10.1145/3561846.3561853
https://www.infoq.com/presentations/microfrontend-antipattern/
https://www.infoq.com/presentations/microfrontend-antipattern/
https://web.archive.org/web/20220804142023/https://flutterrepos.com/lib/emanuel-braz-flutter_micro_app
https://web.archive.org/web/20220804142023/https://flutterrepos.com/lib/emanuel-braz-flutter_micro_app
https://ionic.io/portals
https://ionic.io/portals
http://dx.doi.org/10.1016/j.infsof.2021.106600
http://dx.doi.org/10.1109/MS.2018.2141026
https://doi.org/10.1109/ICSA-C54293.2022.00030
http://dx.doi.org/10.1109/ICSA-C54293.2022.00030
https://doi.org/10.1145/3475061.3475086
http://dx.doi.org/10.1145/3475061.3475086
https://doi.org/10.1145/3412841.3442016
http://dx.doi.org/10.1145/3412841.3442016
http://dx.doi.org/10.1145/3412841.3442016

	1 Introduction
	2 Background
	3 Migration Process Overview
	4 Identification
	4.1 Clustering
	4.2 Roassal visualizer
	4.2.1 Navigation Graph.
	4.2.2 Git Contribution Analysis

	5 Limitations
	6 Related Works
	7 Conclusion

