
The use of the Emotiv Epoc Flex kit in applications involving 
artificial intelligence 
 

Dawid Pawuś https://orcid.org/0000-0003-3308-34741 and Szczepan Paszkiel 

https://orcid.org/0000-0002-4917-57121  

 
1 University of Technology, Prószkowska 76 Street, 45-758 Opole, Faculty of Electrical Engineering, Automatic 

Control and Informatics, Poland 

 

  

Abstract  
This article presents a wide, proprietary range of Emotiv Epoc Flex Gel headset applications 

for EEG signal measurement. It is about its use in systems involving artificial intelligence, such 

as artificial neural networks and expert systems. The constantly developing field of biomedical 

engineering as well as newer and more advanced BCI (brain-computer interface) systems 

require their designers to constantly develop and search for various innovative methods used 

in their creation. In response to practical requirements and the possibility of using the system 

in real conditions, the authors propose an advanced solution using EEG signal analysis 

(electroencephalography). An AI-based approach to designing the BCI system was used for 

advanced signal analysis. The article contains a detailed description of two applications based 

on artificial intelligence using EEG signals. The first one, for controlling a mobile robot using 

mental commands. The second one, on the other hand, for controlling a mobile robot with 

verification in the form of an EMG signal. This article provides a comprehensive overview of 

the integration of the Emotiv Epoc Flex Kit with proprietary AI systems and its significant 

impact on the field.  
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1. Introduction 

Electroencephalography (EEG) is widely used in research involving biomedical engineering, 

neuroscience and others (e.g. Brain-Computer Interface, BCI), as well as in sleep analysis and detecting 

abnormal brain function. The reason is e.g. non-invasiveness and relatively low financial costs [1, 2]. 

An electroencephalogram (EEG) captures the electrical activity patterns emanating from the cerebral 

cortex. Due to the minute nature of these electrical signals, typically measured in microvolts, a 

substantial amplification, roughly on the order of a millionfold, is required for them to be visualized on 

a computer screen. The recorded signals primarily originate from the neurons, within which a multitude 

of bioelectric events occur. These encompass phenomena like action potentials, post-synaptic potentials 

(PSP), and the protracted depolarization of neurons over an extended period [36, 3, 4, 5]. 

Brain-computer interface (BCI) technology facilitates direct communication between the brain and 

external devices. The analysis of electroencephalogram (EEG) signals plays a pivotal role in the 

ongoing exploration of BCI capabilities. BCI technology emerged in the 1990s, and although it remains 

relatively new, its potential to transform the way people interact with computers and other devices is 

profound [6, 7, 8, 9].  
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Currently, most widely adopted methods for computer interaction rely on muscular movements. In 

contrast, EEG-based brain-computer interfaces have been under scrutiny for numerous years as a means 

of communication and control for individuals with physical disabilities. Through training, individuals 

can learn to employ imagined motor actions as input data for computers or to control assistive 

technologies. This promises to enhance the accessibility and usability of technology for those with 

limited physical mobility [37, 10, 11, 12, 39].  

Research on brain-computer interfaces, including research involving projects using artificial 

intelligence, was addressed in [13, 14, 15, 16, 17, 18, 19, 38]. The authors of these papers addressed 

various issues, from BCI systems, through classifiers and simulations, to various types of medical and 

biomedical applications. 

Electromyography (EMG) is an electrophysiological test that captures the electrical impulses 

generated by muscle activity. In the realm of neuromodulation research, EMG is frequently employed 

to assess the diverse effects of stimulation within the brain's motor regions. In clinical settings, EMG 

serves as a valuable tool for diagnosing nervous and muscular disorders, allowing for the localization 

and characterization of pathologies [20, 21]. 

In clinical applications, EMG may necessitate the insertion of a small needle into muscles to record 

electrical activity accurately. However, in the field of biomedical engineering, researchers commonly 

opt for non-invasive methods, utilizing surface electrodes placed on the skin to detect muscle-generated 

electrical activity. This non-invasive approach eliminates health risks associated with invasive methods. 

Myoelectric interfaces also find utility in rehabilitation technology as supportive devices. The EMG 

signal, a prominent biological signal, is often harnessed to predict human motor intentions and can be 

integrated into human-robot collaboration systems [22, 23, 24, 25, 26]. 

The Emotiv EPOC Flex Gel is an affordable, lightweight, wireless brain-computer interface (BCI) 

headset that offers reliable control and efficient measurement capabilities. Each sensor on this headset 

has the capability to capture real-time data from four distinct brainwave frequencies, including delta, 

theta, alpha, and beta [27, 28, 29, 30, 31, 32]. 

Despite its advanced features and accuracy, the utilization of this particular device (the Flex Gel 

version) in research remains relatively scarce. It's worth noting that this headset stands out as one of the 

manufacturer's most intricate and precise offerings. However, its adoption is steadily increasing, and its 

applications are expanding across various domains [14, 15, 16, 28, 33, 34, 35]. 

The first system revolves around research utilizing the Emotiv Epoc Flex kit, developed as a 

response to the quest for innovative solutions for controlling robotic components through user-

generated mental commands. In this endeavor, the recorded signal, acquired through a 32-electrode 

apparatus, underwent preprocessing for classification. This involved a novel approach that integrated 

the EEG signal, thereby producing modified waveforms that could be identified not only by 

conventional proprietary software but also by an artificial neural network. Effective signal classification 

culminated in the generation of a control signal, which was subsequently employed to govern the actions 

of the LEGO EV3 Mindstorms robot. 

The aim of the research included in the second project was to design an EEG signal classification 

system for controlling a mobile robot while verifying pure mental commands using a sensor that 

measures the EMG signal. This is crucial, because paralyzed people can control objects only by means 

of generated changes in the EEG signal, without any additional "support" by movements of the muscles 

of the limbs. 

2. Emotiv device and software 

The Emotiv EPOC Flex is a wearable electroencephalography (EEG) headset designed for capturing 

and interpreting brain activity. It's a product of Emotiv, a company specializing in brain-computer 

interface (BCI) technologies. The EPOC Flex is known for its flexibility and adaptability, making it 

suitable for various applications, including brain research, human-computer interaction, and 

neurofeedback. An example EEG signal waveform in the Emotiv PRO environment is presented in 

Figure 1. 

 



 
Figure 1: Presentation of electrodes configuration and LEGO Mindstorms EV3 [16] 

 

An equally important issue is the arrangement of electrodes and their nomenclature. This is described 

in Table 1. 

 

Table 1 
Names of electrodes 

Electrodes 

LH-Fp1 LD-FC5 RA-C4 LJ-Pz 
RH-Fp2 LC-FC1 RB-T8 RN-P4 
LG-F7 RC-FC2 LQ-CP5 RO-P8 
LF-F3 RD-FC6 LP-CP1 LM-PO9 
RK-Fz RE-FT10 RP-CP2 LL-O1 
F-F4 LB-T7 RQ-CP6 RJ-Oz 

RG-F8 LA-C3 LO-P7 RL-O2 
LE-FT9 LK-Cz LN-P3 RM-PO10 

 

The data in Table 1 are crucial for the systems described in the following sections. These sections 

effectively outline the scope and possibilities of the authors' projects using Emotiv Epoc Flex Gel. 

3. First system 

This chapter introduces an intriguing approach to the task of recognizing and categorizing 

electroencephalographic (EEG) signals. The scarcity of studies utilizing the Emotiv Epoc Flex kit 

prompted the pursuit of original solutions, particularly in the realm of controlling robotic components 

through user-issued mental commands. The measured signal, acquired through a 32–electrode device, 

underwent preparation for classification via a novel technique involving the integration of the EEG 

signal. This transformation led to the generation of new waveforms, which could subsequently be 

recognized by an artificial neural network. Through the appropriate classification of the signal, a control 

signal was generated, facilitating the manipulation of the LEGO EV3 Mindstorms robot [16]. 

3.1. Presentation of methodology, data acquisition and system 

The construction of the EEG signal analysis and classification system described in this article 

comprises several components. The raw EEG signal was recorded using an Emotiv EPOC Flex device, 

and measurements were acquired using the dedicated EmotivPRO software. In Figure 2, you can 



observe the electrode configuration on the headset, along with a vehicle designed by the authors, which 

is based on the LEGO EV3 cube. 

The electrodes in the set are designated by the following channel names: Cz, Fz, Fp1, F7, F3, FC1, 

C3, FC5, FT9, T7, TP9, CP5, CP1, P3, P7, O1, Pz, Oz, O2, P8, P4, CP2, CP6, TP10, FC6, C4, FC2, 

F4, F8, and Fp2 [16]. 

 

 
Figure 2: Presentation of electrodes configuration and LEGO Mindstorms EV3 [16] 

 

Two individuals participated in this study, during which several hundred tests were conducted. 

Signals were recorded both during resting states and when commands to move forward, backward, 

right, and left were triggered. An essential factor influencing the study's outcomes is the level of focus. 

It is imperative that the participants maintain a state of deep concentration, as the absence of focus can 

disrupt the test process, potentially leading to inaccurate results. After collecting a substantial number 

of measurements, further processing and classification were performed using various methods [16]. 

In this research endeavor, all analyses and classification methodologies were executed using Matlab, 

a platform for programming and numerical calculations. The system's operational flow is depicted in 

Figure 3. Within this program, it is possible to appropriately filter the signals, followed by the execution 

of relevant analyses and classification procedures. In the subsequent stage, the signal is integrated over 

time for each of the 32 electrodes individually, spanning one second for the entire signal duration. This 

process yields one–second integrated samples, which serve as a foundation for the precise determination 

and classification of signal types based on the integrated potentials [16]. 

 

 
Figure 3: Scheme of system (based on [16]) 

 



These obtained samples, containing the signal integrated over time, can then undergo an appropriate 

classification algorithm. The proposed algorithm for classifying integrated EEG signal samples from 

the electrodes is grounded in a multi–layer neural network. Recognized signals, such as commands to 

move forward, backward, or right and left, can subsequently be transmitted to a robot for the execution 

of the desired commands, as demonstrated in Figure 3. 

3.2. EEG signal integration and filtration method 

The EEG signal obtained from the headset undergoes a crucial filtering process. The raw signal 

received from the 22 most essential electrodes is not directly subjected to classification by the designed 

system. This decision was made to simplify the algorithm's development process, as unfiltered 

waveforms exhibit prolonged stabilization and transient times when voltage measured by the sensors 

increases. Consequently, a high–pass filter with a sampling frequency of fs= 1000 Hz and a bandwidth 

of fp= 200 Hz was employed [14]. 

The dedicated application facilitates EEG signal sampling at a frequency of fe= 128 Hz. With this 

knowledge in mind, the authors proposed an innovative approach that involves the rolling integration 

of the signal from each electrode for a one–second duration. This approach is unique in the context of 

pre–classifying biomedical signals such as electroencephalograms. In terms of methodology, this can 

be effectively represented analytically. The variable M represents the number of samples within the 

signal, while k signifies the count of full one–second periods in the signal. Given the information about 

the sampling frequency fe, it's understood that, for instance, a 5–second EEG signal comprises M= 640 

samples. Utilizing the calculations in Equation 1, it is determined that there will be k= 5 full one–second 

periods available for classification. Importantly, in the case of a 10.5–second signal, only the first 10 

seconds will be considered, amounting to a total of M= 1280 samples, which yields k= 10 integrated 

signal samples. This approach is implemented to ensure efficiency and clarity in the interpretation of 

each waveform [16]. 

𝑘 =
𝑀

128
 (1) 

The variable S is individually defined for each electrode and is represented as S1 to S22, as 

demonstrated in Equation 2 below. 

𝑆1…22
(1…𝑘)

= [∫ |𝐸1…22
𝐸𝐸𝐺 |

(1…𝑘)∙128

(((1...𝑘)−1)∙128)+1

] (2) 

Each of these 22 variables, namely S1 to S22, is an array that accumulates values derived from the 

rolling integration of one–second segments of the EEG signal for each respective electrode. The upper 

index of each array corresponds to a specific sample within the integrated value. To illustrate, for a 10–

second signal from the second electrode, where k= 10, the S variable takes the form of S2
(1...k). Organizing 

data in this tabular manner proves to be both convenient and efficient for applications of this nature 

[16]. 

The EEG variable represents the signal obtained from individual electrodes within the set. As 

outlined in Equation 2, it is evident that the absolute value of the signal from each channel is integrated 

over a span of 128 samples. This integration approach facilitates the utilization of the rolling integration 

method and enables the recording of these integrated values into the S variables [16]. 

3.3. Signal classification by the designed neural network 

In this section, we will delve into an advanced approach that incorporates a neural network 

algorithm. Specifically, a feed–forward neural network has been put forth for analysis. The 

determination of the number of layers, the choice of activation functions, and the allocation of neurons 

in each layer were made through a process of trial and error, guided by an expert approach. 

To conduct the neural network training procedure, it was essential to prepare a training dataset 

comprising both input and output data. In the training process, the training input set U was employed, 

which utilized a pattern matrix u with a total of i= 32 rows. These input values were derived from 



integrated one–second segments of the EEG signal, and the number of rows in the matrix depended on 

the number of electrodes in the set [16]. 

For the neural network training, an output set Y was also imperative. This set consisted of an input 

pattern matrix y with j= 5 rows, reflecting the recognition of 5 distinct signal types: neutral state, 

forward movement, backward movement, right movement, and left movement. It's noteworthy that both 

the input and output training patterns comprised an equal number of elements, totaling n= 250. The 

presentation of the data can be substantiated using the following formulas [16]: 

𝑈 = [
𝑢(1)

⋮
𝑢(𝑖)

] = [
𝑢1

(1)
⋯ 𝑢𝑛

(1)

⋮ ⋱ ⋮

𝑢1
(32)

⋯ 𝑢𝑛
(32)

], (3) 

In turn, the set of output patterns follows the relationship: 

𝑌 = [
𝑦(1)

⋮
𝑦(𝑖)

] = [
𝑡1

(1)
⋯ 𝑡𝑛

(1)

⋮ ⋱ ⋮

𝑡1
(5)

⋯ 𝑡𝑛
(5)

], (4) 

The chosen neural network architecture incorporates 4 hidden layers. In the first hidden layer, the 

tangent function tansig is employed with 35 neurons. The second layer utilizes the logistic sigmoid 

activation function logsig and comprises 30 neurons. Moving on to the third layer, it incorporates the 

radial basis function radbas with 20 neurons. Finally, the last hidden layer once again employs the 

tangent function tansig and is composed of 15 neurons. 

The concluding segment of this feed-forward neural network consists of a single layer containing 5 

neurons, each utilizing a linear activation function purelin. This linear layer plays a pivotal role in 

summing up the outputs from the non-linear neuron activation functions situated in the preceding layers 

[16]. 

 

 
Figure 4: The structure of the feed-forward neural network [16] 

 

In the network diagram (Figure 4), the output data vector is denoted as y, while the network inputs, 

which represent the integrated values of the EEG signal from the 32 electrodes, are indicated as u [16]. 

3.4. Selected examples of results 

The ultimate phase of this research involves validating the functionality of the developed 

classification system. To accomplish this, both the performance of the classical algorithm and artificial 

intelligence solutions were assessed. These tests were conducted using pre–processed EEG signals from 

the archive. The outcomes of signal recognition pertaining to the study participants are illustrated in 

Figures 5 and 6. 

 



 
Figure 5: Observation of signal classification and verification results on a mobile robot [16] 

 
Figure 6: Observation of signal classification and verification results on a mobile robot [16] 

4. Second system 

This chapter will present issues related to the second designed system. The authors will present the 

methodology, data acquisition and system. In addition, a method of preparing the EMG signal for 

classification will be shown. Then the classification system is described, and the chapter ends with 

examples of results. 



4.1. Presentation of methodology, data acquisition and system 

The EEG and EMG signal analysis and classification system described in this paper comprises 

several interconnected components. Initially, the raw EEG signals were captured using the Emotiv 

EPOC Flex Gel headset, and the data acquisition was facilitated by the dedicated EmotivPRO software. 

On the other hand, the EMG signals were acquired using the MyoWare Muscle Sensor device, which 

was connected to an Arduino UNO microcontroller. This setup was then synchronized with the Matlab 

program, where the acquired data was collected and subjected to analysis. Both the EEG and EMG 

signals underwent assessment through an expert system that incorporates artificial intelligence 

algorithms in the form of a neural network. Additionally, a conventional algorithm for artifact detection 

and activation of the arm muscles was integrated into the system. The schematic representation of this 

system can be observed in Figure 7. 

 

 
Figure 7: Scheme of the expert system 
 

An illustrative example of the research approach is depicted in Figure 8, showcasing the moment 

when EEG and EMG signals were recorded from two study participants. In total, a cohort of 10 

individuals underwent testing. This sample size was chosen to enable a robust evaluation of the 

algorithm's effectiveness and, notably, to design it with a degree of resilience to variations in 

measurement values that can be attributed to individual differences. 

The Emotiv EPOC Flex Gel device utilized in the study features 22 electrodes, each designated with 

specific channel names: Cz, Fz, Fp1, F7, F3, FC1, C3, FC5, FT7, T7, CP5, CP1, CP2, CP6, FT8, FC6, 

C4, T8, FC2, F4, F8, and Fp2. 

 
Figure 8: The process of collecting measurements [14] 

 



Each participant in the study conducted a series of 15 measurements, involving the repetition of 

specific mental command sequences. These sequences, each lasting a few seconds, encompassed the 

following steps: 

1. A neutral state. 

2. Imagining an arm movement (mentally commanding the mobile robot's movement). 

3. Blinking the right eye (a switch that causes the next move command to move the robot to the 

right). 

4. Imagining an arm movement. 

5. Blinking the left eye (a switch that causes the next move command to move the robot to the 

left). 

6. Imagining an arm movement. 

7. Blinking both eyes (returning the system to the initial state, with subsequent arm movement 

imaginings directing the robot forward). 

8. Imagining an arm movement. 

This carefully orchestrated sequence of activities resulted in measurement signals that extended over 

approximately 45 seconds. 

Concurrently with the EEG measurements, participants also wore the MyoWare Muscle Sensor 

device on their biceps brachii muscles. This allowed for the effective collection of the EMG signal, 

which later facilitated the verification of pure mental commands, excluding any reliance on additional 

muscle movements. This aspect is of paramount importance, particularly for individuals with paralysis, 

as it enables research on systems exclusively reliant on mental commands for controlling arm 

movements. 

Participants were instructed to maintain high levels of concentration throughout the experiments, as 

lapses in focus could disrupt the research process and lead to erroneous results. Once a sufficient 

number of measurements were obtained, subsequent processing and classification were carried out 

using a combination of artificial intelligence and conventional algorithms [14]. 

4.2. Method of preparing the EMG signal for classification 

The MyoWare Muscle Sensor (EMG) device is a distinct kit and operates independently from the 

Emotiv EPOC Flex Gel (EEG) kit. Consequently, synchronization between these two systems is not 

seamless. This disparity impacts the chosen sampling time, which was arbitrarily determined by the 

system designers. It's essential to acknowledge that EMG measurement devices are not obligated to 

produce signals sampled in identical fashion to an electroencephalograph (EEG). In this context, the 

emphasis is not on prolonged signal analysis; rather, the priority lies in promptly and effectively 

detecting muscle activation [14]. 

ℎ =
𝑁

𝑘
 (1) 

The approach for segmenting the collected samples was based on the formulation provided in 

Equation 1. For instance, given a 10–second EEG signal with a parameter value of k = 10, and an EMG 

signal consisting of N= 100 samples, it can be computed that for every second of the 

electroencephalographic signal, there will be h = 10 samples of the EMG waveform [14]. 

𝐿(1…𝑘) = {
1, 𝑑𝑙𝑎 𝐸(1…ℎ)…(𝑁−ℎ…𝑁)

𝐸𝑀𝐺 ≥  𝑉𝑚𝑎𝑥

0, 𝑑𝑙𝑎 𝐸(1…ℎ)…(𝑁−ℎ…𝑁)
𝐸𝑀𝐺 < 𝑉𝑚𝑎𝑥

 (2) 

The electromyographic signal will be assessed in a binary manner, as outlined in Equation 2. The 

variable L will store a sequence of binary values, where 0 signifies no muscle movement (EEMG < Vmax), 

and 1 indicates muscle activity (EEMG ≥ Vmax). Here, Vmax represents the maximum tension level, 

determined through observations of the system when the arm muscles are deemed to be at rest, set at 

4.5 V. 

To illustrate, suppose that within the 40–50 range of the EMG signal, at least one of the samples 

registers a value greater than the specified voltage, i.e., E(40…50)
EMG

 >= Vmax, then L(5) will be set to 1. This 

will unequivocally halt any commands to control the robot, even if the conditions for imagining arm 

movement are met [14]. 



This approach offers distinct advantages, with the primary one being its independence from the 

sampling rate of the MyoWare Muscle Sensor. The method employed allows for arbitrary sampling of 

the sensor, as it hinges on the variable k, which governs the range of samples h per second of the EEG 

signal [14]. 

4.3. The functioning of the designed neural network 

The neural network was trained using two primary datasets: I (input) and O (output). The first 

dataset, denoted as the input training set, comprises 22 network inputs corresponding to the 

measurement channels of the EEG signal. These inputs were organized as a pattern matrix with a total 

of a= 22 rows, each representing integrated one–second segments of the EEG signal. The ouput training 

data was stored in a separate matrix, which had b= 2 rows. This specific data structure aligns with the 

requirements of the neural network used, which was designed for recognizing binary 0–1 signals, 

specifically related to the imagination of arm movement or its absence [14]. 

 

 
Figure 9: The structure of a neural network 

 

The input and output training patterns were determined through an iterative process, and it was 

determined that a satisfactory set size was n= 450. In Figure 9, you can see the architecture of the feed–

forward neural network employed for classifying periodically integrated EEG signals. 

This feed–forward network utilized in the research comprises 4 hidden layers and one output layer. 

The first layer is equipped with a tangential activation function and consists of 25 neurons. The second 

layer employs a logarithmic sigmoid activation function with 20 neurons. The third layer, featuring 15 

neurons, employs a radial activation function. Moving further, the penultimate fourth layer, comprising 

10 neurons, employs the tangential activation function. Finally, the output layer contains a linear 

activation function and consists of 2 neurons, which aligns with the number of neural network outputs. 

The primary role of this output layer is to aggregate the outputs of the non–linear neuron activation 

functions [14]. 

4.4. Selected examples of results 

In this section, the authors provide an illustrative test of the designed classification system, which 

encompasses the classification and validation of both EEG and EMG signals. This evaluation utilizes 

an expert system that combines classical algorithms with artificial intelligence techniques. 

 



 
Figure 10: Observation of signal classification and verification results on a mobile robot [14] 

 

Figures 10 and 11 showcase exemplary classification outcomes, accompanied by resultant control 

signals. Figure 10 displays the integrated EEG signal for each second of the measurement run across 

all channels. Additionally, it reveals the classification outcome in the form of control signals for 

maneuvering a mobile robot (e.g., move forward, move left, move right). The behavior of the EMG 

signal is intimately linked with the classification result, serving the purpose of confirming the absence 

of arm muscle movement. Figure 11, on the other hand, provides an instance where the system 

negatively verifies the signals, triggered by the detection of arm muscle activity based on EMG signal 

evaluation. 

 

 
Figure 11: Interruption of robot control when arm muscle movement is detected [14] 

5. Discussion and conclusions 

The first system under investigation focuses on the Emotiv EPOC Flex headset, which is relatively 

uncommon compared to other products from the same manufacturer. In considering its potential 

applications in controlling robotic components, it becomes evident that the EEG signal classification 

methods outlined in this paper open up new avenues for research in this domain. It's noteworthy that 

the research employs a novel approach to EEG signal analysis, revolving around periodic signal 

integration. Furthermore, it incorporates artificial intelligence techniques and an expert–driven 

approach to signal classification. An additional factor contributing to the innovative nature of this study 

is the utilization of the Emotiv Epoc Flex Gel headset. 

The second system detailed in this paper offers numerous prospects for further development and is 

well–suited for subsequent research catering to individuals with disabilities. The validation of the EMG 

signal serves as a means to assess the algorithm's performance in scenarios where mental commands 

are issued without concurrent muscle activation, as is often the case with paralyzed individuals who 



lack limb mobility. The results obtained in this experiment conclusively demonstrate the system's ability 

to classify integrated EEG signals and verify muscle movements, thereby achieving its intended 

objectives. 
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