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Abstract  
Mitigating class imbalance for object detection on digital images is a critical challenge in the 
field of computer vision. This problem stems from the uneven distribution of object classes 
within image datasets, where some classes are significantly more prevalent than others. In 
object detection tasks, the primary goal is to identify and locate various objects within images 
accurately. However, when dealing with imbalanced datasets, several significant issues arise. 
Firstly, the training of machine learning models on imbalanced data can result in bias, where 
models tend to perform well on majority classes but struggle to recognize minority classes 
effectively. This bias is due to the disproportionate number of samples available for each class 
during training, leading to inadequate learning for underrepresented classes. Secondly, 
imbalanced datasets can lead to reduced detection accuracy, particularly for the minority 
classes. Models trained on such data may exhibit high overall accuracy but perform poorly 
when it comes to identifying rare objects or those from underrepresented classes. Moreover, 
the problem of class imbalance can lead to the loss of valuable information. Minority classes 
may include objects or instances that are crucial for the specific application, yet they are often 
overlooked due to their scarcity in the dataset. 
Furthermore, models trained on imbalanced data may struggle to generalize effectively to real-
world scenarios where class distributions are more balanced. This limitation can hinder the 
practical applicability of object detection systems.  
The article aims to investigate the impact of data resampling methods on improving the object 
detection model YOLOv8m when dealing with an imbalanced image dataset.  
The described initial research involves using an object detection dataset with skewed class 
distributions and applying various resampling techniques like oversampling and 
undersampling to balance the data. The research used The Insulator Defect Image Dataset 
(IDID) representing power line insulators, which contains a large class depicting undamaged 
insulators and two other, relatively small classes depicting two types of damaged insulators.   
The implications of this research are practical, as it guides practitioners and researchers in 
selecting the most suitable resampling approach to address class imbalance in object detection 
tasks. Ultimately, this knowledge contributes to the development of more robust and reliable 
computer vision systems for real-world applications. 
Keywords  1 
object detection, class imbalance, resampling, YOLO 

1. Introduction 

The problem of imbalanced classes in image datasets refers to a situation where the distribution of 
different classes or categories within the dataset is highly skewed. In other words, some classes have 
significantly more instances or samples compared to others, leading to an imbalance in class 
representation. This issue is particularly prevalent in image datasets used for machine learning and 
computer vision tasks. 
Imbalanced classes can pose several challenges in machine learning and image analysis: 
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• Model bias: Machine learning models trained on imbalanced datasets may develop biases 
towards the majority class, as they have more examples to learn from. This can result in poor 
performance for minority classes. 

• Reduced accuracy: Imbalanced datasets can lead to misleading accuracy metrics. A model may 
achieve a high accuracy by simply predicting the majority class most of the time, while failing 
to correctly classify minority class instances. 

• Limited generalization: Models trained on imbalanced data may struggle to generalize well to 
real-world scenarios where class distributions are more balanced. They may perform poorly on 
underrepresented classes. 

• Data collection cost: In some cases, collecting more data for underrepresented classes can be 
challenging, time-consuming, or expensive. 

To address this problem, researchers and practitioners employ various techniques, including: 
• Resampling: Oversampling the minority classes (adding more instances) or undersampling the 

majority classes (removing instances) to balance class distribution. 
• Cost-Sensitive Learning: Assigning different misclassification costs to different classes to 

make the model more sensitive to minority classes. 
• Transfer Learning: Leveraging pre-trained models or features from large datasets to improve 

the performance on imbalanced data. 
• Synthetic Data Generation: Creating synthetic samples for underrepresented classes to increase 

their representation in the dataset. 
• Evaluation Metrics: Using appropriate evaluation metrics, such as precision, recall, F1-score, 

or Average Precision (AP), that consider the imbalanced nature of the dataset. 
These strategies aim to improve the model's ability to recognize and classify minority classes 

effectively, leading to more balanced and accurate image analysis results. Mitigating class imbalance 
for object detection is essential for building robust and effective computer vision systems that can 
accurately detect and locate objects across a wide range of classes, regardless of their representation in 
the dataset. 

Research aimed at mitigating the class imbalance problem in image datasets holds substantial 
significance in the realm of computer vision and machine learning. This importance can be better 
understood through several key aspects. 

Firstly, addressing the challenge of imbalanced datasets directly translates into improved model 
accuracy. Imbalanced datasets often lead to models excelling at recognizing majority classes while 
struggling with minority or underrepresented ones. Research in this area strives to create more balanced 
models that achieve higher overall accuracy by rectifying this bias toward majority classes. 

Secondly, these studies enhance the capability to detect rare or uncommon damage in critical 
infrastructure, which holds paramount importance in various real-world applications. For instance, in 
the realm of power infrastructure, the identification of rare instances of damage or anomalies is crucial 
for ensuring the integrity and safety of power systems. Research aimed at mitigating data imbalance 
ensures that machine learning models can effectively recognize and address these infrequent cases, 
thereby enhancing the overall resilience and maintenance of critical infrastructure. Similarly, for 
instance, in medical imaging [1], identifying rare diseases or anomalies is vital for patient care. The 
research on mitigating dataset imbalance ensures that machine learning models can effectively 
recognize and handle these infrequent instances, thereby improving the quality of healthcare and 
diagnostics. 

Furthermore, the generalization of models to real-world scenarios is a crucial consideration. Models 
trained on imbalanced datasets might falter when applied to scenarios with more balanced class 
distributions. This limitation can hinder the practical applicability of computer vision systems. Research 
in this field aims to enhance model generalization, making them more robust and reliable across a 
spectrum of real-world settings. 

Another vital aspect is the prevention of data loss. Imbalanced datasets often lead to the 
underrepresentation of minority classes, resulting in the loss of valuable information. This research 
endeavours to ensure that all classes are adequately considered in the learning process, thereby 
harnessing the full potential of available data. 



Moreover, in applications where fairness and ethical considerations are paramount, such as facial 
recognition technology, addressing class imbalance becomes crucial. It helps prevent the unfair 
favouring or disadvantaging of particular groups or classes, mitigating biases and ethical concerns 
associated with imbalanced datasets. 

Cost efficiency is another notable benefit. Collecting and annotating datasets can be resource-
intensive. Research on balancing imbalanced datasets can lead to more efficient data collection by 
prioritizing efforts in areas that require representation the most, optimizing resource allocation. 
Ongoing research in this area drives advancements in state-of-the-art techniques and methodologies for 
addressing class imbalance. This benefits the broader machine learning community by continually 
improving the toolkit available to researchers and practitioners, ultimately advancing the field as a 
whole. 

The objective of the presented initial study is to assess the impact of data resampling methods on 
object detection tasks performed by deep learning neural network. Specifically, the study aims to 
determine whether resampling techniques, such as different variants of oversampling or undersampling, 
can mitigate the challenges posed by class imbalance in object detection. As mentioned earlier, this 
problem applies in particular to technical systems and methods of their visual inspection, during which 
a lot of image material is collected illustrating correctly operating components and attempts to identify 
relatively rare failures, which, due to their nature, are usually represented by few instances in data sets 
teaching. 

Therefore, the described study concerns the detection of damage in power line insulators. Overhead 
power lines are used to transmit electricity, which means that they are also one of the key elements of 
each country’s security. Because the transmission of electricity plays a critical role in supporting the 
industry, economy, and defence, power disruptions resulting from failures in overhead power lines can 
lead to severe consequences for the entire country. Additionally, the safety and reliability of high-
voltage lines can significantly impact the quality of life for citizens. To minimize interruptions in 
electricity supply and reduce their duration, electricity distribution companies should conduct frequent 
and comprehensive inspections of power network[2]. Despite the ongoing research efforts in the field 
of automated inspection of high-voltage lines, for example [3],[4],[5],[6],[7],[8],[9] there are still 
existing challenges and limitations that require addressing. To establish a dependable power grid, it is 
imperative to develop robust methods for the automated detection of various defects in its components. 

An overhead power line consists of three essential parts: conductive wires, transmission towers, and 
power insulators. The primary functions of overhead line insulators are twofold: they provide insulation 
between the conductor and the ground and tower structure while also offering mechanical support to 
the conductive wires. Particularly in the case of high-voltage lines, insulators used in overhead lines 
must undergo regular inspection due to their susceptibility to degradation. The analysis was carried out 
using The Insulator Defect Image Dataset (IDID) [10], which depicts power line insulators. The dataset 
contains images with undamaged insulators and different examples of damaged insulators. 

2. Related works 

The problem of data imbalance is widely described in the literature on machine learning methods. 
Publication [11] showed that there are many challenges in the vast field of imbalanced data problems 
that require attention from the research community and intensive study. There are still many unaudited 
directions to be investigated in this branch of machine learning. The work is based on earlier review 
articles such as [12],[13],[14] on different approaches to the problem of data imbalance. 

In a survey [15] a lot of studies are summarized and discussed, exploring a number of advanced 
techniques for learning from imbalanced data with deep neural networks. It has been shown that 
traditional machine learning techniques for handling class imbalance can be extended to deep learning 
models with success. The survey also finds that nearly all research in this area has been focused on 
computer vision tasks with convolutional neural networks. 

Study [1] investigates the existing deep learning techniques to address class imbalanced data, a 
critical challenge in real-world applications like fraud detection and cancer diagnosis. The authors state 
that despite the growing popularity of deep learning, limited empirical research exists in this area. The 
survey examines existing studies, highlighting the effectiveness and limitations of deep learning 



models, particularly in computer vision tasks, and identifies areas for future research to bridge the gap 
in this important field of study. Several areas for future work are outlined. Utilizing the various 
approaches across a broader range of datasets and varying degrees of class imbalance, assessing their 
performance using multiple complementary metrics, and presenting statistical evidence will aid in 
selecting the most suitable deep learning method for upcoming applications dealing with class 
imbalance. Experimenting with deep learning methods in handling class imbalance within the realms 
of big data and rare class scenarios holds significant benefits for the advancement of big data analytics. 
Additionally, the authors showed that further investigations involving non-convolutional deep neural 
networks are necessary to establish the generalizability of the presented methods to alternative 
architectural frameworks. 

In [16] presents a review of various learning issues due to the imbalanced distribution of data and 
different approaches to handle the problem of imbalanced data in classification. It was noted that the 
impact of imbalance on classification is baleful and the mentioned effect increases with the extent of a 
task, concluding that the classification of imbalanced data is an extensive research subject in the field 
of machine learning. 

In [17] Authors investigate complexity measures effectiveness on real imbalanced datasets and how 
they are affected by applying different data imbalance treatments. The issue of classification with 
imbalanced datasets is also extensively presented in [18]. The authors additionally provide a website 
[19] containing many materials on the discussed subject.  

Despite a large amount of research on data imbalance, the fact of creating new machine learning 
techniques, in particular object detection algorithms, makes it necessary to conduct empirical research 
showing the effectiveness of using different techniques for balancing different data sets for new 
algorithms. 

Relatively few works concern the problem of data imbalance in fault detection in particular technical 
systems. For example, the paper [20] delves into the impact of data sampling techniques on improving 
cross‐project defect prediction (CPDP) models. Employing eight data resampling methods, they 
resampled datasets and integrated them into CPDP model training after applying the Nearest Neighbour 
filter. The results demonstrated that data resampling methods effectively improved recall and 
performance measures but had limited success in terms of AUC performance. While these methods 
helped mitigate class imbalance issues, further research is needed to enhance prediction performance. 

In [21] proposed a framework that addresses the problem of data imbalance in supervised 
classification techniques for non-technical losses (NTL) in electrical power grids detection through 
resampling techniques. The Authors stated that an issue that other studies received not enough attention 
in the research is the imbalance between fraudulent and non-fraudulent data, which can have a 
significant negative impact on the performance of supervised learning methods. The same NTL issue 
was described in the paper [22] , where deep reinforcement learning (DRL) was used to solve the data 
imbalanced problem. The advantage of the proposed method is that the classification method is adopted 
to use the partial input features without a pre-processing method for input feature selection. 

Work [23] describes the potential of hierarchical Federated Learning (FL) in the Internet of Things 
(IoT) heterogeneous systems. In particular, the Authors proposed an optimized solution for user 
assignment and resource allocation over hierarchical FL architecture for IoT heterogeneous systems. 
This work focuses on a generic class of machine learning models that are trained using gradient-descent-
based schemes while considering the practical constraints of non-uniformly distributed data across 
different users. 

In summary, the existing literature on addressing class imbalance in image datasets primarily focuses 
on general applications of proposed methods, overlooking the specific challenges posed by technical 
systems such as industrial automation, robotics, and critical infrastructure. This gap in the literature 
hinders the development of tailored solutions for real-world technical systems where misclassification 
can have significant consequences. Research in this area needs to prioritize the adaptation of algorithms 
to meet the unique data characteristics and operational constraints of technical systems. Additionally, 
there is a need for investigations into the scalability, efficiency, interpretability, and adaptability of class 
imbalance solutions in specific technical environments. Bridging this gap will be essential to ensure the 
robust and reliable deployment of image-based systems in critical technical domains. 

 
 



3. Methodology 
3.1. Oversampling 

The study concerned the use of various variants of oversampling and undersampling in order to 
check the impact of such action on the efficiency of object detection. The mathematical model for 
oversampling (upsampling) individual classes in a dataset to the size of the largest class using random 
sampling with replacement can be defined as follow. 

Let's assume we have a dataset `D` consisting of `N` samples, and each sample is associated with a 
class label `yi`, where `i` denotes the index of the sample. We aim to oversample each class to the size 
of the largest class. 

We define `K` as the target size of samples in each class, which is equal to the size of the largest 
class in the dataset. Our goal is to generate a new dataset `D'` where each class `i` will have exactly `K` 
samples. 

The mathematical model for oversampling classes using random sampling with replacement can be 
described as follows: 
1. Find the size of the largest class: max_class_size = max(Ni) for all classes i 
2. For each class `i`: 

   a. If `Ni < K`, randomly select `K - N_i` samples from class `i` with replacement until the target 
size is reached. 

   b. If `Ni >= K`, include all samples from class `i` in `D'`. 
 

3.2. Undersampling 

The mathematical model for undersampling (downsampling) individual classes in a dataset to the 
size of the smallest class using random sampling without replacement shown below: 

Let's assume we have a dataset `D` consisting of `N` samples, and each sample is associated with a 
class label `yi`, where `i` denotes the index of the sample. We aim to undersample each class to the size 
of the smallest class. 

We define `K` as the target size of samples in each class, which is equal to the size of the smallest 
class in the dataset. Our goal is to generate a new dataset `D'` where each class `i` will have exactly `K` 
samples. 

The mathematical model for undersampling classes using random sampling without replacement 
can be described as follows: 
1. Find the size of the smallest class:   min_class_size = min(Ni) for all classes i 
2. For each class `i`: 

a. If `Ni > K`, randomly select `K` samples from class `i` without replacement. 
b. If `Ni <= K`, include all samples from class `i` in `D'`. 
 

4. The deep learning architecture used for object detection 

YOLOv8m [24] was used to perform this experiment. It is the newest state-of-the-art You Only 
Look Once (YOLO) model that can be used for object detection, image classification, and instance 
segmentation tasks. YOLOv8 was developed by Ultralytics, who also created the influential and 
industry-defining YOLOv5 model. YOLOv8 includes numerous architectural and developer experience 
changes and improvements over YOLOv5. YOLO has been nurtured by the computer vision 
community since its first launch in 2015 by Joseph Redmond. In the early versions, YOLO was 
maintained in C code in a custom deep learning framework Darknet. Subsequent versions were 
developed in PyTorch - a deep learning Python framework. In addition to its robust model foundation, 
the YOLO maintainers have shown a dedicated effort to foster a thriving software ecosystem for the 
model. They proactively address concerns and enhance the repository's functionalities in response to 
the community's needs.  



There are five different models of YOLOv8 models made for object detection: YOLOv8n (nano), 
YOLOv8s (small), YOLOv8m (medium), YOLOv8l (large), YOLOv8x (extra-large). YOLOv8 Nano 
(YOLOv8n) is the fastest and smallest, while YOLOv8 Extra Large (YOLOv8x) is the most accurate 
yet the slowest. 

More information about the current version of YOLO is given in [25],[26],[27]. 
 

5. Evaluation metrics 

The following metrics were used to evaluate the study results: Precision, Recall, F1 score and mAP 
(with different variations). Precision measures the accuracy of the positive predictions made by the 
model. In the context of image detection, precision represents the proportion of correctly detected 
objects (true positives) out of all objects that the model predicted as positive (true positives + false 
positives). Recall measures the model's ability to correctly detect all instances of the object in the 
dataset. In the context of image detection, recall represents the proportion of correctly detected objects 
(true positives) out of all actual instances of the object in the dataset (true positives + false negatives). 
The F1 score is the harmonic mean of precision and recall. It provides a balance between precision and 
recall and is especially useful when you want to consider both false positives and false negatives in 
your evaluation. The F1 score ranges from 0 to 1, where a higher score indicates better performance. A 
perfect F1 score of 1 means that the model has achieved both high precision and high recall, implying 
that it can detect all instances of the object with no false positives. 

Mean average precision (mAP) is a crucial evaluation metric used in object detection tasks. It 
provides a comprehensive and quantitative measure of the accuracy and reliability of models employed 
in these tasks. Average precision (AP) is calculated for each class by computing the precision-recall 
curve. These measures are computed at different confidence thresholds to generate multiple data points 
forming the curve. mAP is then obtained by averaging AP values across all object classes. It signifies 
the overall accuracy and performance of the model across various classes, thereby providing a single, 
consolidated evaluation score. 

An mAP of 1.0 indicates perfect accuracy, while lower values (like 0.95, 0.75 or 0.5) imply potential 
inaccuracies in IOU calculation. IOU, or Intersection over Union, is a commonly used metric in object 
detection tasks to measure the accuracy of bounding box predictions made by a model. It assesses the 
overlap between the predicted bounding box and the ground truth (actual) bounding box for an object 
in an image. 

Refer to the YOLOv8 documentation for more information on each metric [28]. 
 

6. Data Collection and Preprocessing 

The Insulator Defect Image Dataset (IDID) [14] representing power line insulators, which contains 
a large class depicting undamaged insulators and two other, relatively small classes depicting two types 
of damaged insulators was used in the research. The dataset IDID contains 1596 images in total. Figure 
1: Examples representing each of the listed classes (GIS, FDIS and BIS). shows examples representing 
each of the listed classes. 

 

   
GIS FDIS BIS 



Figure 1: Examples representing each of the listed classes (GIS, FDIS and BIS). 
 
Annotations describing damaged and undamaged individual disks - components of power insulators 

- have been added to individual images of the dataset. The purpose of the detection was precisely these 
individual components, along with assigning them to the appropriate class. 

Publicly available dataset IDID is divided into two parts: “train dataset” and “test dataset”. For the 
purposes of this study, 1,000 examples representing undamaged isolator disks (“good insulator shell” – 
GIS class) and 200 examples of damaged isolator disks (100 examples for “flashover damage insulator 
shell” – FDIS class and 100 examples for “broken insulator shell” – BIS class) were selected from the 
part “train dataset”. These images in different resampling variants were used to train the detector. 

All images from the part “test dataset” were used to test the effectiveness of the detector. It contains 
930 examples (instances) of class GIS, 70 examples of class FDIS and 66 examples of class BIS. 

 

7. Experimental Results and Discussion 

Based on the images selected from the IDID dataset, described in the "Data Collection and 
Preprocessing" section, and using various resampling methods, 6 variants of the training sets listed 
below were prepared: 

• Variant I: 1000 GIS, 100 FDIS, 100 BIS, starting case, imbalanced dataset, 
• Variant II: 200 GIS, 100 FDIS, 100 BIS, undersampling so that the train dataset contains the 

same number of undamaged objects (GIS class) and damaged objects (FDIS class + BIS class), 
• Variant III: 100 GIS, 100 FDIS, 100 BIS, undersampling to the smallest classes FDIS, BIS, 
• Variant IV: 1000 GIS, 500 FDIS, 500 BIS, oversampling so that the train dataset contains the 

same number of undamaged objects (GIS class) and damaged objects (FDIS class + BIS class), 
• Variant V: 1000 GIS, 600 FDIS, 600 BIS, oversampling the smallest number of classes to triple 

their size and, as a result, reduce disproportions between classes, 
• Variant VI: 1000 GIS, 1000 FDIS, 1000 BIS, oversampling to the largest class GIS. 

The listed numbers indicate the number of instances in each class. For each of the presented variants, 
the learning process was carried out. The mean results obtained for the test dataset are presented in the 
Table 1. 

 
Table 1 
Summary of mean results for individual resampling variants. 

Variant Variant I Variant II Variant III Variant IV Variant V Variant VI 
Class size 1000 GIS 

100 FDIS 
100 BIS 

200 GIS 
100 FDIS 
100 BIS 

100 GIS 
100 FDIS 
100 BIS 

1000 GIS 
500 FDIS 
500 BIS 

1000 GIS 
600 FDIS 
600 BIS 

1000 GIS 
1000 FDIS 
1000 BIS 

Mean AP at IoU 
threshold of 0.5 for 
all classes 

0.498 0.535 0.452 0.580 
 

0.501 0.455 

Mean AP at IoU 
threshold of 0.75 for 
all classes 

0.414 0.462 0.382 0.478 0.400 0.362 

Mean AP at IoU 
threshold of 0.5 to 
0.95 for all classes 

0.336 0.373 0.318 0.409 0.341 0.307 

 
The best efficiency results were obtained for Variant IV - oversampling so that the train dataset 

contains the same number of undamaged objects (GIS class) and damaged objects (FDIS class + BIS 
class) for each of the analyzed mean metrics. This variant did not reduce the number of examples for 



the most numerous GIS class, at the same time performing five-fold oversampling of the least numerous 
classes allowed for better representation of these classes (FDIS and BIS). 

In most cases, the worst results were obtained for Variant VI - oversampling to the largest GIS class. 
Only a slightly worse (but very similar) result was obtained for the "Mean AP at IoU threshold of 0.5 
for all classes" metric calculated for Variant III. Thus, it can be seen that the multiple duplication of 
examples from a small class brings effects only up to a certain threshold (Variant IV), while a significant 
multiplication of the same instances leads to the deterioration of the detection results. Results for 
individual resampling variants for each class ware shown in Table 2. 

 
Table 2 
Summary of results for individual resampling variants for each class. 

 Variant I Variant II Variant III 
 GIS FDIS BIS GIS FDIS BIS GIS FDIS BIS 
Class size 1000 100 100 200 100 100 100 100 100 
F1 score 0.747 0.408 0.310 0.625 0.328 0.247 0.554 0.235 0.199 
Precision 0.782 0.345 0.428 0.799 0.235 0.167 0.905 0.141 0.131 
Recall 0.719 0.5 0.242 0.513 0.543 0.47 0.399 0.714 0.41 
mAP 0.6 0.272 0.138 0.573 0.34 0.205 0.595 0.285 0.073 
 Variant IV Variant V Variant VI 
 GIS FDIS BIS GIS FDIS BIS GIS FDIS BIS 
Class size 1000 500 500 1000 600 600 1000 1000 1000 
F1 score 0.785 0.413 0.423 0.723 0.29 0.349 0.818 0.280 0.218 
Precision 0.879 0.359 0.458 0.833 0.26 0.313 0.742 0.510 0.188 
Recall 0.710 0.486 0.393 0.639 0.329 0.394 0.912 0.193 0.258 
mAP 0.644 0.354 0.227 0.622 0.232 0.168 0.637 0.206 0.077 

       
During the analysis of the results for individual classes, it was noticed that the F1 score metric 

obtained the best values for Variant III, as well as for mean metrics. On the other hand, undersampling 
of the entire dataset to the least numerous class (Variant III) resulted in a significant reduction in the 
size of the entire training dataset and, as a result, a decrease in the F1 score metric (the worst result). 

In contrast, the Precision and Recall metrics yielded mixed results. The multiplication of the number 
of instances improved the Precision parameter, but at the same time caused a deterioration of the Recall 
parameter value because the detector was unable to find objects that differed from the given pattern 
(problems related to the generalization of the neural network). 

The mAP metric calculated for each class separately was the best for Variant IV, similar to the 
collectively calculated mAP and F1 score. In other cases, worse results were obtained, however, for this 
metric, the negative impact of resampling in individual variants cannot be unequivocally assessed, 
because ambiguous results of the instance detection efficiency for different classes were obtained - the 
analysis requires more research in this area. 

Addressing the class imbalance in object detection is indeed a critical challenge, and it's essential to 
acknowledge the potential limitations and challenges encountered during the described experiment. 
Here are some limitations and challenges that should be considered.  

The effectiveness of resampling techniques heavily relies on the quality and representativeness of 
the dataset. If the dataset does not capture the real-world distribution of objects accurately, the results 
may not generalize well to practical scenarios. The success of resampling methods on the specific 
dataset used (IDID) does not guarantee similar outcomes on other datasets with different object classes 
and distributions. The research should assess the generalizability of the findings. The choice of 
hyperparameters for resampling methods and object detection models can significantly impact the 
results. Optimizing these hyperparameters is crucial for achieving the best performance.  

For practical applications, it's important to assess the impact of resampling on the real-time inference 
speed of object detection systems, especially if used in latency-sensitive environments.  In practical 
applications, there may be resource constraints, such as limited labelled data for rare classes. Research 
should explore strategies for addressing class imbalance in resource-constrained settings. 



Resampling techniques may affect the interpretability of object detection models. Ensuring that the 
models provide meaningful explanations for their detections is essential, particularly in critical 
applications. 

Addressing these limitations and challenges is crucial for advancing the field of object detection in 
the presence of class imbalance and for ensuring the applicability of research findings to real-world 
computer vision applications. The article describes the preliminary research carried out for only one 
detection algorithm, five variants of data resampling and one dataset. In order to face the limitations 
and challenges, the authors plan to continue the described research on limiting the impact of class 
imbalance on object detection efficiency. 

 

8. Conclusion and Future Work 

In summary, the article investigates how data resampling techniques can enhance the performance 
of object detection models in the presence of class imbalance, offering insights and guidance for 
improving the effectiveness of these models in practical applications. 

The most efficient outcomes were achieved with variant, where oversampling was applied to ensure 
an equal number of undamaged (GIS class) and damaged objects (FDIS class + BIS class) in the training 
dataset for each of the average metrics under investigation. This approach preserved the abundance of 
GIS class examples while significantly improving the representation of the less common FDIS and BIS 
classes through a five-fold oversampling. In the remaining scenarios, diverse outcomes were observed, 
and these are elaborated upon in greater detail within the article. 

In this article, it was described initial research on the influence of various methods of resampling on 
detection efficiency. The potential future research directions are: 

• Testing other known methods of resampling training data, 
• Development of a new resampling method using the knowledge gained during the described 

experiments, 
• Testing other algorithms for detecting and classifying objects on digital images and their 

effectiveness depending on the use of different data resampling methods, 
• Study of imbalance reduction in test dataset,  
• Investigation of the use of semi-supervised learning approaches to leverage both labelled and 

unlabeled data, potentially reducing the reliance on extensive labelled data for minority 
classes, 

• Applying Generative Adversarial Networks (GANs) to generate synthetic samples for 
minority classes in object detection datasets. This approach can potentially improve model 
performance by providing more diverse training data, 

• Investigate the use of ensemble models that combine multiple object detection models trained 
on resampled datasets to improve overall performance and robustness. 

The findings of this research have practical implications for improving the accuracy and reliability 
of object detection models in real-world applications. 

Understanding the effectiveness of data resampling can guide practitioners and researchers in 
selecting the appropriate approach to handle class imbalance in object detection. This knowledge can 
lead to more efficient computer vision systems, particularly in scenarios where imbalanced classes are 
common. Mitigating class imbalance for object detection is vital for developing robust computer vision 
systems capable of accurately identifying and locating objects across a diverse range of classes, 
regardless of their representation in the dataset. This research area continues to evolve, contributing to 
advancements in object detection and broader applications of computer vision in fields like autonomous 
driving, medical imaging, and more. 
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