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Abstract  
A receiver operating characteristic (ROC) curve analysis is an important instrument while 

selecting the best for the given dataset a classification algorithm by comparing the area under 

ROC curve. It is applied in areas: medicine, finance and e-commerce, information retrieval, 

quality control. However, the accuracy of area under ROC curve imposing on predicted 

probabilities a threshold >0.5, therefore when predicted probability is calculated with different 

logic then corresponding area under ROC curve is affected and ROC curve analysis's results 

are misleading. To guarantee the accuracy of area under ROC curve, predicted probabilities 

must be calibrated. The subject matter of the article is “fixed-width binning” method which is 

used to calibrate binary predicted probabilities of machine learning algorithms Naive Bayes 

Classifier, Random Forest Classifier. In this paper the focus is put on “fixed-width binning” 

method which algorithm is based on the constant number of bins. The goal of work is to 

increase the calibration scores by proposing a method to select bin number depending on 

simple statistics of binary predicted uncalibrated probabilities. To meet the goal in the research 

were evaluated the feasibility to use two different approaches for the identification of the 

optimal bins’ number: “rule-based” approach, “estimators-based” approach. The results of 

conducted experiments identified that often used 10 bins with “fixed-width binning” method 

is not optimal. Our proposal is to identify bin number dynamically according to “estimators-

based” approach which algorithm is described in the paper. 
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1. Introduction 

ROC graphs in machine learning are used to select the best for the given dataset a classification 

algorithm by comparing the area under ROC curve and to model the classifier predictions depending 

on the chosen value of false positive rate [1]. ROC curve analysis is applied in a medical field to evaluate 

a performance of diagnostic tests as it helps in decision-making regarding test accuracy; in finance and 

e-commerce - to assess the effectiveness of fraud detection systems; in information retrieval systems-

to optimize the trade-off between relevant and non-relevant results. ROC graphs measure the ability of 

a classifier to produce relative instance scores – the numeric values which represents the degree to 

which an instance is a member of a class. In work [2] is defined that “a classifier need not produce 

accurate, calibrated probability estimates; it needs only produce relative accurate scores that serve to 

discriminate positive and negative instances.” However, in the same work is underlined that area under 

ROC’ accuracy is imposing a threshold >0.5, so this metric is not appropriate when classifier doesn’t 

produce calibrated scores. The threshold >0.5 is applied only on probabilities which are predicted by 

Logistic Regression Classifier, others commonly used binary classification algorithms computes 

probabilities as: Random Forest Classifier (RFC) – predicts probabilities (further “scores”) as fractions 
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of samples in a given class within the set of decision trees in the forest; Naive Bayes Classifier 

(GaussianNB) - computes the probability that a data point belongs to a particular class based on 

Gaussian distribution of the features; Support Vector Machine Classifier (SVC) – doesn’t provide 

probabilities, instead for each data point in dataset it produces the distance from it to hyperplane. 

Therefore, it is recommended to calibrate classifier’s scores predicted by the mentioned learners in 

order to execute ROC curve analysis with a goal to select the best binary classifier for the given dataset. 

As the benchmarking method to calibrate binary scores is used “fixed-width binning” method 

proposed for algorithms RFC and GaussianNB in research [3]. The method described as a “fixed-width 

binning” where interval [0,1] is partitioned into bins and a number of bins is recommended to be 10. 

The computational simplicity and ability to measure a calibration error with “fixed-width binning” 

made it often used [4-6]. 

However, in study [7] is concluded that a binning method is effective with properly selected bin’s 

width, as depending on dataset characteristics predicted scores are differently distributed through bins 

and too small or big number of bins could result calibrated scores are either “over-detailed” or “over-

smoothed”.   

The current research objectives are to empirically study whether the simple statistics of uncalibrated 

predicted binary scores can be used to choose optimal number of bins for the “fixed-width binning” 

method and to propose the solution approach. To achieve the research’s objectives will be considered 

the simple statistics of the predicted scores: a range, a standard deviation and an interquartile range and 

bin size estimators: David W. Scott rule, Freedman-Diaconis rule as their results are directly 

proportional to a standard deviation and an interquartile range correspondingly. 

2. Study Research 
2.1. Related literature review  

To improve “fixed-width binning” method results in work [8] was proposed a scaling binning 

method – the algorithm divides data into two subsets - the 1st subset is calibrated by the other continuous 

calibration method such as “Platt calibration”; the 2nd subset is used to choose the bins so that an equal 

number of points are landed in each bin. The scaling binning method addresses two issues:  

 Reduces a calibration error. 

 Calculates bin width which is adopted to already calibrated scores.  

However, “Platt calibration” method has a few problems [9]:  

 It is the most efficient when distortion of predicted scores is sigmoid-shaped.  

 It is computationally intensive as is solving a convex optimization problem to find sigmoid 

function parameters. 

In research [10] to identify bin size to construct a histogram for dataset’s distribution is proposed to 

use Freedman-Diaconis rule. However, in statistic theory depending on actual data distribution it is 

recommended for the identification of bin size and bin numbers the estimators: David W. Scott, 

Freedman-Diaconis, Sturges rule, Doane formula, Rice Rule and others. For this reason, applying only 

Freedman-Diaconis rule may not result that the optimal bin size is found. 

The related works [11-12] do not recommend a logic to define the number of bins for “fixed-width 

binning” method to calibrate predicted probabilities so the problem is actual to study.  

2.2. Methodology 

To achieve the study’s goals we will evaluate the feasibility to use two different approaches for the 

identification of the optimal bins’ number: 1) “rule-based”; 2) “estimators-based”.  

The “rule-based” approach suggests having a set of rules which depending on simple statistics of 

predicted uncalibrated scores to propose an optimal bins’ number to be used with “fixed-width binning” 

method.  

The “estimators-based” approach suggests identifying bins’ number by using different estimators 

and selection the best bins’ number to be used with “fixed-width binning” method as a result of 

evaluation of calibration error. 



Feasibility study for “rule-based” approach includes steps: 1) set rules which input parameters are 

simple statistics of predicted uncalibrated scores; 2) specify the expected results; 3) execute the rules 

and record the actual results; 3) compare actual and expected results: if actual and expected results are 

the same then recommend a “rule-based” approach. 

Feasibility study for “estimators-based” approach include steps: 1) calculate bins’ number using 

selected estimators; 2) calibrate predicted scores with “fixed-width binning” method and bins’ number 

received from step 1; 3) compare actual and expected results: if the minimum calibration error does not 

correspond to bin’s number equal to 10 then propose a “estimators-based” approach. 

2.3. Materials 

The following rules to be included in feasibility study for “rule-based” approach: 

1. The 1st rule’s clause: given predicted scores have a low standard deviation (less than 0.1) and 

scores’ variability is small (<0.5) and the 2nd rule’s clause: given predicted scores have a low standard 

deviation (less than 0.1) and scores’ variability shows a degree of dispersion (from 0.5 to 0.7). The 

expected results: when David W. Scott rule calculates the required bins number for the 1st rule’s clause 

and the 2nd rule’s clause then the results are closed as David W. Scott rule is not expected to care about 

scores’ range. 

2. Given predicted scores have a low standard deviation and a low interquartile range (less than 0.1) 

and scores’ variability shows a degree of dispersion (from 0.5 to 0.7). The expected results: when David 

W. Scott rule calculates the required bin number and Freedman-Diaconis rule calculates the required 

bin number then the results are closed as both estimators are not expected to care about scores’ range. 

In case, the actual results from execution of the rules 1-2 look the same as the expected then our 

recommendation will be to develop “rule-base” approach as stable rules can be specified based on 

simple statistic of the predicted binary scores. 

The following formulas and algorithms to be included in feasibility study for “estimators-based” 

approach. 

The predicted binary scores are considered as well calibrated when its values are closed or equal to 

actual value of target class }1,0{y . Brier score estimates the calibration’s error as the mean squared 

error of the actual target class yi and predicted binary score si (1) [13]. The lower value of Brier score 

the better calibration results. 
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where n – is the number of observations in dataset. 

The lower Brier score does not always mean a better calibration, the reason for it is the bias-variance 

decomposition of the mean squared error [14]. Other approach to measure calibrations is to calculate 

expected calibration error (ECE) (2) [15]. 
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- the mean of  calibrated scores which are belonging to a 

single bin with a width is hi; B – number of bins. 
A Calibration curve plots the calibration results as the relationship between the mean predicted 

binary scores 𝑠𝑖 in each bin, placed on x-axis and fraction of actual values of target class in each bin – 

placed on y-axis. The closer a calibration curve to diagonal line the better calibration [16]. 

When bin’s width (h) is identify using David W. Scott (further Scott) estimator (3) then it makes 

bin’s width to be proportional to dataset standard deviation ( ) and inversely proportional to the 

number of observations in dataset (n) [17].  
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When bin’s width (h) is identify using Freedman-Diaconis estimator (4) then it makes bin’s width 

to be proportional to interquartile rate (IQR) and inversely proportional to the number of observations 

in dataset (n) so the calculated width is optimal when dataset is normally distributed but contains outliers 

[18]. 
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The required bin’s number (b) for the calculated bin’s width to be derived as a fraction between 

scores’ range and bin’s width (h) according to equation (5). 
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Algorithm 1 specifies a “fixed-width binning” method to calibrate predicted binary scores for a given 

constant number of bins, noted as “n_bins”. In lines 6-8 it calculates bins’ edges. In lines 9-14 for each 

uncalibrated score received as input parameter is calculated its index of bin, denoted as “score_inx”. In 

lines 16-18: the algorithm iterates through bins indices, finds scores’ which indices coincide with current bin’s 

index, those score’s indices are denoted as “mask” and calculates calibrated score as an average of scores inside 

the bin. 

 

Algorithm 1. “fixed-width binning” method to calibrate binary scores 

Input: n_bins, scores 

Output: calibrated_scores 

1. calibrated_scores=zero array of size score 

2. score_inx=zero array of size score 

3. start =0 

4. stop = 1 

5. h=(stop-start)/n_bins 

6. For i in range(|n_bins|) 

7.       bin_edges=start+i·h 

8. EndFor 

9. For i in range(|scores|) 

10.     For j in range (n_bins) 

11.          If bin_edges [j]<=scores[i]< bin_edges [j+1]  

12.            score_inx[i]=j 

13.         break 

14.      EndFor 

15. EndFor 

16. For  i in range(|n_bins|) 

17.     mask= score_inx==i 

               calibrated_scores[mask]=sum(calibrated_scores[mask])/len(mask)  

18. EndFor 

 

Algorithm 2 specifies logic to identify an optimal bin’s number to be used as input parameter for 

“fixed-width binning” method to calibrate predicted binary scores. In line 6 bin’s width is calculated by 

estimator and in line 8 predicted scores are calibrated by algorithm 1 which is called with bin’s number 

calculated in line 7. In lines 9-10 the calibration results are evaluated by Brier score and expected 

calibration error and marks are saved in arrays. The lines 6-10 are repeated for each estimator. In lines 

12-16 the optimal bin number is selected where the lower values of metrics’ marks is identifier. If 

metrics’ marks disagree, then the default bins’ number equal to 10 is returned. 

In case, the minimum calibrations error, which is received from the execution of algorithm 2 is for 

calibration with bins’ numbers different from 10 bins, then our recommendation will be to develop 

“estimators-base” approach. 



Algorithm 2. “Estimators-based” approach to identify optimal bin numbers for “fixed-width 

binning” to calibrate binary scores 

Input: scores, estimators 

Output: bin number 

1. bin_number=10; 

2. n_bins = ece = brier = zero array of size estimators. 

3. σ=standard deviation (scores) 

4. IQR = interquartile rate (scores) 

5. For i in range (|estimators|)-1 

6.     h=call of estimator[i](σ, IQR) 

7.     n_bins[i]= formula 5 

8.     calibrates scores = algorithm1(n_bins [i], scores) 

9.     brier[i]=formula 1 

10.     ece[i]=formula 2 

11. EndFor 

12. For i in range (|estimators|)-1 

13.     If Brier[i]<= Brier[i+1] and ece[i]<= ece[i+1] Then 

14.       bin number= n_bins[i] 

15.       Break 

16. EndFor 

 

2.4. Experiments 

The execution of feasibility study for “rule-based” approach consists of: 

Step1. Calculate bin’s width using estimator (3-4) and bins’ number according to (5) with input 

parameters: 

Rule 1: 𝜎≤0.1 and n = 250 and scores range ≤0.1. 

Rule 2: 𝜎≤0.1 and n = 250 and 0.5< scores range ≤0.7. 

Rule 3: IQR ≤0.1 and n = 250 and 0.5< scores range ≤0.7. 

Step2. Compare actual results and expected results (specified in sec. “Materials”), make the 

recommendations. 

The execution of feasibility study for “estimators-based” approach consists of three steps: 

Step1. Generate two synthetic datasets for classification problem: the 1st dataset is from skewed 

Gaussian distribution; the 2nd – from normal distribution. The size of datasets is: two features and 1000 

observations; a target class values are 1 and 0 for positive and negative class correspondingly. The 

machining learning algorithms which are included in the experiments are RandomForestClassifier and 

GaussianNB to be used with default values for hyperparameters. 

Step2. Split dataset on a train and test subset in proportion 80/20; train a learner and receive predicted 

binary scores for test subset. 

Step3. Execute algorithm 2, compare actual results and expected results (specified in sec. “Materials”), 

make the recommendations. 

2.5. Results and discussions 

The actual results from the execution of the rules 1-3 to study the feasibility to use “rule-based” 

approach are: 

1. when 1  and n = 250 and scores range 5.0 then estimator (3) will make bins’ width less 

than 0.0349 and number of bins is 29; 

2. when 1 and n = 250 and 0.5<scores range 7.0 then estimator (3) will make bins’ width 

less than 0.08 and number of bins is 5; 



3. when 1IQR  and n = 250 and 0.5< scores range 7.0 then estimator (4) will make bins’ width 

less than 0.01 and number of bins is 60. 

The actual results which are obtained from the execution of the rules 1-2 show that small changes 

in scores’ variability may impact David W. Scott’s rule’s result so that calculated numbers of bin differ 

appx. by a factor of 6 which is not expected as standard deviation and number of observations are 

similar low in rules 1-2. The actual results which are obtained from the execution of the rules 2-3 show 

that both estimators (3-4) calculate numbers of bin which differ by a factor of 12 which is not expected 

as we kept low standard deviation and IQR, so expecting the similar results from both estimators. 

To summarize the results, we won’t recommend “rule-based” approach as stable rules cannot be 

defined based on the selected simple statistic of the predicted binary scores. 

The results of the execution of feasibility study for “estimators-based” approach is recorded in tables 

1-6 and illustrated on figures 1-2. 

Table 1 records simple statistics for predicted by GausianNB and RandomForestClassifier 

uncalibrated binary scores in lines 1 and 2 correspondingly. The learning algorithm had been trained on 

the skewed dataset from Gaussian distribution. Line 1 recodes standard deviation of uncalibrated 

predicted scores and IQR are less than 0.1, as specified in scenario 1, in Table 2 is visible that the 

number of bins tends to be bigger than 10 – it is 60 and 14 bins. Line 2 records increased spreads and 

in Table 3 is visible that the number of bins tends to be smaller than 10 – it is 9 and 8.  

Calibration results for scores which statistics are described in Table1 is presented in Table 2-3 in 

columns: “Brier score”, “ECE” and visualized with calibration curves on Figure1. For calibrated 

GausianNB scores the lower values of metrics are captured for 60 bins and calibration curves on picture 

(b) from Figure 1 and line 1, shows that half from total curve’s points are very closed to diagonal. On 

picture (c) from Figure 1 and line 1 can also be seen that half of the point are closed to diagonal and 

Brier score is almost the same, however according to ECE metric – the better calibration is achieved 

with 60 bins. For calibrated RandomForestClassifier’s scores the lower values of Brier score is captured 

for binning with 8 bins. The difference in ECE metric between 8 bins and 9 bins binning is less than 

10-4, however, calibration curve on picture (c) from Figure 1, line 2 shows more curve’s points are 

closed to diagonal line compared to curve on picture (b) which indicate the better calibration with 8 

bins.  

 

Table 1 
Simple statistics of predicted scores when learning algorithm is trained on dataset from skewed 
Gaussian distribution. 

Estimator Predicted scores counts per bin Scores 
range 

  IQR 

GausianNB 2,  2, 4, 7, 18, 53, 132, 19,  5, 8 0.66 0.086 0.035 
RandomForestClassifier 8, 12, 32, 28, 43, 40, 30, 26, 22, 9 0.89 0.2 0.3 

 
Table2.  
Bin numbers to be used with Algorithm 1 to calibrate scores predicted by GaussianNB trained on 
dataset from skewed Gaussian distribution. 

Estimator Bin width Bin number Brier score ECE 

Not applied 0.1 10 0.2619 6*10-4 
Freedman-

Diaconis 
0.011 60 0.2614 3*10-4 

Scott 0.047 14 0.2615 5*10-4 

 
 
 
 
 
 



Table3.  
Bin numbers to be used with Algorithm 1 to calibrate scores predicted by RandomForestClassifer 
trained on dataset from skewed Gaussian distribution. 

Estimator Bin width Number Brier score ECE 

Not applied 0.1 10 0.2853 6*10-4 
Freedman-

Diaconis 
0.09 9 0.2812 5*10-4 

Scott 0.113 8 0.2795 5*10-4 

 

Table 4 records simple statistics for predicted by GausianNB and RandomForestClassifier 

uncalibrated binary scores in lines 1 and 2 correspondingly. The learning algorithms had been trained 

on the dataset from normal distribution. Calibration results for scores from Table 4 are presented in 

Table 5-6. 

As in line 1 and line 2 from Table 1 is seen increased compared to Table 1 in the spread of 

uncalibrated predicted scores from mean and median, so the result in Table 5 record the number of bins 

is closed to 10 – it is 12 and 8. In Table 6 due to more increased spread we see 6 bins are needed.  

For calibrated GausianNB scores the lower values of Brier score is captured for default 10 bins, 

however the difference in ECE metric is less than 10-4, and calibration curves on the picture (c) from 

Figure 2, line 1 shows 5 from 8 curve points are on diagonal line so 8 bins could be considered as 

optimal as well. For calibrated RandomForestClassifier scores the lower values of metrics are captured 

for 6 bins and calibration curves on pictures (b)-(c) from Figure 2, line 2 indicate better calibration 

compared to curve with 10 bins on picture (a) from Figure 2, line 2. 

 

Table 4. 
Simple statistics of predicted scores when learning algorithm is trained on dataset from normal 
distribution. 

Estimator Predicted scores counts per bin Scores 
range 

  IQR 

GausianNB 115, 49, 20, 18, 13,  9, 10,  3,  8,   5. 0.65 0.15 0.18 
RandomForestClassifier 25, 30, 20, 32, 26, 18, 19, 19, 20, 41. 0.99 0.3 0.55 

 
Table5.  
Bin numbers to be used with Algorithm 1 to calibrate scores predicted by GaussianNB trained on 
dataset from normal distribution. 

Estimator Bin width Number Brier score ECE 

Not applied 0.1 10 0.2409 1*10-4 
Freedman-

Diaconis 
0.05 12 0.2424 2*10-4 

Scott 0.081 8 0.245 1*10-4 

 
Table6.  
Bin numbers to be used with Algorithm 1 to calibrate scores predicted by RandomForestClassifer 
trained on dataset from normal distribution. 

Estimator Bin width Number Brier score ECE 

Not applied 0.1 10 0.2008 5*10-4 
Freedman-

Diaconis 
0.165 6 0.1961 3*10-4 

Scott 0.165 6 0.1961 3*10-4 



 
Figure 1: Calibration curves of the scaled scores predicted by GaussianNB and RandomForestClassifier 
for dataset  from skewed Gaussian distribution. 

 
Figure 2: Calibration curves of the scaled scores predicted by GaussianNB and RandomForestClassifier 
for dataset from normal distribution. 

3. Conclusions 

In current study had been considered two different approaches for identification of the optimal bin 

number to be used with “fixed-width binning” method. The “rule-based” approach – according to which 

a set of rules depending on the values of uncalibrated scores’ range, standard deviation and an 

interquartile range will propose an optimal bin number had not been recommended to further 

development as the actual results from the rules execution compared to expected results showed that 

the small changes in scores’ variability may impact David W. Scott’s rule results and David W. Scott’s 

rule and Freedman-Diaconis rule calculated the numbers of bin which differ by a factor of 12 which 

was not expected as we fixed to be low standard deviation and an interquartile range. Our conclusion 



for “rule-based” approach is that stable rules can’t be defined based on the selected simple statistic of 

the predicted binary scores. 

The effectiveness of “estimators-based” approach - according to which bins’ number is calculated 

by different estimators and the optimal bin number is selected as a result of the evaluation of a 

calibration error revealed the following: 10 bins for “fixed-width binning” method to calibrated 

predicted probabilities is not optional for all datasets. When uncalibrated score’s range, standard 

deviation and interquartile range are low then 60 bins can be optimal according to Freedman-Diaconis 

rule, at the same when scores’ spread is low, however a standard deviation and an interquartile range 

are increasing then 8 bins can be optimal according to David W. Scott’s rule. Further increase of spread 

will cause optimal bin number is decreased to 6 bins according to both estimators. 

Our proposal is to identify bin number dynamically according to “estimators-based” approach which 

is described per algorithm 2. The proposed approach will improve calibrations of binary predicted 

probabilities based on ECE and Brier score metrics as visible from calibration curves on Figure 1 and 

Figure 2 so that the accuracy of area under ROC curve is good to conduct ROC curve analysis. 

Further work will be to extend the proposed “estimators-based” approach to calculate optimal bin 

number with estimators: Sturgers’ formula, Rice rule, Doane’s formula as those estimators considers 

bin numbers based on the range of the data. 
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