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Abstract 
Discovery of q-regular forest  description in terms of an infinite system of quadratic 

equations over finite field Fq had an impact on the development of Graph Based 

Cryptography and constructions of robust stream ciphers. We observe known encryption 

algorithms based on the forest approximations via families of q-regular graph, their 

modifications defined over the finite arithmetical rings and implementations of these ciphers. 

The main result is the construction of new family of stream ciphers based on forest 

approximation which has multivariate nature. The method allows selection of the polynomial 

degrees  of multivariate encryption and decryption procedures. 
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1. Introduction 

Graph Based Cryptography (GBC) area is moving with great speed into the main stream of 
computer design, Information sciences, Information and Computer programming, Artificial 

Intelligence and design, Artificial Intelligent and various field of research. Application of GBC is in 

diverse area such as Data structures, Communication networks and their security. A Graph-based 
approach centres on conserving the environment of security events by breaking down factors of 

observable data into a graph representation of all cyber vestiges, from all data aqueducts, counting for 

all once and present data. For secret communication, Ciphers can be converted into graphs. The 

Application of Graph Theory plays a vital role in various field of Engineering and Sciences. GBC is 
used  for the key exchange, development of Multivariate Public Keys, key dependent message 

authentication codes and algorithms of Noncommutative Cryptography (see [24]-[38])  

Especially Graph theory is commonly used as a tool of symmetric encryption. First 
cryptographical applications of Graph Theory appeared in the areas of Symmetric Cryptography and 

Network Security. This paper reflects some results in the area of applications of families of algebraic 

graphs of large girth of Extremal Graph Theory to the development of fast and secure encryption tools 
to process Big Data files. The vertices  and edges of algebraic graphs form algebraic varieties defined 

over the field. The girth is the length of the minimal cycle in the graph. This parameter defines the 

size of the key space of corresponding cipher. The girth of several known families of algebraic graphs 

of large girth is not computed. It just evaluated via the lower bounds. 
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Observed and presented new ciphers have a multivariate nature. The space of plaintexts is an 
affine variety Kn defined over finite commutative ring K. Bijective encryption map F can be  given by 

nonlinear multivariate polynomials f1, f2,…, fn  from the multivariate commutative ring K[x1, x2,…, xn]. 

It acts on the affine space accordingly the rule (x1, x2,…, xn)→(f1(x1, x2,…, xn), f2(x1, x2,…, xn),…, fn(x1, 

x2,…, xn)), where fi are given via corresponding list of monomial terms. Trapdoor accelerator (see 
[21]) is a piece of information A such that the knowledge of A allows to compute the reimage of F in 

time O(n2). 

In presented ciphers correspondents Alice and Bob shares file A (the password) and encrypt 
according to the robust procedure in time O(n) or O(n2). The adversary does not have a password 

he/she can intercept large amount of pairs plaintext/corresponding ciphertext and try to approximate 

maps F-1 and F. So degree of F is an important parameter for the cryptanalytical studies. The most 
important (active) part of password are is the information about the walk in the algebraic graph. 

In fact the first description of selected graph based stream cipher based on approximations of q-

regular tree where q is a prime power was presented in [7] or [45]. The first implementation of this 

algorithms appeared at the beginning of 2001 [1]. During last twenty years many new results on the 
construction of new encryption tools and there cryptanalysis were obtained. They lead to 

understanding of multivariate nature of these algorithms and necessity of usage of infinite algebraic 

graphs defined over infinite commutative rings of kind Fq [x1, x2 ,…, xn] or  more general K[x1, x2,…, 
xn] where K is a finite commutative ring. Implemented in [1] encryption map is a polynomial map of 

degree 3 such that their inverse is also cubical transformation. So, adversary can use linearisation 

attacks and after the interception of O(n3) pairs of kind plaintexts/corresponding ciphertext he/she can 
approximate the encryption map in time O(n10). So, Section 2 is dedicated to observation of ciphers 

based on algebraic graphs and resistant to such linearisation attacks. 

The general scheme of flexible encryption algorithm based on special family of algebraic graphs 

defined over commutative ring is presented there.  
The theory of approximations of regular trees is presented in Section 3 which contains description 

of q-regular forest approximation D(n, q), n→∞ [2] and tree approximation CD(n, q) [3]. Analogues 

of these families of graphs over an arbitrary commutative ring are presented there together with the 
known results on their properties and applications. 

Precise description of observed graph based algorithm is given in the Section 4 together with 

evaluation of the degrees of encryption map and its inverse. 

The special cases of CD(n, 256) defined over the finite field F256 is selected for an implementation. 
Parameters of corresponding computer simulations are given at the end of Section 4. 

Last Section 5 is the conclusion. 

2. Short survey of ciphers based on the approximations of infinite regular 
trees 

We have to report that the implemented case of D(n, q) based encryption E(n, q) is far from being 
optimal. As it was showed in [4, Serdica] the increase of parameter q leads to faster encryption of files 

of the same size. Noteworthy that the usage of loaded multiplication tables makes immaterial the 

difference between case of prime q and composed prime powers. Such tables allow to use q=128 

corresponding to the alphabet ASCEE with the essential speed increase comparably to implemented 
in [1] q=127, where operator of taking  modulo 127 is used cn times where constant c depends on the 

length of the password. The multivariate nature of D(n, q) encryption was noticed in [4] (see also [22] 

for the case of arbitrary ring K), described their symbolic computations turned out to be cubic. This 
fact was mathematically proved in [5] for arbitrary parameters n and q.  

The standard usage of multivariate transformation E(n, q) with two affine transformation T1 and T2 

in the form T1 E(n, q)T2 allow us to improve drastically the mixing properties of the cipher. 
Noteworthy that in the implemented  case of E(n, 127) encryption the change of single characters of 

the plaintext leads to the change of 48-52 percents of characters of corresponding ciphertexts. The 

experiment with special linear transformations T1 and T2 was described in [6]. To preserve linear time 

O(n) of the encryption we have to select sparce transformations, i. e. those with O(n) nonzero entries 
of corresponding matrices. Special sparce transformations allow us to improve drastically mixing 



properties of E(n, q) encryption. For selected in [6] cases the single change of a plaintext character 
leads to the change of more than 98 percents of characters of corresponding ciphertext. As it was 

shown in [8ust linguistic] transformation E(n, q) with the password of length less than [(n+5)] has no 

fixed points. This property holds for the case of ciphers of kind T1 E(n, q)(T1 )
-1. 

More general graphs D(n, K) defined over arbitrary commutative ring K can be obtained via simple 
change of Fq

  for K (see [7]). Investigation of dynamical systems corresponding to these graphs 

showed the similarity of general graphs D(n, K) of  the graphs defined for the case of fields (see [8], 

[9] and [10]. If passwords corresponds to tuples of characters from the multiplicative group K* of the 
ring K then different passwords of length <[(n+5)/2] produce distinct ciphertext from the selected 

plaintext. It means that case of arithmetic rings Zm of integers of modulo m is attractive for the 

implementations. 
Noteworthy that the cases of fields Fq, q=2m of characteristic two and rings Z q, q=2m are most 

convenient for implementations because of files in the computer are presented in the form 0, 1-

sequences. 

Recall that the girth of a graph is the length of its minimal cycle. The connected components 
CD(n, q), n=2, 3,… of algebraic graphs D(n, q), q>1 form a family of tree approximations, i. e well 

defined projective limit of them is an infinite q-regular tree. Graphs D(n, q) are edge transitive. So, 

their connected components are isomorphic. The system of quadratic equations which defines 
CD(n,q) were presented in [11]. The union of these equations gives an algebraic description of q-

regular tree. Existence of such description is very important for Computer Science because a q-regular 

tree is the deterministic part of branching process. 
Noteworthy that the plaintext and the ciphertext of E(n, q) encryption are located in the same 

connected component of D(n, q). Graphs CD(n, q) have a natural analogue CD(n, K) defined over 

arbitrary commutative ring K with at least two elements, CD(n, K) is an induced subgraph of D(n, K) 

(see [7]). The description of CD(n, K) in terms of the system of recurrent quadratic equations is given 
in [7] together with the description of CD(n, K) based encryption CE(n, K). 

It works with the space of plaintexts Km, m=3/4n +c where c, c<3 is some nonnegative integer 

constant. It is important that group of transformations of CE(n,K) corresponding to various passwords 
acts transitively on the space of plaintexts while the group generated by various transformations of 

kind E(n, K) is intransitive. It leads to better mixing properties of CE(n, K) in comparison with those 

of E(n, K). In fact we have to use T1CE(n, K)(T1)
-1 where T1 is a special sparce transformation of 

AGLm(K).  
Another q- regular tree approximation A(n, q), q=2,3, …were defined in [43]. It has some 

advantages in comparison with graphs CD(n, q). For instance the graphs are defined by simple 

homogeneous equation with two linear and one quadratic monomial terms. Finite field Fq can be 
substituted by general commutative ring K and graphs A(n, K) can be obtained this way (see [43] or  

[10]). The girth g(A(n, q)) of the graphs A(n, q)=A(n, Fq) can be bounded from below via inequality 

g(A(n, q))≥[(n+2)/2] [44]. The computer simulation support the conjecture that A(n, Zm) based 
encryption with passwords from ((Zm)*) t , m>2, t is an even parameter <[(n+2)/4 is such that 

different passwords produce distinct ciphertext from the selected plaintext. We will use notation 

AE(n, K) for the A(n, K) based ciphers. 

To summarise written  above we discuss some  properties of three graph based steam ciphers E(n, 
K), CE(n, K) and AE(n, K) defined in the case K=Fq, q>m and K=Zm, m>2. All of them can be used 

for Information Systems protection. For practical implementation case of large finite fields and 

arithmetic rings Zt, t=2m is preferable. 
The families of graphs D(n, K), A(n, K) defined over arbitrary commutative ring K are bipartite 

graphs of type (1, 1, n-1) with partition sets which are two copies of  Kn  (see [12]) , i.e. graphs with 

the incidence I=I(K)= nI(K) between points (x1, x2,…, xn) and lines [y1, y2,…, yn] given by the system 
of equations a2x2-b2y2= f2(x1, y1), a3x3-b3y3= f2(x1, x2  , y1, y2 ),…, anxn-bnyn= f2(x1, x2  ,…, xn-1, y1, y2  ,…, yn-1 

) where parameters a2, a3  ,…, an-1 and b2, b3  ,…, bn-1 are taken from the multiplicative group K* of  the 

commutative ring K. Parameters ρ((x1, x2,…, xn))=x1 and ρ([y1, y2,…, yn])=y1 serve as colours of the 

point and the line. The following linguistic property holds. Each vertex of the graph has a unique 
neighbour of the chosen colour. 

Graph CD(n,K) after the elimination of computed recurrently parameters also can be written as 

linguistic graphs of type (1, 1, m-1) where m=[3/4n]+c. 



In fact the architecture require a partition of information into blocks of the same size. So, 
parameters n and m equals to some selected constant. the length of the password is another even 

constant which has an impact on the speed of encryption. Other option to increase speed of execution 

is the increase the cardinality of the ground field or ring. Let us consider the general scheme of 

creating the cipher based on the family of linguistic graphs nI(K), n=2, 3, … 
Noteworthy that we can expand defined above I(K) to  the infinite linguistic graph I(K[x1, x2,…, 

xn]) defined over the ring K[x1, x2,…, xn] of all multivariate polynomials with coefficients from K and 

the variables xi, i=1,2,…, n. So points and lines of this graph are X=(X1(x1, x2,…, xn), X2(x1, x2,…, 
xn),…, Xn(x1, x2,…, xn) and Y=[Y1(x1, x2,…, xn), Y2(x1, x2,…, xn),…, Yn(x1, x2,…, xn)]. The incidence of 

this bipartite graph is given by equations a2X2-b2Y2= f2(X1, Y1), a3X3-b3Y3= f2(X1, X2  , Y1, Y2 ),…, anXn-

bnYn= f2(X1, X2  ,…, Xn-1, Y1, Y2  ,…, Yn-1 ), where parameters a2, a3  ,…, an-1, b2, b3  ,…, bn-1 and polynomials fi, 
i=2, 3,…, n with coefficients from K are taken from the equations in the definition of the linguistic 

graph I(K). 

We define the polynomial map F from Kn to K n via the following scheme (see [23]). Take the 

special point X=(x1, x2,…, xn) of I(K[x1, x2,…xn]) and consider the list of colours g1(x1), g2(x1), …, 
gt(x1). We compute the path v0Iv1Iv2…Ivt where v0=X and vi+1 is the neighbour of vi with the colour 

gi(x1), i=1,2, …, t and I=I(K[x1, x2,…, xn]). Then the destination point vt of this path can be written as 

(gt(x1), F2(x1, x2), …, Fn(x1, x2,…, xn)). The map F is given by the rule x1→gt(x1), x2→F(x1, x2),…, 
xn→F(x1, x2,…, xn). It is easy to see that F=F(g1, g2,…, gt) is a bijective map if and only if the 

equations of kind gt(x1)=b have unique solutions for unknown x1 for each b from K. 

So family of linguistic graphs nI(K), n=2, 3,… together with family of affine transformations 
TnϵAGLn(K) can be used as a cipher with the space of plaintexts Kn and the password g1(x), g2(x),…, 

gt(x) and the encryption map Tn(F(g1, g2,…, gt)(Tn)
-1 

Correspondents Alice and Bob share the password given by g1, g2,…, gt and the sequence of 

transformations Tn , n=2, 3,… We assume that inverse maps (Tn)
-1  are computed and presented 

explicitly. For the encryption of potentially infinite plaintext (p)=(p1, p2,…, pn) they will use 

transformation TnF(g1, g2,…, gt)(Tn)
-1. One of them creates the plaintext (p) and computes the 

ciphertext Tn(F(g1, g2,…, gt)(Tn)
-1(p)=c recurrently. The procedure is the sequence of the following 

steps. 

S1. He/she computes (Tn)
-1(p1, p2,…, pn) =(r(1), r(2),…, r(n))=(r) 

S2. He/she computes   a(1)=g1(r1),  a(2)=g2(r1),…, a(t)=g(r1) 

S3. Let Na(x1, x2,…, xn) be the operator of taking the neighbour of point (x1, x2,…, xn) with the 
colour a in the linguistic graph nI(K)  and  aN(y1, y2,…, yn) be an operator of taking the neighbour of 

line [y1, y2,…, yn]   with the colour a. He/she executes the following  operation. Computation of 

v1=Na(1)(r), v2=
 a(2)N(v1), v3=Na(3)(v2), v4=

a(4)N(v3),…, vt-1= Na(t-1)(vt-2), vt=
a(t)N(vt-1)=u=(u1, u2,…, un) 

S4 He/she computes ciphertext as T(u)=c 

DECRYPTION PROCEDURE. 

Assume that one of correspondents received the ciphertext c. He/she decrypts via the following 
steps.  

D1. Computation of u as (Tn)
-1(c)=u and getting the solution x=r(1) of equation g(x)=u1 

D2.  Computation of parameters a(1)=g1(r(1)), a(2)=g2(r(1)), …,a(t-1)=gt-1(r(1)) and the 

completion of the recurrent procedure vt-1=Na(t-1)(u), vt-2=
 a(t-2)N(vt-1), vt-3=Na(t-3)(vt-2), vt-4=

a(4)N(vt-3),…, 
v1= Na(1)(vt-2), 

r(1)N(v4t-1)=r. 

D3.  Computation of the plaintext (p) as  T(r). 

OBFUSCATION OF THE ALGORITHM. 
Let us consider the colour jump operator Ja  which transforms point (p1, p2,…, pn) of the graph I(K) 

to the point (a, p2, p3,…, pn). 

We can change the encryption map TnF(g1, g2,…, gt)(Tn)
-1 for the TnF(g1, g2,…, gt)Jg(Tn)

-, where Jg 
is a colour jump operator acting on points of I(K[x1, x2,…xn] with the colour g(x1)ϵK(x1) such that the 

equation of kind g(x1)=b has a unique solution for each parameter b from K. 

After this change assumption the bijection of gt on K is immaterial. Encryption procedure requires  

computation of (Tn)
-1(p1, p2,…, pn) =(r(1), r(2),…, r(n))=(r), the computation of u accordingly step S2. 

the computation of Jg(u)=u’ and application of affine transformation Tn to the tuple u’. 

For the decryption of ciphertext c the user has to compute u’=(u’1, u’2,…, u’n) as (Tn)
-1(c ), solve 

for x the equation g(x)=u’1, use the solution x=r(1) of this equation for the computation of 



a(1)=g1(r(1)), a(2)=g2(r(1)),…, a(t)=gt(r(1)), compute Ja(t)(u’)=(u)=(u1, u2,…, un) in the graph I(K) 
and execute procedures D3 and D4 to get the original plaintext. 

3. On families of algebraic graphs of large girth 

3.1 General remarks 
Girth and diameter of a graph are the minimal length of its cycle and the maximal distance of the 

graph. The constructions of finite or infinite graphs with prescribed girth and diameter is an important 

and difficult task of the Graph Theory. 
Noteworthy that the incidence of classical projective geometry over various fields is a graph of 

girth 6 and diameter 3. J. Tits defined generalised m-gons as bipartite graphs of girth 2m and diameter 

m. Feit and Higman proved that finite generalised m-gons with bi-degrees >2 exist only in the cases of 
m=3, 4, 6, 8 and 12. Geometries of finite simple groups of rank 2 are natural examples of generalised 

m-gons for m=3,4,6, 8. Classification of flag transitive generalised m-gons of Moufang type were 

obtained by J. Tits and R.Weiss. 

Infinite families of graphs of large girth of bounded degree are important objects of Extremal 
Graph Theory which were introduced by P. Erdős’. He proved the existence of such families via his 

well-known probabilistic method. Nowadays few explicit constructions of such families are known. 

The concept of infinite family of small world graphs of bounded degree turns out to be very important 
for various applications of graph theory. 

Noteworthy that the only one family of small world graphs of large girth is known. This is the 

family X(p, q) of Ramanujan graphs introduced by Gregory Margulis [13] and investigated via the 
computation of  their girth, diameter and the second largest eigenvalue by A. Lubotsky,  R.Phillips 

and P.Sarnak [14]. 

We have to admit that studies of families of graphs Γ i with well defined projective limit Γ , which 

is isomorphic to infinite tree, is well motivated. 
We refer to such family as tree approximation. There is only one approximation by finite graphs 

which is a family of large girth. This is the mentioned above family of CD(n, q) defined by F. 

Lazebnik, V. Ustimenko and A.Woldar [3]. 
The question whether or not CD(n, q) form a family of small world graphs has been still open 

since 1995. 

In 2013 the tree approximation by finite graphs A(n,q) which is a family of small world graphs was 
presented (see [43]).  

One of the main statements of this paper is A(n, q) where n=2, 3,.... is a family of large girth. 

We generalise these results in terms of the theory of algebraic graphs defined over arbitrary field 

and consider properties and applications of above mentioned graphs. 

3.2. On graphs D(n, q), their properties and generalisations 
All graphs we consider are simple, i. e. undirected without loops and multiple edges. Let V(Γ ) and 

E(Γ ) denote the set of vertices and the set of edges of Γ , respectively. The parameter |V(Γ )| is called 

the order of Γ, and |E(G)| is called the size of Γ. A path in Γ is called simple if all its vertices are 

distinct. When it is convenient we shall identify Γ with the corresponding antireflexive binary relation 
on V(Γ ), i.e. E(Γ ) is a subset of V(Γ )×V(Γ ). The length of a path is a number of its edges. The girth 

of a graph Γ, denoted by g=g(Γ ), is the length of the shortest cycle in Γ . Let k≥3 and g≥3 be  integers. 

The distance between vertices v and u of the graph Γ  is a minimal length of the path between them. 
The diameter of the graph is maximal distance between its vertices. 

Graph is connected if its diameter is finite. Graph is k-regular if each vertex of the graph is 

incident exactly to k other vertexes. A tree is a connected graph which does not contain cycles 

1. An infinite family of simple regular graphs Γi  of constant degree k and order vi  such that diam (Γi ) 
≤ c logk-1(vi), where c is the independent of i constant and diam (Γi ) is diameter of Γi  , is called a 

family of small world graphs. 

2. Recall that infinite families of simple regular graphs Γi  of constant degree k and order vi  such that 

g(Γi ) ≥ c logk-1(vi),where c is the independent of i constant and  g(Γi ) is a girth of Γi  are called 



families of graphs of large girth. Tree (q-regular simple graph without cycles) in terms of algebraic 

geometry over finite field Fq.  

3. Projective limit of graphs Γi  is well defined and coincides with q-regulat tree Tq. 

We refer to family of graphs Γi satisfying condition (iii) as tree approximation. We known 
example of the family satisfying conditions 1, 2 and 3. 

The family X(p, q) formed Cayley graphs for PSL2(p), where p and q are primes, had been defined 

by G. Margulis [13] and investigated by A. Lubotzky, Sarnak and Phillips [14]. As it is easy to see the 

projective limit of X(p, q) does not exist. 

3. 3. On homogeneous  algebraic graphs of large girth 
Let F be a field. Recall that a projective space over F is a set of elements constructed from a vector 

space over F such that a distinct element of the projective space consists of all non-zero vectors which 

are equal up to a multiplication by a non-zero scalar. Its subset is called a quasiprojective variety if it 

is the set of all solutions of some system of homogeneous polynomial equations and inequalities.  
An algebraic graph φ over F consists of two things: the vertex set Q being a quasiprojective variety 

over F of nonzero dimension and the edge set being a quasiprojective variety φ in Q × Q such that (x, 

x) is not element of φ for each x ∈ Q and xφy implies yφx (xφy means (x, y) ∈ φ). The graph φ is 

homogeneous (or M-homogeneous) if for each vertex v ∈ Q the set {x | vφx} is isomorphic to some 

quasiprojective variety M over F of nonzero dimension. We further assume that M contains at least 3 

elements. 

Theorem [15]. Let Γ be homogeneous algebraic graph over a field F of girth g such that the 
dimension of neighborhood for each vertex is N, N ≥ 1. Then [(g − 1)/2] ≤ dim(V)/N. 

The following corollary is an analog of Even Circuit Theorem  by Erdős’ for finite simple graphs. 

Corollary. Let Γ be a homogeneous graph over a field F and E(Γ) be a variety of its edges. Then 
dim(E(Γ)) ≤ dimV(Γ)(1 + [(g − 1)/2] -1 . 

We refer to a family of homogeneous algebraic graphs φn for which the dimension of 

neighborhood for each vertex is independent constant N,  N≥ 1 as a family of large girth if girth of 

each graph φn is bounded from below by linear function αn +β  defined by constants α and β . 
We refer to a homogeneous algebraic graph as algebraic forest if it does not contain cycles. Their 

term algebraic tree stands for the connected algebraic forest. 

We say that family of homogeneous algebraic graphs φn is a forest (tree) approximation if 
projective limit of φn  is an algebraic forest (tree). 

3. 4. Graphs D(n,K). 
Graphs  D(n,q) which defines projective limit D(q) with points (p)=(p01, p11, p12 , p21, p22, p'22 , …, 

p’ii, pi i+1, pi+1,i   , p+i+1,i +1  … ), lines [l]=[ l10, l11, l12 , l21, l22, l'22 , …, l’ii, li i+1, li+1,i   , l+i+1,i +1  … ] and 

incidence relation given by equations  
lii-pii=l10 pi-1,i ;     

l’ii – p’ii = li,i-1 p01; 

li,i+1 – p i,i+1 =lii p01 ; 
l i+1i - p i+1,i = l10p’ii . 

This four relations are defined for i≥1, (p’11= p11, l’11= l11). 

Remark. You can see that indexes of vectors correspond to coordinates of positive roots of root 

system A1 with a wave. 
Historically graph D(q) is not the first example of description of q-regular forest in terms of 

Algebraic Geometry. Geometries of buildings (see [16] and further references) corresponding to 

extended Dynkin diagram A1 as incidence structures are q+1-regular trees or q+1-regular forests. As a 
result we get a description of a tree in group theoretical terms. 

In [17] it was noticed that the  restriction of this incidence relation on orbits of Borel subgroup B- 

acting on maximal parabolic subgroups  are q-regular bipartite graphs. So we get a description of a q-

regular tree in terms of positive roots of A1 with a wave. 
In [2] authors proved that D(n,q) defined via first n-1equations of D(q) form a family of graphs of 

large girth. The general  point and line of these graphs are projections of (p) and [l] onto the tuples of 

their first n coordinates. 



Unexpectedly it was discovered that these graphs are disconnected if n≥6. So forest D(q) contains 
infinitely many trees and the diameter is an infinity. F. Lazebnik conjectured that connected 

components of graphs D(n, q), n =3,4, … form a family of small world graphs. This conjecture is still 

open. 

In 1994 it was found out how to describe connected components CD(n, q) of graphs D(n, q) in 
terms of equations (see [11], [3]). In the case of families  of graphs of large girth we would like to 

have '' speed of growth'' c of the girth ''as large as it is possible''. P. Erdos' proved the existence of 

such a family with arbitrary large but bounded degree k with c=1/4 by his  probabilistic method. 
In the case of families X(p,q) and CD(n,q) the constant c is 4/3. In the case of A(n,q) we just get 

inequality 1≤ c<2. So exact computation of the girth is the area of the future research. There are 

essential differences between family of graphs X(p, q) and tree approximations. Recall that the 
projective limit of X(p, q) does not exist. 

Families X(p,q), CD(n,q) can be used for the constructions of LDPC codes for noise protection in 

satellite communications. D. MacKay and M. Postol [19] proved that CD(n, q) based LDPC codes 

have better properties than those from  X(p,q) for the constructions of LDPC codes. In [18] it was 
proved that A(n,q) based LDPC codes even better than those from CD(n,q). 

Cayley nature of X(p,q) does not allow to use these graphs in multivariate cryptography. Various 

applications of graphs D(n,q) and CD(n,q) have been known since 1998. 

3. 5. On the equations for graphs CD(n, K) 
Let K stand for an arbitrary commutative ring. Noteworthy that graphs D(n, K) are defined over 

arbitrary commutative ring K have been already presented.  

To facilitate notation in the future results on ”connectivity invariants” of D(n, K), it will be 

convenient for us to define p-1,0 = l0,-1 = p1,0 = l0,1= 0, p0,0= l00= -1, p’0,0 = l’0,0 = -1, p1,1 = p’1,1, l1,1 = l’1,1 
and to assume that our equations are defined for i ≥ 0. 

Graphs CD(k,K) with k ≥ 6 were introduced in [10], [11] for as induced subgraphs of D(k,K) with 

vertices u satisfying special equations a2(u)=0, a3(u)=0,…, at(u)=0, t=[(k+2)/4], where  u = (uα, u11, 

u12, u21, …, ur,r , u’r,r , ut t+1 u r,r +1, u r+1,r , …), 2 ≤r ≤t, α ϵ{ (1, 0), (0,1)} is a vertex of D(k, K) and 
ar=ar(u)=Σi=0,r(u ii u' r-i, r-i-u i,i+1 u r-i,r-i-1) for every r from the interval [2,t] for every r from the interval 

[2,t]. 

We set a=a(u)=(a2, a3, …, at) and assume that D(k, K)=CD(k,K) if k=2,3,4,5. As it was proven in 
[11] graphs D(n, K) are edge transitive. So their connected components are isomorphic graphs. Let 
vCD(k,K) be a solution set of system of equations a(u)=(v2,v3,…,vt)=v for certain v ϵKt-1. It is proven 

that each vCD(k,K) is the disjoint union of some connected components of graph D(n,K). 
It is easy to see that sets of vertices of vCD(k,K), v ϵKt-1 form a partitions of the vertex set of 

D(n,K). We consider more general graphs vCD_J(k, K) defined via subset J={i(1),i(2),…, i(s)}, 1≤s≤t-

1 of {2, 3,…, t} and tuple (vi(1), vi(2), …, vi(s)) formed by vertices uϵKn such that ai(1)(u)=vi(1), 

ai(2)(u)=vi(2),…, ai(s)(u)=vi(s). 
We refer to vCDJ(k, K) as J-component of D(n, K). We assume that equations ai(1)=vi(1), 

ai(2)=vi(2),…,ai(s)=vi(s) define J-component vCDJ(K) of D(K). Noteworthy that in the case of finite 

commutative ring vCDJ(K) is a regular forest. 
The concept of quasiprojective variety over commutative ring K can be introduced via simple 

substitution of K instead of field F. It leads to concepts of homogeneous algebraic graphs over K, 

forest and tree approximations and families of graphs of large girth over K. It was proven that for the 
case of commutative ring K with unity of odd characteristic graphs CD(n,K) are connected (see [20]). 

So graph CD(n,q)=CD(n, Fq) for odd q is a connected component of D(n,q). 

Theorem [11]. For each commutative integrity ring K the families of graphs D(n, K), 

n=2,3,…,n=2,3,.. are forest approximations and families of graphs of large girth.  

4. On the description of selected algorithms based on algebraic graphs of 
large girth 



To achieve linear speed O(n) of the encryption described in Section 1 functions gi, i=1,2,.., t are 
selected in the form x1+c(i), c(i)ϵK and the parameter t will be selected within the interval [2, 

[(n+5)/2]) when I(K)=D(n, K) or I(K)=CD(n, K). 

Additionally we take parameters b(1), b(2), …,b(k) , a(1), a(2),...,a(k), k=t/2 from K* to construct 

c(i)  recurrently via the following rules c(1)=b(1), c(2)=a(1), c(i)=c(i-2)+b(i) if i, i≥3 is odd n and 
c(i)=c(i-2)=a(i) if i, i≥4 is even. 

We refer to the tuple (b(1), b(2),…, b(k), a(1), a(2),…,a(k)) as active password and affine 

transformation T as passive password.  
Our choice insures that in the case of constant passive password the single change of a single 

character of active password leads to a change of the ciphertext produced from the selected plaintext. 

We choose an affine transformation T in the form of linear map given by the following rule 
T(x1)=x1+m(1)x2+…+m(n-1)xn-1 where m(i), i=1,2,…, n-1 are elements of K*. T(xi)=xi for 

i=2,3,…, n. So T-1 (x1)=x1-m(1)x2-m(2)x3-…-m(n-1)xn. T
-1 (xi)=xi for i=2,3,…, n.  

Recall that explicit description of linguistic graphs D(n, K) is given in the previous section and 

general encryption algorithm is described in section 2. So, ciphers T E(n,K) T-1 and  have full 
description. In the case of graph CD(n, K) we will use in fact the induced subgraph hCD(n, K), h=(h2, 

h3,…, ht), t=[(n+2)/4]  of D(n, K) of all points and lines u=(uα, u11, u12, u21, …, ur,r , u’r,r , ut t+1 u r,r +1, u 

r+1,r , …) satisfying conditions ai(u)=hi. 
Linguistic graph  hCD(n, K) can be thought as bipartite graph with points (p)=(p01, p11, p12 , p21, …, 

, pi i+1, pi+1,i   , p+i+1,i +1  … ), i=2,3,…, t-1 and lines [l]=[ l10, l11, l12 , l21, l22,  …, li i+1, li+1,i   , l+i+1,i +1  … 

], i=2,3,…, t-1 of length n-t. 
Their incidence is given by the following system of equations 

lii-pii=l10 pi-1,i ;     

li,i+1 – p i,i+1 =lii p01 ; 

l i+1i - p i+1,i = l10p’ii . 
where p’ 22  is defined by the equation a2(p 01 , p 11 , p 12,  p 21, p 22, p’22 )=h2 and can be written as 

p’22 = a2(p 01 , p 11 , p 12,  p 21, p 22, p’22 )-h1 +p’22 = b2(p 01 , p 11 , p 12,  p 21, p 22), other parameters are 

p’33= a 3(p 01 , p 11 , p 12,  p 21, p 22, p’22 , p 2,3,  p 3,2, p3,3 p’3,3)-h3 +p’33 = b3(p 01 , p 11 , p 12,  p 21, p 22, p’22, 
p 2,3,  p 3, 2, p , 33), …, p’tt=a_t(p01, p11, p12 , p21, p22, p'22 , …, p’t-1,t-1, pt-1,  t, p t, t-1  , pt, t  , p’t, t   )- ht +p’t,t 

=bt(p01, p11, p12 , p21, p22, p'22 , …, p’t-1,t-1, pt-1,  t, p t, t-1  , pt, t  ). 

The computation of symbolic expressions p’i,i recurrently and their explicit substitution in the 

system of equations give us the equations of the linguistic graph.  
We assume that corresponding cipher has the space of plaintexts Kn-t. We use active passwords 

(b(1), b(2),…, b(k), a(1), a(2),…,a(k)) an  linear transformations T of Kn-t constructed via described 

above rules. We assume that parameters h2, h3,…,ht will be considered  as part of the active password 
and denote the cipher as TCE(n, K)T-1 TnF(g1, g2,…, gt)Jg(Tn)

-. 

We will use presented in Section 2 obfuscation scheme for each  cipher TE(n, K)T-1 and TCE(n, 

K)T-1 in the case K=Fq, q>2. We use special disturbance function g of Ig selected as x→xe+b where 
bϵFq,  eϵZd, d=q-1 and (e, d)=1. So, the notations   DE(n, K) =TE(n, K)IgT

-1  and DC(n,K)=TCE(n, 

K)IgT
-1  will be used for these encryption schemes with the disturbance. 

Algorithms with the encryption maps TE(n, K)T-1 independently on the choice of active and 

passive passwords have multivariate encryption and decryption  functions of degree 3. In [39] the 
linearisations attacks on these ciphers with the interception of O(n3) pairs plaintext/cipheretext are 

presented. They can be executed in polynomial time O(n10). 

The ciphers DE(n, K) use cubical encryption maps as well but the usage of disturbance map D: 
x→xe lead to the increase of the degree r of inverse maps. Parameter r can be evaluated from below 

by the  polynomial degree of transformation D-1 acting on the elements of multiplicative group K*. 

So, if K=Fq, q=232 then the order of polynomial decryption map is at least 231. It justifies that direct 
linearisation attacks are not feasible. 

Case TCE(n, K)T-1 is principally different. As it follows from the results of  [40] (ust 

wroblevskska) the encryption function corresponding to selected active password has degree 

[(n+2)/4]+2. So the generation of standard form for the encryption function can not be done in 
polynomial time. 



So the directed linearisation attacks are theoretically impossible. Principle difference of DC(n, K) 
and TCE(n, K)T-1 is the fact that the usage of disturbance implies the fact that the degree of inverse 

function is essentially higher than those for encryption function. 

We can use induced graphs vCDJ(k, K) of graphs D(n, K)  which are J-components of them where 

J=J(n) ={i(1), i(2), …, i(t(n))} is the subset of {2, 3,…, [(n+2)/4]}=M(n) and tuples (vi(1), vi(2),…, vj(t(n)) 
are elements of Kt(n). 

Similarly to the case of CD(n, K) when J(n)=M(n) we can find the equations for vCDJ(n, K) via the 

elimination of special symbolic coordinates  of general vertex <x>= <x1, x1,1 , x12, x2,1, x2,2 , x2,2,  x2,3, 
x32, x3,3, x’33 ,…, xi,i, xi,i+1, xi+1,i+1, x’i+1,i+1, …>,  3 ≤ i ≤[(n+2)/4-1] (point or line) of D(n, K) given by 

the list x’i(k),i(k), k=2,3,…, t(n). The variable x’i(k, i(k)  can be found from the equation ai(k)(<x>)=vi(k).  

The substitution of symbolic expressions of x’i(k), i(k) into the incidence conditions of D(n, K) gives us 
the linguistic interpretation of vCDJ(n, K). This bipartite graph has the sets points and lines isomorphic 

to the affine space Kl where l=n-t(n).  

We associate with the family of graphs vCDJ(n, K) the sequence of encryption maps obtained by 

the following rules. We assume that symbolic vertex <x>=(x) from Kn-t(n) is a point and the graph is 
given in its linguistic interpretation. Let us rename the indexes of points and lines of vCDJ(k, K) by 

1,2,…, n-k.  So x=(x1, , x2,…, xn-t(n)). 

The nonlinear graph N based transformation is the following one. 
We select parameter k and form to tuples ka=(ᾳ(1), a(2),…, a(k)) and kb=(β(1), β(2),…, β(k)) with 

the coordinates from the multiplicative group  K* of the commutative ring K. 

Let ᾳN(u) be the operator of taking the neighbour of u=(u1, u2,…, un-t) from the graph vCDJ(k, K) 
with the colour of u1+ᾳ. We consider the sequence  1u= β(1)N(x), 2u= ᾳ(1)N(1u),  3u= β(2)N(2u), 4u= 

ᾳ(2)N(3u), …,2k-1u= β(k)N(2k-2u), 2ku= ᾳ(k)N(2k-1u)=(w1, w2,…,wn-t). We set N(x1, x2,…, xn-t)=(w1, w2,…, wn-

t).  

We also will use the obfuscation gN((x1, x2,…, xn-t)=(g(x1), w2,…, wn-t), where g(x) is selected 
bijective polynomial  function on K of degree at most t(n)+2.  

Let us investigate the multivariate nature of the map N. We may assume that coordinates of a 

general point (x) are variables x1, x2,…, xn-t. We consider the multivariate ring K[ x1, x2,…, xn-t ] and 
the graph vCDJ(K[x1, x2,…, xn-t ]) with points and lines of kind <g1, g2,…, gn-t>, giϵ K[x1, x2,…, xn-t ]. 

We already select parameter k and form to tuples ka=(ᾳ(1), a(2),…, a(k)) and kb=(β(1), β(2),…, 

β(k)) with the coordinates from the multiplicative group  K* of the commutative ring K. 

We consider the walk in the graph with the starting point  u0=(x), u1, u2,…., u2k where colours of 
u1=x1+ β(1), u2=x1+ ᾳ(1),  ui=ui-2+ β(i) , i=3, 5,…, 2k-1, ui=ui-2+  ᾳ(i)), i=4, 6,…, 2k.   

Let u2k=(x1+ᾳ(1)+ ᾳ(2)+…+ ᾳ(k)), F2(x1, x2,…, xn-t),  F3(x1, x2,…, xn-t),   …, Fn-t(x1, x2,…, xn-t).   So 

we may treat N as multivariate transformation of Kn-t to itself given by the rule x1→ x1+ᾳ(1)+ 
ᾳ(2)+…+ ᾳ(k), x2→ F2(x1, x2,…, xn-t), x3→F3(x1, x2,…, xn-t),…, xn-t→ Fn-t(x1, x2,…, xn-t). 

As it follows from [40 Ust, Wrob] the maximal degree of Fi is t(n)+2.  it is clear that the degree of  

obfuscated map gN is also t(n)+2. If g has degree d, d>2 and order r then  g-1 has degree dr-1 and the 
degree of gN can be evaluated from below as dr-1(t(n)+2). 

As in the cases of ciphers based on graphs D(n, K) and CD(n, K) the encryption map will be 

conjugated with the special linear transformation T given by the following rule. 

T(x1)=x1+m(1)x2+…+m(n-t-1)xn-t-1 where m(i), i=1,2,…, n-1 are elements of K*, .T(xi)=xi for 
i=2,3,…, n.  

We denoted described below cipher as kED1(n-t, K). The map TgNT-1 has active password (ᾳ(1), 

a(2),…, a(k), β(1), β(2),…, β(k)), vi(1), vi(2),…, vj(t(n)). 
Parameters  m(1), m(2)…, m(n-t-1) together with J={i(1), i(2),…, i((t(n)) form the passive 

password. We assume that constants k and t(n)=t can be agreed by correspondents via an open 

channel. Under described above assumptions cipher has a linear speed v(n) of size O(n). The slope of 
the v(n) is defined by the value of weight parameter w=i(1)+i(2)+…+i(m). 

The following important property holds. The change of the active password lead to the change of 

the ciphertext for the selected plaintext. It means that brut force attack on the cipher requires p2kqt 

elementary operations where p is the order of K* and q is the size of the commutative ring K.  

The implemented case 

For the first two implementation  we  select  the cases of ciphers kEDt(m, K),m=n-t     with K= F256,  

g of kind g= x2+b and t=128 with weights w=213 and 216. In both cases the degree of encryption map 



will be at least 130 the degree of the encryption map will be bounded below by 130∙128.  So the 
linearisation  attacks by adversary are unfeasible. The bruit forth attack require (215)∙255k, where k=2l 

is the chosen length of the walk in the graph. 

CRYPTALL 6 software is written in C++ programming language and therefore it is portable and 

runs in many platforms such as Unix/Window. The context diagram is depicted in Fig. 1. The 
interface is friendly. It allows users to enter active and passive password of selected length. The 

program is supported by key exchange protocol based on Eulerian transformations of F*256 (see [21] ). 

It allows the elaboration of the tuple of nonzero field elements of length k together with the tuple of 
arbitrary field elements of length 128 to form both passwords. 

 

 
Figure. 1 Context Diagram of CRYPTALL 6 

 

Experimental Measurements To evaluate the performance of our algorithm, we use with different 
size of files. We denote by t (k, L) the time (in millisecond) that is needed to encrypt or decrypt 

(because of symmetry). The file size is in kilobytes for passwords of length L. Then the value of t(k, 

L) can be represented by the following matrices (Fig. 2 and Fig 3). 
 

L\k 3000 4000 5000 6000 

4 1388 1864 2132.25 2575 

8 2625.75 3641.5 4192.25 5039.25 

12 3728.5 4988.25 6146 7350 

16 4967 6592.5 8103.5 9648.25 

20 6231.25 8231.5 10082.25 11989.75 

 



 
Figure 2 Run time for CRYPTALL 6 System 

 
 

L\k 3000 4000 5000 6000 

4 1796.25 2412.25 2759.25 3332.5 

8 3398 4714 5425.25 6521.25 

12 4825.25 6455.25 7953.5 9511.75 

16 6427.75 8531.5 10486.75 12486 

20 8064 10652.5 13047.75 15516 

 

 

 
 

Figure 3 Run time for CRYPTALL 6 System 
 

In both cases algorithms  have nice  mixing properties. change of single character lead to the 

change at leas 98 percents of the characters in the ciphertext. 



5. Conclusion 

The main theoretical result of the paper is explicit construction of the family of multivariate map 

of affine maps Fn based on the graphs CD(n, K) with the trapdoor accelerator of linear degree cn , 

c=3/4 acting on affine space Kn defined over arbitrary commutative ring K with at least 3 elements. 
Corresponding cipher has execution speed of kind ¼ n2+O(n) which is proportional to the length of 

active password of size O(1). The decryption procedure takes the same time with the encryption 

process.  
The disadvantage of Fn in the comparison with the D(n, K) based cipher is essentially lower speed 

of encryption,  O(n2) instead of  O(n). So the usage of  Fn will drastically improve the security level of 

the encryption  but the speed  of processing is essentially slower than in the case of the usage of 

graphs D(n, K). 
Noteworthy that speed of processing is very important parameter. That is why we suggest usage of 

flexible ciphers kEDt(m, K),m=n-t where t is the selected constant. All of them have a linear speed of 

execution. Case t=0 corresponds to D(n, K) based cipher. Increasing of parameter t leads to the 
increase of resistance of cipher against linearisation attacks. 

So correspondents can govern the security level within the family of kEDt(m, K),m=n-t     ciphers.  

The idea to use connectivity invariants of graphs D(n, K) was formulated in [42].   

The implemented  stream ciphers based on algebraic graphs given by equations found practical 
usage in Fiji Islands and Australia (see [1], [42], [46], [55], [56], [57]), Ukraine ([41], [58], [65]), 

Poland ([6], [39], [50], [54],[55], [62]), Brasil ([47]Ustimenko Futorny), Sultanate of Oman ([48], 

[52],[62], [63],) and Canada [59], [60], [64]). In all cases the degree of the inverse map was bounded 
by 3. We suggest new class of ciphers based on algebraic graphs with option to unbounded increase of 

the inverse map by customers. We hope that new algorithms with the  resistant to linearization attacks  

and linear speed of encryption will be successfully used for protection of Information systems and Big 
Data Processing. 
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