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Abstract  
The industrial sector has a keen interest in solutions that monitor ongoing process executions 

and swiftly detect deviations from desired behaviours, thereby facilitating timely corrective 

interventions. Visualizing complex process data offers an intuitive and comprehensive 

perspective, enabling stakeholders to quickly identify deviations and their root causes. Through 

conformance checking techniques, deviations are automatically detected and their severity is 

estimated. In this work, two visualization methods for process data are proposed: one for 

original event data and another for the outputs from an alignment-based multi-perspective 

online conformance checking technique, termed alignment data. The innovative aspect of these 

methods is their ability to support both fixed and duration timeline-based visualizations for 

event and alignment data. They also adeptly handle overlapping objects while making it 

possible for the users to select the perspective from which they want to examine the data. When 

tested on a real-life manufacturing process, our methods identified timing anomalies and 

consistent product quality-affecting deviations, emphasizing the crucial role they play in better 

process oversight. 
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1. Introduction 

Process mining is a family of techniques that help to extract knowledge from process data in order 

to discover, monitor and improve business processes [1]. Conformance checking, a subset of process 

mining, evaluates how well the observed process executions align with a predefined process model, by 

identifying deviations and measuring their severity. Currently, the de facto standard technique for 

conformance checking is the calculation of alignments [2], which provide a path for each process 

instance through the process model. The goal is to find the optimal alignments, which minimize the 

total cost of the deviations. An alignment is basically a sequence of (alignment) moves, where a move 

consists of a pair of an event from the process instance and a transition from the process model. 

The basic alignment-based conformance checking technique is limited to working offline, focusing 

only on completed cases, and considering just the control-flow perspective (i.e., the ordering of events). 

For effective real-time process monitoring, the technique should also accommodate ongoing cases, 

enabling the detection of deviations before a process instance concludes and allowing for timely 

corrective interventions. Furthermore, since deviations can arise from various perspectives (e.g., time, 

resource, or other data), it is essential for the technique to account for these as well. For these reasons, 

in this paper, we focus on the alignment-based multi-perspective online conformance checking 

(MOCC) technique and its outputs, which were introduced in one of our previous works [3]. The outputs 

are called multi-perspective prefix-alignments, but for simplicity, we will refer to them as alignment 

data in most of the remaining part of this work. 

Visualization is crucial for process monitoring, because it provides an intuitive and comprehensive 

representation of complex process data, enabling stakeholders to quickly identify deviations and their 

                                                      
Proceedings ITTAP’2023: 3rd International Workshop on Information Technologies: Theoretical and Applied Problems, November 22–24, 

2023, Ternopil, Ukraine, Opole, Poland  

EMAIL: nagy.zsuzsanna@mik.uni-pannon.hu (A. 1); werner.agnes@mik.uni-pannon.hu (A. 2) 
ORCID: 0009-0009-5413-7284 (A. 1) 

 
©️  2023 Copyright for this paper by its authors. 

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  

 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073



root causes. Incorporating temporal information into visualizations is essential, as it offers context, 

sequence, and duration to events, fostering a deeper understanding of dynamics, dependencies, and 

progression over time. There are various process mining software tools available, yet the existing 

visualization techniques for event data do not properly represent temporal information. Events with the 

same timestamp, known as overlapping events, are particularly problematic and often not handled 

effectively. Additionally, events are typically represented either as time points or time intervals, with 

no methods capturing both simultaneously. While a few visualization methods exist for the outputs of 

conformance checking, none incorporate temporal information. Consequently, visualizing deviations 

highlighted by conformance checking algorithms remains an open challenge [4]. A detailed overview 

of existing solutions is provided in the next section. 

The visualization methods for process analytics can be divided into three main categories according 

to the input data and the information to be visualized: process model visualization, event data 

visualization and linked visualization [5]. This paper aims to develop a visualization method for the 

original observed event data obtained from an event stream, as well as a method for visualizing outputs 

of the MOCC technique, the alignment data. This alignment data is calculated from event data and the 

associated process model. The former falls under the event data visualization category, while the latter 

fits into the linked visualization category.  

Both of the proposed visualization methods were designed to encompass the beneficial aspects of 

existing methods while addressing their limitations. The innovative aspect of them is their ability to 

support both fixed and duration timeline-based visualizations for event and alignment data. 

Additionally, they adeptly handle overlapping objects while making it possible for the users to select 

the perspective from which they want to examine the data.  

The proposed visualization methods were implemented within a test environment. Their utility and 

performance were evaluated using simulated event streams from a real-life process. The experiment 

revealed that our methods effectively identified timing anomalies, primarily linked to machine 

downtimes, as well as other issues potentially stemming from data quality problems or malfunctioning 

equipment. These findings underscore the urgent need for timely interventions. 

The remainder of this paper is structured as follows: Section 2 discusses related works, while Section 

3 introduces the basic concepts necessary for understanding the proposed visualization methods. 

Section 4 provides a detailed description of these methods. Finally, Section 5 evaluates these methods 

and presents the results of the experiments. Finally, the paper is concluded. 

2. Related works 

In this section, existing process mining software tools are reviewed, followed by an analysis of the 

visualization methods used by them for event data and the outputs of conformance checking algorithms, 

including alignments. 

2.1. Process mining tools 

There are various process mining software tools available. In [6], a comparison was made of the 

performance and features of four most popular tools: ProM, Disco, Celonis, and My-Invenio. Reference 

[7] lists 27 available tools, but detailed examination was done only on the previously mentioned four 

tools, with the addition of Apromore. The most extensive analysis can be found in [8], where 17 tools 

were evaluated in depth. Additionally, a website has been developed that hosts a continually updated 

list of existing process mining software tools, offering a platform for comparative analysis. 

According to the findings in [8], the examined tools are limited in their capability to handle 

timestamps; they can manage event data with either one or two timestamps, but not both. In terms of 

process discovery, certain tools can display process execution variants (also termed trace variants) and 

provide a detailed view of a specific case. While these are valuable for visualizing the range of observed 

process executions, they do not offer contextual information. For example, they do not illustrate the 

number of ongoing cases, the activities being performed at any given time, the resources involved, or 

their locations. When it comes to conformance checking, some tools can present an aggregated view of 

deviations overlayed on the process model. Additionally, they can list deviations (both undesired and 



missing activities) as well as non-compliant activity sequences. However, this representation is often 

limited to textual or tabular formats. 

2.1.1. Tools built on PM4Py 

A primary limitation of the tools examined in [8] is that, with the exceptions of Apromore and ProM, 

they are not open-source. This restricts the possibility of introducing new features. Consequently, many 

advanced and recent process mining algorithms are not incorporated into these tools. In contrast, 

PM4Py [9] offers an open-source process mining library for Python, which boasts easy extensibility. 

Numerous process mining applications have been developed using this library as a foundation. 

In [10], an approach was introduced that identifies bottlenecks in business processes by analysing 

event logs and presenting the results visually. This method can represent activity durations and trace 

durations over time as dot charts. However, a limitation of this solution is its emphasis on summarized 

values at the expense of insights into individual traces, even though it values temporal information. 

In [11], a process mining toolkit named PMTK is introduced that is able to show the trace variants 

(i.e., the distinct process execution patterns) and visualize events over time using a dotted chart, 

similarly to ProM [12]. However, it cannot perform conformance checking. 

In [13], a modular software system named Smyrida is introduced, which can also show the trace 

variants and their frequency, but cannot show them on a timeline. It can perform conformance checking, 

but the alignments are shown only in tables. 

In [14], an interactive process discovery tool named Cortado is introduced. While it can perform 

conformance checking and visualize alignments, it has a limitation in displaying alignment moves. 

Specifically, when an alignment is projected onto a trace (or variant), the model moves are not 

displayed, and vice versa. When projected onto the process model, the log moves are not displayed. 

Additionally, while it projects statistical measures like service time and waiting time lengths (e.g., 

minimum, maximum, mean, etc.) onto variants and the model, there is no provision to compare these 

with expected values. 

2.2. Visualization methods for event data 

When visualizing event sequences for online representation, we focus exclusively on timeline-based 

visualizations. Such visualizations graphically portray sequences of events, aligning them on a temporal 

axis to convey the order of events within event sequences [15]. 

For event sequence data, timeline-based visualizations can be categorized based on their way of 

representation of time: fixed timeline-based (like dotted charts [12]), duration timeline-based (including 

Gantt charts, bar charts, and their variants [16]), and a hybrid of both (as demonstrated in our previous 

work [17]). Typically, individual events are represented based on their timestamp(s) and another chosen 

attribute, often the case-id or resource. These events manifest as graphical objects (like circles or 

rectangles) and are color-coded based on the activity. 

Existing visualization techniques, however, struggle with a significant challenge: the handling of 

overlapping events. When multiple events share identical temporal data, one will cover the others in 

the visualization. Furthermore, in fixed timeline-based visualizations, when an activity execution spans 

multiple events (for example, a start event followed by a completion event), these events are not linked. 

This omission fails to convey the activity's execution duration. 

2.3. Visualization methods for alignment data 

When it comes to visualizing the outputs of conformance checking techniques, including alignment 

data, no timeline-based methods currently exist. Consequently, our discussion encompasses all existing 

methods. 

Reference [18] offers a thorough examination of how conformance checking results are visualized 

by various process mining tools. Addressing the “Why?” aspect, the study delved into the structuring 

of visualizations within the tool interfaces, categorizing them into four primary groups: 



1. Quantify conformance, 

2. Break-down and compare conformance, 

3. Localize and show deviations,  

4. Explain and diagnose deviations. 

Our primary focus is on the “Localize and show deviations” category, which features methods that 

present alignments for specific process variants. These methods predominantly use color-coded 

flowcharts and chevron diagrams (sequences of coloured arrowheads) to depict alignments of all 

activities within a trace. 

Visualization methods based on chevron diagrams are available for both control-flow alignments 

[19] and multi-perspective alignments [20]. Both techniques employ coloured chevron diagrams to 

portray alignment moves in sequence, with arrow colours signifying move types. In multi-perspective 

alignments, there is a variation where arrowheads are coloured according to activity, and move types 

are depicted as coloured bars above the arrows. 

Although these methods provide significant insights, they are primarily suited for offline contexts 

due to the absence of temporal information representation. Nonetheless, the color-coding schemes for 

different alignment move types remain relevant for online contexts. 

3. Background and preliminaries 

In this section, fundamental concepts tied to the input data (event and alignment data) are explained 

to enhance understanding of the proposed visualization techniques. 

3.1. Event data 

Every process mining algorithm takes event data as its input. This event data, a subset of broader 

process data, captures the observed behaviour of executed processes. In offline settings, this data 

typically comes in the form of an event log, while in online settings (which is our case), it is presented 

as an event stream. Each event must possess a case identifier and a recorded activity. The case identifier 

specifies the context of the executed activity. Additionally, events can have other attributes providing 

more details about the activity, such as the person or machine performing the activity (i.e., resource) or 

the time of execution (i.e., timestamp). 

The execution of an activity, often termed an “activity instance”, may consist of multiple events. 

Each of these events describes different lifecycle transitions of the activity. A comprehensive list of 

possible transitions can be found in [21]. The most common transition types are “start” and “complete”, 

denoting the beginning and the end of an activity instance's execution, respectively. If the same activity 

can occur multiple times within the same context, the event should also include an activity instance 

identifier. The sequence of events executed within the same context is termed a “trace”. 

 

Table 1 
Content requirements for an observable unit in different event streams 

Attribute Single event stream Composite event stream 

case identifier required required 
activity required required 

activity instance identifier required irrelevant 
transaction type required irrelevant 

timestamp one two (start and complete) 
other attributes (e.g., resource) optional optional 

 
In this paper, it is assumed that an event stream is composed of observable units from which process 

information can be extracted. Event streams are categorized into two types based on the number of 

events each observable unit corresponds to: the single event stream and the composite event stream. In 

a single event stream, each observable unit contains information about a single event of an activity 



instance. Conversely, in a composite event stream, each observable unit encompasses details of all the 

events within an activity instance, yet only includes the timestamps for the start and complete events. 

Table 1 summarizes the attributes for which values are present within observable units for each type of 

event stream. Observable units may also encompass additional attributes. The sequence of attribute 

values within an observable unit is flexible, but it must remain consistent throughout. 

3.2. Alignment data 

The outputs of alignment-based conformance checking algorithms are (prefix-)alignments, that are 

derived from event data and a predefined process model. They serve to contextualize traces within the 

process model by mapping them to an execution sequence of that model. Specifically, an alignment 

consists of two rows: 

1. The first row represents a trace (a sequence of events). 

2. The second row corresponds to a firing sequence from the process model. 

Each row essentially depicts a sequence of moves, either in the log (for traces) or the process model. 

The key distinction between alignments and prefix-alignments lies in the assumed state of the process 

execution. For alignments, the process execution is deemed complete, indicating that the trace has 

reached its end. In contrast, prefix-alignments operate under the assumption that the process execution 

is ongoing. This means the trace is incomplete, representing just a prefix of the potential full sequence. 

In alignments that consider only the control-flow perspective (i.e., the sequence in which activities 

occur), there are three types of moves: 

 Synchronous Move: This indicates an activity that aligns correctly with the model. 

 Log Move: This points to an activity that is present in the log but not aligns with the model, 

signifying an inserted activity. 

 Model Move: This can represent either a skipped activity (if the activity is observable) or an 

unobservable activity. 

When other perspectives come into play, synchronous moves are further categorized into: 

 Correct Synchronous Move: This signifies an activity that not only aligns with the model, but 

also has the correct attribute values, a perfect alignment. 

 Incorrect Synchronous Move: This indicates an activity that aligns with the model, but has 

attribute values that deviate from the expected values. 

In this paper, it is assumed that the alignment data consists of multi-perspective alignment moves. 

Whether an alignment move is part of a prefix-alignment or complete alignment, in terms of 

visualization, it does not matter. An alignment move contains the original event data, if it is not a model 

move. For model moves, the necessary missing attribute values are obtained from adjacent alignment 

moves. For incorrect synchronous moves, the name of the corrected attributes and the corrected values 

are stored separately from the original values. 

4. Proposed techniques 

We developed our visualization techniques based on Tamara Munzner’s visual analytics framework, 

which examines three key aspects: “What?”, “Why?”, and “How?” in relation to visualization [22]. 

The “What?” aspect pertains to the data available for visualization. Our data sources include the 

event data extracted from an event data stream, as well as the outputs of the MOCC technique. The 

latter (i.e., alignment data) is derived from both the event data and the predefined process model. 

The “Why?” aspect defines the main purpose of a visualization, as well as any potential secondary 

purposes. In this context, the primary objective of both visualizations is to assist in monitoring process 

executions. The event data visualization offers a comprehensive view of the real process, while the 

alignment data visualization highlights and exhibits any deviations from the expected process. When 

used jointly, they facilitate the rapid detection of deviations and the identification of their root causes, 

enabling users to take corrective measures. 



The “How?” aspect defines the design choices to visualize the data. Based on insights from the 

literature review, we aimed to make design decisions that encompass the beneficial aspects of existing 

methods while addressing their limitations. 

In this section, the specifics of the proposed visualization methods are introduced. Shared 

characteristics will be discussed first, followed by comprehensive explanations of each method, which 

are supported by clear examples to enhance understanding. 

4.1. Common properties 

Several methods have emerged to display overlapping events over time [23]. Given the potential for 

multiple overlapping events, two existing techniques stand out as suitable: vertically listing events in 

parallel (akin to a Gantt chart) with an option of either overlaying them partially or not. Although 

overlays might condense the chart's size, they could hinder clarity. Consequently, we opted against 

overlapping visual elements. Thus, both the event data and the alignment data are presented using a 

Gantt chart-inspired mixed (both fixed and duration) timeline-based visualization. 

On the y-axis, a custom attribute is used. If the resource is provided, it becomes the default attribute; 

if not, the case identifier is used. Importantly, users can select any attribute that is present in every 

event. Depending on the space required to visualize the objects without overlap, a single attribute value 

might be represented across multiple rows. 

Visualized objects, such as events and alignment moves, are denoted by small vertical lines (“|”). 

Events and alignment moves pertaining to the same activity instance are connected with bars. Notably, 

a single event stream's observed unit is regarded as a single event, while a composite event stream's 

observed unit is depicted as two distinct events (start and complete). 

For increased interactivity, users can filter displayed events and alignment moves based on one 

selected attribute and its selected values, which is ideal for analysing the performance of specific 

resources, for instance. Hovering over objects reveals relevant information via tooltips and connects 

related objects by their case identifier in observed order. These interactive features grant users deeper 

insights without overwhelming the main display. 

Distinctive features between the two visualization methods lie primarily in colour choices and tooltip 

content. These distinctions are elaborated upon in the following subsections. As examples, a trace from 

a manufacturing process consisting of eight sequential operations (labelled “ts1o”, “ts2o”, etc.) is 

referenced. In this process, errors (labelled “terr”) can manifest at any stage. A more in-depth 

description of this process can be found in Section 5.2. 

4.2. Visualization of event data 

In the visualization of event data, the objects representing the events and their connections are 

coloured based on the value of the activity attribute. The colours are assigned to the values from a 

predefined categorical colour scale in the order new values are observed. 

When the mouse is hovered over the object representing an event, the tooltip displays all original 

information from the observed unit, organized as pairs of attribute names and values on distinct lines. 

The timestamp is prioritized, appearing on the first line, but only showcasing the time value, since 

events from the same date are displayed. For observed units from a composite event stream, the tooltip 

of the start event object shows the start timestamp, while the complete event object shows the complete 

timestamp of the activity instance. 

In Figure 1, a visualization of event data for a single case is presented, with the custom attribute set 

as “nest”. The cursor hovers over the event labelled “ts8o”, representing operations at station 8. Even 

before conducting conformance checking, several deviations from the expected behaviour are evident. 

The sequence of events is incorrect (for instance, “ts1o” is succeeded by “ts4o” instead of “ts2o”), and 

the duration of the activity “ts4o” is unusually extended. Moreover, since the product was identified as 

faulty before reaching station 5, it should have been discarded by station 7. However, it proceeded to 

station 8. 

 



 
Figure 1: Event data visualization for a single case in a manufacturing process 
 

4.3. Visualization of alignment data 

In the visualization of alignment data, specifically multi-perspective prefix-alignment moves, 

objects representing alignment moves and their connections are coloured based on the value of the 

alignment move type attribute. This attribute, generated by the MOCC technique, is stored as a numeric 

value for simplicity. Colours are mapped to these numeric values using a predefined categorical colour 

scale. The numerical values, alignment move types, and corresponding colours are as follows: 

1. Correct synchronous move: green; 

2. Incorrect synchronous move: orange; 

3. Log move: red; 

4. Model move: purple. 

When the mouse is hovered over the object representing an alignment move, the tooltip displays all 

original information from the observed unit, similarly to the event data visualization. If there are 

corrected values suggested by the process model, they are displayed next to the original values and the 

whole row is highlighted in red. 

All alignment moves are displayed using the original recorded value from the associated observed 

event, even if deemed incorrect by the process model. The exceptions are process moves, which lack 

corresponding observed events. In such cases, the recorded values for these moves can be represented 

by a time value provided by the model. If the model does not specify temporal information for an 

activity, this time value is set to the (complete) timestamp of the previous alignment move, or if 

unavailable, the (start) timestamp of the next alignment move. Given that alignments are only computed 

with at least one observed event for a case, this approach ensures a time value is consistently available 

for process moves. Similarly, if the model does not provide a value for the attribute displayed on the y-

axis, the aforementioned approach is applied. 

 

 
Figure 2: Alignment data visualization for a single case in a manufacturing process 
 

In Figure 2, an example of the visualization of multi-perspective prefix-alignment moves for a trace 

of a single case is presented, where the custom attribute is “nest”. The cursor is hovered over the 

alignment move with activity called “ts8o”. This alignment move is a log move, because according to 

the model, the product should have been discarded at station 7. Notably, the numbers indicating the row 

and column position of the tray (where the final product is placed) are zero. This could imply that either 

the product was not positioned on the tray or there was an error in detecting or recording these numbers. 



The more significant issue is that the temporal information for “ts2o” and “ts3o” is incorrect, as can 

also be observed in Figure 1. They were observed after the product reached the last station, instead of 

after “ts1o”. This is why there are two model moves after “ts1o” and two log moves at the end of the 

alignment. 

5. Results 

The proposed visualization methods were implemented within a test environment to evaluate their 

utility using simulated event streams of a real-life process. In this section, the implementation is first 

described, followed by an introduction to the process model and event data that are utilized. The results 

are discussed in the final subsection. 

5.1. Implementation 

To test the proposed visualization methods, we created a test environment in form of a web 

application. The backend consists of a server and a middleware and the frontend of a client. The server 

and the middleware were implemented in Python. The middleware uses a modified version of the 

newest version of PM4Py library [9] and Flask framework along with Flask-SocketIO library. The 

PM4Py library was modified based on our previous implementation of the MOCC technique [3], to be 

able to calculate optimal multi-perspective prefix-alignments. The client was implemented using web 

technologies (HTML, CSS and JavaScript). The D3 (or D3.js) JavaScript library is used to create and 

update the visualizations and the Socket.IO JavaScript library is used for the communication between 

the middleware and the client. The server communicates with the middleware using serialized JSON 

messages over TCP sockets to transmit data. The middleware sends data in form of JSON messages to 

the client in real-time using WebSockets facilitated by Flask-SocketIO. 

The main task of the server is to simulate an event stream based on the given event log and settings. 

The settings contain the path to the event log (in csv format) and to the process model (in pnml format), 

the type of the event stream (single event stream or composite event stream), the number of the column 

that contains the attribute value for each required attributes of the selected event stream type, the value 

type for each attribute, and the format of the timestamps. 

The middleware observes the event data provided by the server, then processes it and preforms 

analysis on it. Finally, it send the outputs to the connected clients. When a new client connects, the 

middleware sends all the necessary information for the visualization and all the cached data that needs 

to be visualized.  

The visualizations are generated and displayed on the client side, based on the data provided by the 

middleware and the settings given by the user. The two visualizations are displayed on a single page, 

allowing the user to examine both simultaneously. The user can zoom in, zoom out, reset the zoom, 

scroll a little left or scroll a little right in both visualizations concurrently. 

5.2. The process model and the event data of the examined process 

The implemented visualization methods were tested on real-life datasets from manufacturing 

processes, where one case describes the assembly process of a single product. The process is represented 

in Figure 3 as a data Petri net (DPN). The original figure, along with the guard expressions for the 

transitions of the DPN, is available in our previous work [3]. Blue and red transitions correspond to 

observable activities. In contrast, black transitions do not have any corresponding observable activities. 

Each variable represents an attribute of the event associated with a given activity. The arrows indicate 

the variable writing operation. A transition can only fire if all the variable values (both current and new) 

satisfy the criteria established by its guard expression, presented in the form of a logical formula. 

The manufacturing process under discussion is an automated assembly process comprising 8 

sequential station operations, labelled “ts1o”, “ts2o”, and so forth. Errors, denoted as “terr”, can arise 

at any point during the process. When an error surfaces, a three-digit error code is logged, pinpointing 

both the station and the specific problem type as identified by the machine. For example, the error code 



“701” signifies a type 1 error at station 7. Once a product is deemed faulty by the machine, no additional 

operations are conducted on it. The quality indicator bit, abbreviated as “qib”, captures whether station 

operations were successful (denoted by “1”) or unsuccessful (denoted by “0”). 

Products are assembled concurrently on rotary tables. The main rotary table, denoted as “M”, utilizes 

8 nests (or product holders), while the smaller rotary table at station 7, labelled “S”, has 4 nests. At the 

final station, products that meet quality standards and faulty products with error codes above 700 are 

segregated onto separate trays. All other defective products are discarded into a box at station 7. The 

respective row and column positions where a product is placed on a tray are recorded under the 

attributes “tray_row” and “tray_column”. 

In the original event logs, one full trace is stored in every line. There is a start timestamp and duration 

value (in milliseconds) recorded for every station operation. Since, the values of the attributes only 

recorded after the execution of the station operations are finished, the log was transformed to be able to 

be used in form of a composite event stream. 

In the original event logs, each line contains a complete trace. For every station operation, a start 

timestamp and a duration value, measured in milliseconds, are recorded. Because attribute values are 

logged only after the completion of station operations, the logs were transformed into a composite event 

stream format. Table 2 displays the attributes found in the resulting files, accompanied by the value 

type and, where relevant, the value range or format. The order in which they appear in the table is the 

same as in the files. 

 

 
Figure 3: DPN process model of the examined manufacturing process 
 

Table 2 
Description of the attributes in the used event logs 

Attribute name Value type Value range or format 

case_id integer - 
activity string [“ts1o”, “ts2o”, …, “ts8o”, “terr”] 

start_timestamp datetime %Y-%m-%d %H:%M:%S.%f 
complete_timestamp datetime %Y-%m-%d %H:%M:%S.%f 

station integer [1, 2, …, 8] 
rotary_table string [“M”, “S”] 

nest integer [1, 2, …, 8] 
qib integer [0, 1] 

error_code integer [100, 101, …, 899] 
tray_row integer [0, 1, …, 10] 

tray_column integer [0, 1, …, 10] 

 
For testing purposes, two types of event logs were generated: one containing only traces with 

deviations and another capturing the traces from a single day of production. The first set of traces helps 



to demonstrate how different deviations are represented in the visualizations. On the other hand, the 

second set provides valuable insight into how the visualizations appear when applied in a real-life 

scenario. 

5.3. Visualization results and interpretation 

In this subsection, the results of the visualization techniques used for the process model (as shown 

in Figure 3) and the accompanying two event logs are presented and interpreted. 

 

 
Figure 4: Visualization of event data of single day production traces 
 

 
Figure 5: Visualization of alignment data of single day production traces: the most common deviation 
 

A portion of the visualization for event data from single day production traces is illustrated in Figure 

4, with “station” as the custom attribute. Ideally, there should not be any overlapping events because 

the machine can only operate on one product at a time at each station. This suggests that issues might 

arise from how the durations of the operations are measured or recorded. For some stations, like stations 

5 and 6, the time values are mostly accurate, with only occasional overlapping due to brief machine 



downtimes. However, at other stations, such as stations 2-4, overlaps are more frequent. Notably, every 

seventh event at station 3 and every second event at station 4 overlap with their preceding events. 

Another timing anomaly typically emerges after machine downtimes. For instance, a particularly 

extended event is observed at station 8, spanning from around 8:44:30 to 8:45:15, which is roughly 

equivalent to six regularly-timed events. Conversely, at stations 4-7, an unusually short event is noted 

at each station immediately after the downtime. 

Apart from causing timing anomalies, downtimes seem to increase the number of faulty products as 

well. In Figure 4, a process execution interrupted by a brief downtime is highlighted, leading to a faulty 

product at the end. However, this is not the sole instance. Two additional errors are observed: one at 

station 4 around 8:44 and another at station 8 around 8:45, resulting in two more defective products. 

A portion of the visualization for alignment data from single day production traces is illustrated in 

Figure 5 and Figure 6, using “station” as the custom attribute. It is evident that the majority of traces 

fully align with the model, with only a few deviations from expected behaviour. Although these 

deviations are infrequent, their consistent appearance can lead to significant challenges over time. 

Notably, most of these deviations occur at the final station, station 8. In Figure 5, an example of the 

most common deviation type is highlighted. A final product is either not placed on the tray or the 

“tray_row” and “tray_column” values are not recorded. The process model selected a value of one for 

both attributes, as the sole criterion defined within the model is that these values cannot be zero. In 

Figure 6, an example of the second most common deviation type is highlighted. A semi-finished 

product, declared defective at station 2, was not discarded at station 7 but instead reached the final 

station. With both “tray_row” and “tray_column” values at 0, this mirrors the situation in Figure 5, 

suggesting the product either was not placed on the tray or the values were not recorded. 

 

 
Figure 6: Visualization of alignment data of single day production traces: the second most common 
deviation 
 

When we applied the methods to solely deviating traces, our observations mirrored those previously 

discussed:  

 One or several downtimes during a process execution resulted in events that were either too 

short or too long, leading to the product becoming faulty, or at the very least, being declared 

faulty by the machine. 

 Semi-finished products that were declared faulty were carried to station 8 instead of being 

discarded at station 7. 

Regardless of the underlying reasons, it is crucial to address the identified issues to ensure that all 

products, especially the good ones, are handled appropriately. Although the root causes of these 

deviations cannot be definitively determined based solely on the visualizations, they do help narrow 

down possible explanations. For instance, assembly line operators could easily verify in real life 

whether products are actually placed on the tray. If they are, then the issue might merely be a data 

quality problem. If not, the machine may be malfunctioning and would require repair. 



5.4. Performance evaluation 

In this subsection, the performance of the visualization methods when applied to the event log with 

a single day of production is evaluated. 

The responsiveness of the visualization methods primarily depends on the number of events or 

alignment steps displayed. The number of alignment steps is either equal to or exceeds the number of 

events, based on the total number of model moves. In the examined process instances, model moves 

were infrequent. Thus, for this discussion, both numbers are considered to be equivalent. 

When using a single event stream as input, the number of events matches the number of observed 

units. In contrast, with a composite event stream, the number of events is approximately double the 

number of observed units. This is because an observed unit is represented by two separate events in the 

visualization when the start and complete timestamps differ. In the studied process instances, typically 

only error occurrences (i.e., “terr” events) possessed single timestamp values. While there are 

occasional timing anomalies causing station operations to also have single timestamp values, as 

discussed in the previous section, these instances are infrequent. Consequently, for the purpose of the 

discussion, it is assumed that the number of events is roughly double the number of observed units. 

The optimal number of events appears to be around 1,000. In the processes that were examined, this 

corresponds to approximately 20 minutes of event data. With this threshold, both zooming and scrolling 

operate smoothly. Moreover, when the special attribute or the filtering attribute is modified, the changes 

take effect almost instantly, typically within a second. Notably, the tooltip display function and the 

single case connecting function remain unaffected by the number of events. Determining the upper limit 

of events that the methods can handle is challenging. At a setting of 20,000 events (which is equivalent 

to about 7 hours of event data in our examined processes) the methods still operate, but zooming and 

scrolling become noticeably sluggish. Additionally, any modifications to the special or filtering 

attributes may require approximately a minute for the visualizations to refresh. 

It is important to note that the examined process has a brief lead time, ideally around 1-2 minutes, 

and operates with 8 parallel process executions. As a result, in different processes, the same number of 

events might span a more extended time period. Nonetheless, the primary objective of these 

visualization methods is to facilitate real-time process monitoring. Hence, the ability to closely examine 

just the most recent 20 minutes can be deemed adequate. 

6. Conclusion 

In this study, we have introduced two visualization methods. The first is tailored to the original 

process data, while the second is specifically designed for alignment data, with a particular focus on 

outputs from an alignment-based MOCC technique, specifically the multi-perspective prefix-alignment 

moves. Both of these methods position a user-selected attribute on the y-axis and timestamps on the x-

axis while ensuring that visualized objects, representing event or alignment data, are displayed without 

overlap. When tested on real-life manufacturing data, our approaches effectively identified timing 

anomalies, mainly associated with machine downtimes, as well as consistent deviations that affected 

product quality. These findings emphasize the need for improved process monitoring and prompt 

corrective actions. 

In our future work, we plan to enhance these visualization methods by boosting their performance 

and incorporating more interactive features for users. It would be advantageous to enable offline usage 

on a more extensive set of historical event data. Moreover, expanding the colouring options beyond just 

the activity attribute could be useful. For example, colouring objects based on the outcome of the 

process instances might offer additional insights to users. 
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