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Abstract 
Wide adoption of human-centered digital platforms may lead to novel collaborative business
models promoting sustainable development. The paper proposes a procedure for optimizing
the production process using the digital twin technology and considers a food packaging line
as  an  example.  To  assure  that  implementation  of  digital  twins  contribute  to  growth  of
sustainable  businesses  by  optimizing  use  of  raw  materials  and  energy,  the  modeling  of
production cycle is to be done with focus on the essential production data and human-friendly
information representation. 
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1. Introduction

Environmental hazards and pressing societal risks make it vital to apply every effort pursuing the
global  development  goals  to  ensure  sustainability  of  production.  Current  stage  of  industrial
development is known as Industry 4.0, with characteristic features being digitization of every sphere,
automation of the manufacturing, omnipresence of the Internet of Things (IoT) devices. This allows
efficient management of the mass production in changing external conditions, reducing production
costs and increasing profits. However, Industry 4.0 fails to address the societal aspects of production
therefore,  conceptually  new  approaches  for  production  systems  design  and  management  were
proposed, known as Industry 5.0. Extensive literature is devoted to the refinement of the principles
and features of Industry 5.0 and its relation to the Society 5.0 concept (see [1, 2] for reviews). For
purposes of this  study  human-centricity of tech innovations (well-being of workers, human
creativity  role,  collaborative  robots)  as  well  as  mass  customization  and  sustainability  of
manufacturing cycles are to be noted as key distinctions of the Industry 5.0 model.

Among many  complex  and  distributed  industries,  food  packaging  stands  out  due  to  its  wide
presence,  variety of product  types and raw material  types used.  Predominantly,  small  or  medium
enterprises  (SMEs),  involved in  food packaging,  can benefit  greatly  from transformation of  their
businesses and such a transformation can be also beneficial for national economies. However, small
enterprises often lack the financing and incentive for upgrading their manufacturing lines and need
external support for the transitioning to a circular economy practices, reducing waste and making the
manufacturing smart and flexible or for optimizing production processes. At the same time, for these
small-scale factories the digital twin [3, 4] approach may show its efficiency providing real-time data
on resource consumption and waste generation for analysis and informed decision-making to optimize
performance and improve sustainability.  Digital twins may become the driving force and an enabler
for smart and sustainable manufacturing.
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2. Smart Manufacturing Optimisation in Food-Packaging
Industry

One characteristic feature of digital twins, which are digital representations of physical elements,
is the high connectivity of production equipment units.  Digital  twins make use of IoT sensors to
monitor production lines in real time [5]. A food-packaging enterprise has been selected as a test-bed
for this research (Figure 1). In the first stage, requirement elicitation has been done and domain-driven
design [6] of the digital twin has been performed for the purpose of optimizing the manufacturing
regimes. The factory already possesses a good level of digitisation, with energy consumption data,
quality  checks  data  and raw material  usage  data  available  for  analysis.  Present  level  of  process
automation can provide energy-efficient and on-time delivery of parts and products. However, there is
no implemented decision-making system supporting fast responses of human operators to fluctuating
market  conditions and  focused  on  reducing  the  energy  consumption  and  raw  material  use
optimization. Improvements of the manufacturing line performance and sustainability were identified
as primary goals in implementation of the industrial digital twin. Development of  the digital twin can
allow  nearly  real-time  and  holistic  assessment  of  the  current  energy  consumption  per  unit  of
production  at  every  stage  of  production  cycle  with  factors  affecting  the  productivity  and energy
consumption  visualized.  This  may  help  the  decision-maker  not  just  to  identify  bottlenecks  in
production but also to simulate effects of changing regimes and take timely measures to mitigate
risks. The nature of the production process, as can be ssen from Figure 1, requires participance of
human  operators  in  different  sections  of  the  manufacturing  line.  Coordinated  actions  of  these
operators need an intermediary digital platform, provided by the  digital twin, to relieve humans of
repetitive procedures control, allow them to focus on the decision making and creativity, let them
promptly access the relevant information and reduce risk of human errors.

(a) (b)

Figure 1. Food packaging producer chosen as a use-case: (a) Manufacturing line
for food packaging; (b) Food packaging device with QR code labeling.

In order to optimize manufacturing line performance we developed a model of material flow.
Data on energy consumption, production, quality and efficiency are indispensable for analysis and
allow smart sensors, meters, and other monitoring devices that will be connected to manufacturing
machinery in order to identify the energy-intensive processes or equipment. The components of a
smart manufacturing line can provide a variety of data summarized in Table 1. Properly performed
data engineering (data collection, storage, and preparation) is a necessary prerequisite for a better
understanding of the data collected [7-9]. 

For smart manufacturing processes and units it is necessary to develop a model that represents
the  current  state  of  the  production  line.  The  digital  twin  platform  can  process  data  on-site  or
broadcast data to cloud services [4, 5] to support decision-making based on mathematical models
characterizing  resource consumption and process output quality and quantity. 



Table 1
Data types, relevant for the industrial data platform in food packaging.

Decision-
making level

Production process
level

Data type

Production data Production process
data

Resource consumption data
Quality checks data

Emission and waste production data
Equipment status

data
Operating mode data

Failures and downtime data
Energy

consumption
data

Grig electricity
consumption data

Consumed power 
Seasonal variations

Renewable power
consumption

Consumed power 
Seasonal variations

Environmental
data

Factory floor data Temperature
Surrounding area

data
Humidity

Air pollution

To  determine  the  most  efficient  and  feasible  solution,  several  production  regimes  can  be
simulated using the digital twin. Digital twin simulates the behavior of the machine in order to predict
potential problems and optimize the manufacturing processes and maintenance but also can trigger
edge-system controls in case of malfunctions. For a specific processing stage, a set of parameters is to
be prioritized in order to have sufficient amount of relevant information.

Figure  2.  Product  lifecycle  stages  controlled  by  the  food  packaging
manufacturer.



By  implementing  a  digital  twin,  it  is  possible  to  ensure  that  consistent  and  accurate  data
obtained from the sensors can enable real-time monitoring and analysis of a manufacturing facility’s
performance and energy consumption to optimize processes for a  more sustainable lifecycle [10-11].

3. Smart  Manufacturing  Optimisation  in  Food-
Packaging Industry

Based on the data obtained from the manufacturing line, a reference matrix would be developed
consisting of the set of minimum parameters needed to mathematically describe each process and its
dependencies, limits and boundary conditions. This would serve as a blueprint for further analysis and
finding areas and methods for energy optimization and control. Target functions built on this dataset
would be defined for each process that would serve as a tool for optimization of the process and
effectively  the  entire  system.  The  optimization  diagram  shown  in  Figure  3  illustrates  a  general
approach that can help solve the optimization problem effectively. The inputs x and the outputs y are
quantitative characteristics of the material and information flows that the production system receives
from external entity and sends respectively to the same or different external entity.

Figure 3. Optimisation diagram for the manufacturing process.

The optimal control signal u* is a solution to an optimization problem to achieve the goals of a
particular smart manufacturing use case. This optimal u* should be obtained according to the method
described in this section (examples of individual use cases are presented elsewhere) to improve the
initial control signal u based on the model process description and standard methods. The peculiarity
of the  proposed approach is  the improvement  of  the  model,  which is  an integral  part  of  solving
optimization problems.

The general optimization problem involves functional relations of various types for a wide range
of  variables,  making  it  very  difficult  to  solve.  The  optimization  recipe  can  be  created  as  a
superposition  of  partial  solutions  for  different  subsystems  and  the  equations  describing  specific
processes only contain variables of that subsubsystem (for discussion on this approach applicability
see [3, 4]). Additionally, this strategy significantly lowers the optimization engine's processing power
needs.  The  optimal  solution  for  the  particular subsystem may also  be  inconsistent  with  the  key
performance  indicators  of  the  entire  system  if  various  partial  optimization  problems  are  self-
contained, which may be the case with distributed manufacturing systems. As a result, no decisions
can be made and no corrective actions can take place until the full optimization solution is discovered
for all systems at once.



Process  state  vector x⃗=(x1 x2⋯xn ) and  control  vector u⃗=(u1u2⋯un ) are  tuned  with  the
measured  perturbations  to  choose  the  model  and  refine  it.  The  optimization  problem  

max∑
i=1

N

F i ( x⃗i ,u⃗ i ) at  conditions x⃗ i=∑
j=1

N

c ij y⃗ j,  y⃗ j=f⃗ i ( x⃗i ,u⃗i ),  for  variable  control  vectors u⃗i,  input

vectors x⃗ i, output vectors y⃗ i related by the matrix c ij for all subsystems.

4. Results and Discussion

In a general case, the fine optimization result is quite difficult to obtain. However, as the equation
for ith subsystem contains only the variables for this subsystem, the decomposition of the problem is
quite straightforward and the overall control vector can be constructed as the cross-product of partial
control vectors for all individual subsystems. The decomposition [12, 13] of the general process onto
the component subprocesses allows to tackle problems of lower dimensionality either ignoring mutual
influences  or  taking  these  into  account  as  perturbations.  Hierarchical  approaches  to  optimisation
problem may be applied for the optimal control of quasistatic processes. With decomposition onto N
partial processes every individual problem is specified by its on equation of state  gi (x i , ui , π i )=0,

i=1,2⋯N . Vectors π i contain relations for the constituent subsystems  and may be approximated as

linear   π i=∑
j=1

N

С ij x j.  Then  the  general  target  function  is  represented  by  the  decomposition

f ( X ,U )=∑
i=1

N

f і (x i ,u i , π i )❑.  The corresponding Lagrange polynomial for ith subsystem has the form 

R (x i , ui , π i , λi , μ i )=∑
i=1

N

f і (xi , ui , π i )+∑
i=1

N

μ i
T (π i−∑

j=1

N

Сij xJ+∑
i=1

N

λi
T gi (x i ,ui , π i )).

(1)

First-order optimality conditions read as 

∂ R
∂x i

=
∂ f i

∂ xi

+λi

∂gi

∂x i

T

−∑
j=1

N

C ij
T μJ=0,

(2)

∂R
∂π i

=
∂ f i

∂π i

+λ i

∂ gi

∂π i

T

+μi=0,
(3)

∂R
∂ui

=
∂ f i

∂ui

+λi

∂gi

∂ui

T

=0,
(4)

∂R
∂ λi

=gi (xi , ui , π i )=0
(5)

∂ R
∂μ i

=π i−∑
j=1

N

C ij
T xJ=0

(6)

and the system of equation (2)-(6) is solved with the corrected parameters iteratively. The iterative
procedure is interrupted when the desired tolerance is reached. This method is suitable for on-line
regime due to the possibility of interruption in arbitrary approximation and the obtained sub-optimal
solution is nevertheless better compared to the previous one. Thus the general optimisation problem
may be reduced to independent partial problems with π i, i=1,2⋯N , containing only the variables
for the partial problems b i, and global variables а, identified by the supervisor. Tuning of the partial
problem variables to the coordinator variables а, and identification of the partial problems is to be
done in such a way that for a certain value a = a* solutions of the partial problems correspond to the
initial state of the global problem.

The hierarchical optimization is performed as a sequence of the following steps: 
a) The initial value a(0)  is chosen and  the iteration counter l = 0 is set. 
b) Independent partial problems are solved to determine the local variable value  b i

l at given a(l). 
Solving these partial problems may be parallelized  in time. 



c) Value a(l+1)  is reset with new b i
l, i=1,2⋯N .

d) If a(l) ≈ a* , the process is interrupted. 
f)  l = l +1, and control is transferred to step (b).

The coordination procedure is the most effectively used for the model in which the number of
relevant variables is greatly reduced by choosing only the most important ones for a defined goal of
the manufacturing transformation, for example, energy consumption and the recycling rate. Consider
X to be the coordinator of the partial subsystems. The state variables relevant for the relations are to
be put into the coordinating vector, other state variables can be inserted only into the partial problem
vectors. This way the Lagrangian R (x i , ui , π i , λi , μ i ) is composed of the partial functions

Ri (a ,bi )=f і (x i ,ui , π i )+μ i
T(π i−∑

j=1

N

С ij xJ+λ i
T g i (x i ,u i , π i )),

(7)

where from the next N partial problems are obtained. For the fixed Х the minimization with respect to

ui , π i is performed with optimality conditions of the first order gi (x i , ui , π i )=0 and π i−∑
j=1

N

Cij
T xJ=0.

One can fulfill the condition  
∂ R
∂x i

=0 by resetting the coordinator variables:

x (l+1)
=x (l )−α( dfdx +λ

d gT

dx
−μC)

( l)

,
(8)

where  α  is  the  chosen  step  magnitude.  This  equation  provides  the  Lagrange  minimization  by
sequential resolution of the above equations with interruption condition |x (l+1) −x (l )|<ε, for the desired
tolerance ε  that guarantees practical problem solvability.

Using production data from the pilot food-packaging facility,  the solution of the partial problem
for  the  most  energy  consuming  and  quality-critical  part,  which  is  the  forming  press,  has  been
attempted to test the proposed methodology. This allowed identifying the optimal maintenance regime
for particular regimes of the production line, determined by the external demand. Optimization has
been done in two input parameters, which are quantity of the raw material (plastic sheet) per hundred
units  of  product  (x1) and energy used by the forming press (x2).  Output parameters for the target
function minimization were the percentage of quality products (y1) and the combined production cost
and energy consumption parameter (y2),  both of which are directly related with the sustainability
goals. Controls were specified as maintenance duty cycle (u1) and seasonality of energy consumption
(u2), which is related to availability of the renewable energy for the manufacturing line. 

Numerical  results  show  that  the  decomposition  allows  to  drastically  reduce  the  problem
dimensionality thus reducing requirements to the processing power of edge devices which would be
able to perform the needed calculations. This way the partial optimization problems with short time
cycle can be assigned to the low-resource edge devices which receive streaming data on product fast
quality checks, which are performed at every production stage as well as data about availability of the
renewable (for example, solar) energy. Only the optimization of long-term regimes of the production
line will be escalated to the high-performance processing units (cloud infrastructure), which will also
reduce the information security risks. 

5. Conclusions

Wide adoption of digital platforms  may lead to  novel collaborative business models promoting
sustainable  development.  A  generic  model  of  product  lifecycle  in  the  packaging  industry  is
considered and the procedure of the production optimisation is  proposed,  which reqiures specific
chouice  of  the  terget  function.  For  the  particular  case  of  food-packaging  manufacture,  the  target
function has been built with the overall goal of reducing energy consumption and optimizing the use
of  raw  material.  By  prioretizing  the  desired  effects  of  the  production  optimization,  we  make  it
possible to split the general model into composite blocks aith their corresponding variable sets. This
dimensionality reduction significantly simplifies data processing thus ensuring that the digital twin
design allows taking timely and efficient decisions regarding the manufacturing process.



Among benefits from the proper decomposition of the model we stress the ability to balance
needs of on-site processing for fast decision-making and proper operation control which importance is
exemplified by the packaging industry use-case. By minimizing the target function on the parameters
of product quality and energy consumption, the smart manufacturing facility simultaneously improves
performance and contributes to the goals of sustainable development. The loss of some information
which may be useful in other respects, like predictive maintenance, may be regarded as disadvantage
of  this  type  of  system  decomposition,  however,  properly  designed  digital  data  platform  may
compensate for such loss and allow failure risk mitigation by storing extra information in external
datalake for separate processing, which will be discussed elsewhere.
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