
Method for Determining the Number of Lines of Manually
Written Source Code

Tetiana Hovorushchenkoa, Yurii Voichura

a Khmelnytskyi National University, Institutska str., 11, Khmelnytskyi, 29016, Ukraine

Abstract
Improving the veracity of estimating the effort of software development is currently an urgent

task. The purpose of this study is to develop a method for determining the number of lines of

manually written source code to calculate the actual number of lines of code created by the

programmer(s), which will allow a more accurate and reliable assessment of the effort of

software development. The developed in this article method for determining the number of

lines of manually written source code makes it possible to determine not only the LOC-

estimation (number of code lines) of the source code written by a programmer, but also the

LOC-estimation (number of code lines) of automatically generated source code, as well as the

number of uses of each automatically generated construction of a particular programming

language. The method is universal because it can be customized for any used programming

language.

Keywords 1
Software development effort (labor intensity), LOC-estimation, source code, manually written

source code, automatically generated source code.

1. Introduction

Analyzing the software development process and estimating the effort required to complete it is an

important task. An early estimate of effort (labor intensity) is important for effective planning of

resource utilization in a software project [1, 2].

In today's highly competitive market, it is very important for a software project development team

to ensure timely delivery of their software product and stay within the planned budget, but in practice

they are constantly faced with schedule delays and budget overruns [3].

Estimating the effort of a software project is an important process that involves predicting how much

time and money it will take to complete a software development project. For both clients and developers

in software development, effort estimation is vital. Underestimating the effort can lead to poorly

designed processes, low quality, delayed schedules and budget overruns, inadequate project approval

by management and customers, insufficient project team size, excessively tight development timelines,

and, as a result, reputational damage and loss of trust in developers in the event of budget and schedule

violations. Moreover, overestimating the complexity of software development may not be any better. If

more resources are allocated to a project than are actually needed, the software project will be more

expensive and time-consuming, and will result in a delay in the start of the next project or in its refusal

to the software development. It is effort estimation that helps to exchange information necessary for the

successful achievement of project results [4].

The success of a software project includes three main elements: time, budget, and functionality.

When changes are made to one of the elements, the other elements will necessarily change as well, and

the nature of the impact of such changes depends mainly on the specifics of the project and the

ITTAP’2023: 3rd International Workshop on Information Technologies: Theoretical and Applied Problems, November 22–24, 2023, Ternopil,
Ukraine, Opole, Poland

EMAIL: tat_yana@ukr.net (T. Hovorushchenko); voichury@khmnu.edu.ua (Yu. Voichur)

ORCID: 0000-0002-7942-1857 (T. Hovorushchenko); 0000-0003-3085-7315 (Yu. Voichur)

©️ 2023 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

circumstances. For example, a reduction in project execution time may in one case lead to a decrease

in its budget due to a reduction in functionality, and in another case to an increase in its budget due to

the involvement of more developers to maintain the planned functionality [5-9].

Estimation of effort is used to solve many problems, including the following [3, 10]: development

of a budget and schedule of a software project; analysis of the degree of risk and selection of a

compromise solution; planning and management of a software project; analysis of the costs of

improving the quality of software.

Estimating effort project remains a difficult task for project managers. In the early stages of the

project, a high level of uncertainty and lack of experience lead to an inaccurate estimate of effort [11].

The rapid growth of the software industry drives the need for new technologies to improve the accuracy

of software effort estimation methodologies.

Thus, improving the veracity of software development effort estimation is an urgent task.

2. Case Study

One of the main methods for estimating the effort of a software project is algorithmic modeling [12-

16], which is a method that determines the dependence of the project effort on some quantitative

indicator of the software (usually the size of the code). This indicator is estimated for a given project,

after which the model predicts future costs. Most models for determining the complexity of software

development can be reduced to a function of five main parameters [17-20]:

1. the size of the final product – usually the number of lines of code or the number of function

points required to implement a given functionality

2. features of the process used to obtain the final product, in particular, its ability to avoid

unproductive activities (rework, interaction costs)

3. capabilities of the personnel involved in software development, especially their professional

experience and knowledge of the project subject area

4. the environment, which consists of tools and methods used to effectively perform software

development and automate the process

5. the required quality of the product, which includes its functionality, performance, reliability

and adaptability.

The most influential factor in effort estimating in these models is the size of the software [21-24].

The main units of measurement of software size are: the number of lines of code (LOC) and function

points (FP). The number of lines of code (LOC-estimation) is the most famous, widespread, and most

used unit of measurement [4, 11, 25, 26].

The advantages of using LOC-estimations as units of measurement [4, 11, 25]: widespread and easy

adaptability; the ability to compare methods of measuring size and performance in different groups of

developers; direct connection with the final product; easy evaluation before the end of the project; estimation

of software size based on the developer's point of view - a physical assessment of the created product.

Along with the advantages, the use of LOC has a number of problems [4, 11, 25]: LOC-estimation

is difficult to use when estimating the size of software at the early stages of development; lines of source

code may differ depending on the types of programming languages, design methods, style and abilities

of the programmer; LOC-indicators cannot be used for normalization if the development platforms or

languages used are different; the use of estimation methods by counting the number of lines of code is

not regulated by industry standards; software development can be associated with high costs that do not

directly depend on the size of the source code – preparation of requirements specifications and user

documents that are not included in the direct costs of coding; programmers may be undeservedly

rewarded for achieving high LOC if management mistakenly considers it a sign of high productivity,

but there is no carefully designed project (source code is not an end in itself when creating a product –

functional properties and performance indicators play a major role); code generators often produce an

excessive amount of code, which distorts LOC-estimations; when counting the number of lines of code,

should distinguish between automatically and manually generated code.

Most development environments include sets of standard elements. Whenever a new project is

created, the respective development environment automatically creates the "skeleton" of the future

application, and this code can be immediately compiled and run without errors. In this case, the software

project contains automatically generated source code, which is the basis of the future program. More

complex controls have so-called "wizards" that help you customize the behavior of controls by

automatically generating code depending on the selected options. Automatic generation of source code

saves developers' time, eliminates the need to re-create a typical source code every time and, of course,

reduces the effort of software development. It is for the purpose of correctly determining the LOC-

estimation of the source code and further reliable estimation of the effort of software development that

it becomes necessary to distinguish between automatically generated source code and manually written

(by a programmer(s)) source code.

Therefore, the purpose of our study is to develop a method for determining the number of lines of

manually written source code to calculate the actual number of lines of code created by the programmer,

which will allow a more accurate and reliable assessment of the effort of software development.

3. Method for Determining the Number of Lines of Manually Written Source
Code

Since a software project contains automatically generated source code, which is the basis

("skeleton") of the future program, and source code that is added manually by the programmer(s), any

source code can be represented as a union of sets of automatically generated source code and source

code written manually by the programmer(s):

 𝐶 = 𝐴𝐺𝐶 ∪ 𝑀𝑊𝐶, (1)

where 𝐴𝐺𝐶 is the automatically generated source code, 𝑀𝑊𝐶 is the manually written source code.

Therefore, the LOC-estimation of the source code can be represented in the form:

 𝐿𝑂𝐶 = 𝐿𝑂𝐶𝐴𝐺 + 𝐿𝑂𝐶𝑀𝑊, (2)

where 𝐿𝑂𝐶𝐴𝐺 is the LOC-estimation of the automatically generated source code, 𝐿𝑂𝐶𝑀𝑊 is the LOC-

estimation of the manually written source code.

The overall LOC-estimation 𝐿𝑂𝐶 can be obtained using a variety of static analyzers and other tools

that provide metric analysis of the source code.

For determining the number of lines of manually written source code, the LOC-estimation of

automatically generated source code is determined. Lines of automatically generated code consist of

certain constructions that form the following set (this set will have different content for different

languages and programming environments):

 𝐴𝐺 = {𝑐𝑜𝑛𝑠𝑡𝑟1, … , 𝑐𝑜𝑛𝑠𝑡𝑟𝑚}, (3)

where 𝑐𝑜𝑛𝑠𝑡𝑟𝑗 is j-th automatically generated source code's construction for a particular programming

language under consideration (the main restriction on such a construction is that it must be a single line

of code), m is the number of constructions that can be automatically generated (this number is different

for different environments and programming languages).

The entire source code can also be represented as a set of its lines:

 𝐶 = {𝑙𝑖𝑛𝑒1, … , 𝑙𝑖𝑛𝑒𝐿𝑂𝐶}, (4)

where 𝑙𝑖𝑛𝑒𝑖 is i-th line of source code, moreover 𝑙𝑖𝑛𝑒𝑖 is, in turn, also a set consisting of the

constructions of a particular programming language, letters, numbers and symbols allowed by the

alphabet of a particular programming language. The main requirement for a source code is mandatory

compliance with the Code Style rules, in particular, in terms of code formatting (a new construction is

written on a new line, etc.).

The universal rules for estimating the number of lines of automatically generated source code were

developed:

1. if 𝑐𝑜𝑛𝑠𝑡𝑟1 ∈ 𝑙𝑖𝑛𝑒1 , then 𝐿𝑂𝐶𝐴𝐺1 = 𝐿𝑂𝐶𝐴𝐺1 + 1

2. …

3. if 𝑐𝑜𝑛𝑠𝑡𝑟𝑗 ∈ 𝑙𝑖𝑛𝑒1 (𝑗 = 1. . 𝑚), then 𝐿𝑂𝐶𝐴𝐺𝑗 = 𝐿𝑂𝐶𝐴𝐺𝑗 + 1

4. …

5. if 𝑐𝑜𝑛𝑠𝑡𝑟𝑚 ∈ 𝑙𝑖𝑛𝑒1, then 𝐿𝑂𝐶𝐴𝐺𝑚 = 𝐿𝑂𝐶𝐴𝐺𝑚 + 1

6. …

7. if 𝑐𝑜𝑛𝑠𝑡𝑟1 ∈ 𝑙𝑖𝑛𝑒𝑖 , then 𝐿𝑂𝐶𝐴𝐺1 = 𝐿𝑂𝐶𝐴𝐺1 + 1

8. …

9. if 𝑐𝑜𝑛𝑠𝑡𝑟𝑗 ∈ 𝑙𝑖𝑛𝑒𝑖 (𝑗 = 1. . 𝑚, 𝑖 = 1. . 𝐿𝑂𝐶), then 𝐿𝑂𝐶𝐴𝐺𝑗 = 𝐿𝑂𝐶𝐴𝐺𝑗 + 1

10. …

11. if 𝑐𝑜𝑛𝑠𝑡𝑟𝑚 ∈ 𝑙𝑖𝑛𝑒𝑖, then 𝐿𝑂𝐶𝐴𝐺𝑚 = 𝐿𝑂𝐶𝐴𝐺𝑚 + 1

12. …

13. if 𝑐𝑜𝑛𝑠𝑡𝑟1 ∈ 𝑙𝑖𝑛𝑒𝐿𝑂𝐶 , then 𝐿𝑂𝐶𝐴𝐺1 = 𝐿𝑂𝐶𝐴𝐺1 + 1

14. …

15. if 𝑐𝑜𝑛𝑠𝑡𝑟𝑗 ∈ 𝑙𝑖𝑛𝑒𝐿𝑂𝐶 (𝑗 = 1. . 𝑚), then 𝐿𝑂𝐶𝐴𝐺𝑗 = 𝐿𝑂𝐶𝐴𝐺𝑗 + 1

16. …

17. if 𝑐𝑜𝑛𝑠𝑡𝑟𝑚 ∈ 𝑙𝑖𝑛𝑒𝐿𝑂𝐶, then 𝐿𝑂𝐶𝐴𝐺𝑚 = 𝐿𝑂𝐶𝐴𝐺𝑚 + 1

The developed rules are universal for each language and programming environment, but the content

of the set 𝐴𝐺 = {𝑐𝑜𝑛𝑠𝑡𝑟1, … , 𝑐𝑜𝑛𝑠𝑡𝑟𝑚} will be different (individual) for each specific language and

programming environment.

Method for determining the number of lines of manually written source code consists of the

following steps:

1. to form a set of automatically generated constructions 𝐴𝐺𝑙𝑎𝑛𝑔 =

{𝑐𝑜𝑛𝑠𝑡𝑟1_𝑙𝑎𝑛𝑔, … , 𝑐𝑜𝑛𝑠𝑡𝑟𝑚_𝑙𝑎𝑛𝑔} for the programming language lang

2. using the method of searching in width in the forward direction in the set of rules for estimating

the number of lines of automatically generated source code, to search the rules for each of the

elements of the set 𝐴𝐺𝑙𝑎𝑛𝑔 = {𝑐𝑜𝑛𝑠𝑡𝑟1_𝑙𝑎𝑛𝑔, … , 𝑐𝑜𝑛𝑠𝑡𝑟𝑚𝑙𝑎𝑛𝑔
} in the set 𝐶 =

{𝑙𝑖𝑛𝑒1, … , 𝑙𝑖𝑛𝑒𝐿𝑂𝐶}, according to which the counters 𝐿𝑂𝐶𝐴𝐺1, … , 𝐿𝑂𝐶𝐴𝐺𝑚 of the number of lines

(used in the source code) of each automatically generated construction of the programming

language lang

3. to determine the LOC-estimation of the automatically generated source code by the formula:

 𝐿𝑂𝐶𝐴𝐺 = ∑ 𝐿𝑂𝐶𝐴𝐺𝑗
𝑚
𝑗=1 , (5)

where 𝐿𝑂𝐶𝐴𝐺𝑗 is the number of uses in the source code of each automatically generated

construction of a particular programming language

4. to determine the LOC-estimation of manually written source code using the formula derived

from formula (2):

 𝐿𝑂𝐶𝑀𝑊 = 𝐿𝑂𝐶 − 𝐿𝑂𝐶𝐴𝐺, (6)

where 𝐿𝑂𝐶 is the total number of lines of source code (as mentioned earlier, there are many

tools that provide LOC-estimation of source code)

The developed method for determining the number of lines of manually written source code is

scientifically new and makes it possible to determine not only the LOC-estimation of the source code

written by a programmer(s), but also the LOC-estimation of automatically generated source code, as

well as the number of uses of each automatically generated construction of a particular programming

language. The method is universal because it can be customized for any used programming language.

4. Results & Discussion

A real case of using the developed method for determining the number of lines of manually written

source code using the Visual C++ programming language as an example was considered. The analyzed

Visual C++ source code, which consists of 225 lines, is represented as a set 𝐶 = {𝑙𝑖𝑛𝑒1, … , 𝑙𝑖𝑛𝑒225}.

First, a subset of the automatically generated constructions was formed 𝐴𝐺𝑉𝑖𝑠𝑢𝑎𝑙𝐶++ =
{#𝑖𝑛𝑐𝑙𝑢𝑑𝑒, #𝑑𝑒𝑓𝑖𝑛𝑒, ℎ𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒, 𝑤𝑐ℎ𝑎𝑟, 𝑎𝑡𝑜𝑚, 𝑏𝑜𝑜𝑙, 𝑙𝑟𝑒𝑠𝑢𝑙𝑡, 𝑖𝑛𝑡_𝑝𝑡𝑟, 𝐿𝑜𝑎𝑑𝑆𝑡𝑟𝑖𝑛𝑔𝑊, 𝑢𝑛𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑑_

𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝑀𝑦𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝐶𝑙𝑎𝑠𝑠, } for the Visual C++ programming language (this subset for the

example under consideration does not include all automatically generated Visual C++ constructs, but

only 11 such constructs, which is sufficient to demonstrate the operation of the proposed method).

Using the method of searching in width in the forward direction in the set of rules for estimating the

number of lines of automatically generated source code, we searched the rules for each of the elements

of the set 𝐴𝐺𝑉𝑖𝑠𝑢𝑎𝑙𝐶++ in the set 𝐶 = {𝑙𝑖𝑛𝑒1, … , 𝑙𝑖𝑛𝑒225}, according to which the counters of the number

of lines (used in the source code) of each of the 11 automatically generated constructions of the Visual

C++ programming language were counted: 𝐿𝑂𝐶𝐴𝐺1 = 4, 𝐿𝑂𝐶𝐴𝐺2 = 5, 𝐿𝑂𝐶𝐴𝐺3 = 1, 𝐿𝑂𝐶𝐴𝐺4 = 10,

𝐿𝑂𝐶𝐴𝐺5 = 6, 𝐿𝑂𝐶𝐴𝐺7 = 10, 𝐿𝑂𝐶𝐴𝐺8 = 7, 𝐿𝑂𝐶𝐴𝐺9 = 13, 𝐿𝑂𝐶𝐴𝐺10 = 20, 𝐿𝑂𝐶𝐴𝐺11 = 8.

Now the LOC-estimation of the automatically generated source code in the analyzed source code is

determined:

 𝐿𝑂𝐶𝐴𝐺 = 4 + 5 + 1 + 10 + 6 + 10 + 7 + 13 + 20 + 8 = 84.

After that, the LOC-estimation of the manually written source code in the analyzed source code is

determined:

 𝐿𝑂𝐶𝑀𝑊 = 225 − 84 = 141.

So, the analyzed Visual C++ source code, which consists of 225 lines, contains 84 lines of

automatically generated code and 141 lines of manually written code.

5. Conclusions

Improving the veracity of estimating the effort of software development is currently an urgent task.

The purpose of this study is to develop a method for determining the number of lines of manually

written source code to calculate the actual number of lines of code created by the programmer(s), which

will allow a more accurate and reliable assessment of the effort of software development.

The developed in this article method for determining the number of lines of manually written source

code makes it possible to determine not only the LOC-estimation (number of code lines) of the source

code written by a programmer, but also the LOC-estimation (number of code lines) of automatically

generated source code, as well as the number of uses of each automatically generated construction of a

particular programming language. The method is universal because it can be customized for any used

programming language.

The directions of the authors' future research are: formation of complete sets of automatically

generated constructions for different actual programming languages; automation of the analysis of

source code in different languages to search for automatically generated constructions in it;

development of a tool for determining the number of lines of manually written source code, which will

work on the basis of the rules and method developed in this article.

6. References

[1] O. Pomorova, T. Hovorushchenko. The Way to Detection of Software Emergent Properties, in:

Proceedings of the 2015 IEEE 8-th International Conference on Intelligent Data Acquisition and

Advanced Computing Systems: Technology and Applications IDAACS-2015, Warsaw, 2015, vol.

2, pp. 779-784. doi: 10.1109/IDAACS.2015.7341409.

[2] O. Pomorova, T. Hovorushchenko. Research of Artificial Neural Network's Component of

Software Quality Evaluation and Prediction Method, in: Proceedings of the 2011 IEEE 6-th

International Conference on Intelligent Data Acquisition and Advanced Computing Systems:

Technology and Applications, IDAACS-2011, Prague, 2011, vol.2, pp. 959-962. doi:

10.1109/IDAACS.2011.6072916.

[3] R. Arora, R. Mittal, A. G. Aggarwal. Investigating the impact of effort slippages in software

development project. International Journal of System Assurance Engineering and Management 14

(2023) 878-893. doi: 10.1007/s13198-023-01887-3.

[4] N. Sreekanth, J. Rama Devi, K. A. Shukla, D. K. Mohanty, A. Srinivas, G. N. Rao, A. Alam, A.

Gupta Evaluation of estimation in software development using deep learning-modified neural

network. Applied Nanoscience 13 (2023) 2405-2417. doi: 10.1007/s13204-021-02204-9.

[5] T. Hai, J. Zhou, N. Li, S. K. Jain, S. Agrawal, I. B. Dhaou. Cloud-based bug tracking software

defects analysis using deep learning. Journal of Cloud Computing 11 1 (2022), 32. doi:

10.1186/s13677-022-00311-8.

[6] L. Aversano, M. L. Bernardi, M. Cimitile, M. Iammarino, D. Montano. Forecasting technical debt

evolution in software systems: an empirical study. Frontiers of Computer Science 17 3 (2023),

173210. doi: 10.1007/s11704-022-1541-7.

[7] T. Hovorushchenko, O. Pomorova. Methodology of Evaluating the Sufficiency of Information on

Quality in the Software Requirements Specifications, in: Proceedings of 2018 IEEE 9th International

Conference on Dependable Systems, Services and Technologies DeSSerT-2018, Kyiv, 2018, pp. 385-

389. doi: 10.1109/DESSERT.2018.8409161.

[8] T. Hovorushchenko, O. Pomorova. Information Technology of Evaluating the Sufficiency of Information

on Quality in the Software Requirements Specifications. CEUR-WS 2104 (2018) 555-570.

[9] T. Hovorushchenko T. Methodology of Evaluating the Sufficiency of Information for Software

Quality Assessment According to ISO 25010. Journal of Information and Organizational Sciences

42 1 (2018) 63-85. doi: 10.31341/jios.42.1.4.

[10] P. G. F. Matsubara, I. Steinmacher, B. Gadelha, T. Conte. Much more than a prediction: Expert-

based software effort estimation as a behavioral act. Empirical Software Engineering 28 4 (2023)

98. doi: 10.1007/s10664-023-10332-9.

[11] B. Şengüneş, N. Öztürk. An Artificial Neural Network Model for Project Effort Estimation.

Systems 11 2 (2023) 91. doi: 10.3390/systems11020091.

[12] M. Padmaja, D. Haritha. Software Effort Estimation Using Grey Relational Analysis. International

Journal of Information Technology and Computer Science 9 5 (2017) 52–60. doi:

10.5815/ijitcs.2017.05.07.

[13] S. Basri, N. Kama, H. Md Sarkan, S. Adli, F. Haneem. An Algorithmic-Based Change Effort

Estimation Model for Software Development, in: Proceedings of 2016 23rd Asia-Pacific Software

Engineering Conference APSEC-2016, Hamilton, 2016, 177-184. doi: 10.1109/apsec.2016.034.

[14] P. Singal, A. C. Kumari, P. Sharma. Estimation of Software Development Effort: A Differential

Evolution Approach. Procedia Computer Science 167 (2020) 2643–2652. doi:

10.1016/j.procs.2020.03.343.

[15] R. Silhavy, Z. Prokopova, P. Silhavy. Algorithmic optimization method for effort estimation.

Programming and Computer Software 42 3 (2016) 161–166. doi: 10.1134/s0361768816030087.

[16] Y. Mahmood, N. Kama, A. Azmi, A. S. Khan, M. Ali. Software effort estimation accuracy

prediction of machine learning techniques: A systematic performance evaluation. Software:

Practice and Experience 52 (2022) 39-65. doi: 10.1002/spe.3009.

[17] K. H. Kumar, K. Srinivas. An accurate analogy based software effort estimation using hybrid

optimization and machine learning techniques. Multimedia Tools and Applications 82 (2023)

30463-30490. doi: 10.1007/s11042-023-14522-x.

[18] R. Lalitha, P. Sreelekha. A methodology to analyse and estimate software development process

using machine learning techniques. International Journal of Software Engineering and Knowledge

Engineering 33 6 (2023) 815-835. doi: 10.1142/s021819402350016x.

[19] H. Sone, Y. Tamura, S. Yamada. Study of Effort Calculation and Estimation in Open Source

Projects. International Journal of Reliability, Quality and Safety Engineering 30 3 (2023) 2350011.

doi: 10.1142/s0218539323500110.

[20] R. K. Gora, R. R. Sinha. A Study of Evaluation Measures for Software Effort Estimation Using

Machine Learning. International Journal of Intelligent Systems and Applications in Engineering

11 6s (2023) 267–275.

[21] V. Yadav, R. Singh, V. Yadav. Estimation Model for Enhanced Predictive Object Point Metric in

OO Software Size Estimation Using Deep Learning. The International Arab Journal of Information

Technology 20 3 (2023) 293-302. doi: 10.34028/iajit/20/3/1.

[22] M. Jørgensen. Improved measurement of software development effort estimation bias. Information

and Software Technology 157 (2023) 107157. doi: 10.1016/j.infsof.2023.107157.

[23] E. Rodríguez Sánchez, E. F. Vázquez Santacruz, H. Cervantes Maceda. Effort and Cost Estimation

Using Decision Tree Techniques and Story Points in Agile Software Development. Mathematics

11 6 (2023) 1477. doi: 10.3390/math11061477.

[24] I. Abnane, A. Idri, I. Chlioui, A. Abran. Evaluating ensemble imputation in software effort

estimation. Empirical Software Engineering 28 2 (2023) 56. doi: 10.1007/s10664-022-10260-0.

[25] S. Singh, K. Kumar Software Cost Estimation: A Literature Review and Current Trends, in:

Proceedings of 2023 Third International Conference on Secure Cyber Computing and

Communication ICSCCC-2023, Jalandhar, 2023, pp. 469-474. doi:

10.1109/icsccc58608.2023.10176495.

[26] X. Yuan, J. Su, C. Yu, S. Ye. Power Grid Software Cost Estimation Based on Improved COCOMO

Model, in: Proceedings of 2023 IEEE 3rd International Conference on Electronic Technology,

Communication and Information ICETCI-2023, Changchun, 2023, pp. 1265-1269. doi:

10.1109/icetci57876.2023.10176686.

