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Abstract 
Studies of linear codes in terms of finite projective geometries form traditional direction in Coding Theory. 

 Some applications of projective geometries are known. We introduce new public keys of Multivariate 

Cryptography given by quadratic public rules generated via walks on incidence substructures of  projective 

geometry with vertexes from two largest Schubert cells. It differs from the known algorithms of Code Based 

Cryptography and can be considered as the first attempt to combine ideas of this area with the approach of 

Multivariate Cryptography. 
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1. Introduction 

   Finite projective geometries  were traditionally used for the construction of algorithms of Coding Theory [1]. 

Their applications  to other areas of Information Security have been published (see [2], [3] devoted to Network 

Coding). In particular, it was used in Cryptography ( see [4], where projective geometry were used for 

authentication protocols). Nowadays finite geometries are widely used as tools for secret sharing. 

      Additionally they can be used for the design of some stream ciphers of multivariate nature and protocols of 

Noncommutative Cryptography (see [5] and further references). We introduce the first graph based multivariate 

public keys with bijective encryption maps generated via special walks on incidence graph  of projective 

geometry. The tender of US National Institute of Standardisation Technology (NIST, 2017) has started the 

standardisation process of possible Post-Quantum Public keys aimed for the purposes to be (i) encryption tools, 

(ii) tools for digital signatures (see [6], [7]). 

    In July 2020 the Third Round of the competition started. In the category of Multivariate Cryptography (MC) 

remaining candidates are easy to observe. For the task (i) multivariate algorithm was not selected, single 

multivariate candidate is ''The Rainbow Like Unbalanced Oil and Vinegar'' (RUOV) digital signature method. 

 As you see RUOV algorithm is investigated as appropriate instrument for the task (ii). During the Third Round 

some cryptanalytic instruments to deal with ROUV were found (see [8], [9]). That is why different algorithms 

were chosen at the final stage. In July 2022 first four winners of NIST standardisation competition were chosen. 

They all are lattice based algorithms. 
     Noteworthy that all multivariate NIST candidates were presented by multivariate rules of  degree bounded by 

constant (2) of kind x1  →f1(x1, x2,…, xn), x2 → f2(x1, x2, …, xn), ..., xn → fn(x1, x2, … , xn). We think that NIST 
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outcomes motivate investigations of alternative options in Multivariate Cryptography  oriented on encryption 

tools for 

(a) the work with the space of plaintexts (Fq)n and its transformation G of linear degree cn, c>0 on the level of 

stream ciphers or public keys 

(b) the  usage of protocols of Noncommutative Cryptography with platforms of multivariate transformations for 

the secure elaboration of multivariate map G from End(Fq[x1, x2,…, xn]) of linear or superlinear degree and  

density bounded below by function of kind cn r , where c>0 and r>1.  

      Some ideas in directions of (a) and (b) are presented in [10].Alternatively we hope that classical multivariate 

public key approach (see [11]), i. e. the usage of multivariate rules of degree 2 is still able to bring reliable  

encryption algorithms.   

     In this paper we suggest new quadratic multivariate public rules defined in terms of Projective Geometry. 

Recall that multivariate public rule G has to be given in its standard form  xi →gi(x1, x2, … , xn), where 

polynomials gi are given via the lists of monomial terms in the lexicographical order. 

2.  Linear codes and Schubert cellular graphs 

The missing definitions of graph-theoretical concepts which appear in this paper can be found in [12]. All graphs 

we consider are simple graphs, i.e. undirected without loops and multiple edges. Let V(G) and E(G) denote the 

set of vertexes and the set of edges of G  respectively.  When it is convenient, we shall identify G with the 

corresponding anti-reflexive binary relation on V(G), i.e. E(G) is a subset of  V(G)∙V(G) and write v G u for the 

adjacent vertexes u and v (or neighbours). We refer to |{ x ϵ V(G)| xGv }| as degree of the vertex v.                 The 

incidence structure is the set V with partition sets P (points) and L (lines) and symmetric binary relation I such 

that the incidence of two elements implies that one of them is a point and another one is a line. We shall identify 

I with the simple graph of this incidence relation or bipartite graph. The pair x,y, xϵP, yϵL such that x I y is called 

a flag of incidence structure I.  Projective geometry   n-1PG(Fq) of dimension n-1 over the finite field Fq, where q 

is a prime power, is a totality of proper subspaces of the vector space   V=(Fq) n of nonzero dimension. This is the 

incidence system with type function t(W)=dim(W), W ϵ  n-1 PG(Fq) and incidence relation I defined by the 

condition W1IW2 if and only if one of these subspaces is embedded in another one. We can select standard base 

e1, e2,…, en of V and identify n-1PG(Fq) with the totality of linear codes in (Fq) n.The geometry   n-1ℾ(q)= n-1PG(Fq)  

is a partition of subsets  n-1ℾ(q) i  consisting of elements of selected type i, i=1,2, …, n-1. We assume that each 

element of V is presented in the chosen base as column vector (x1, x1, … , xn). Let U stands for the unipotent  

subgroup of automorphism group PGLn(Fq)  consisting of lower  unitriangular matrices.Let us consider orbits of 

the natural action of U  on the projective geometry  n-1PG(Fq). They are known as large Schubert cells. Each of  

orbits on the set ℾm(Fq) contains exactly one symplectic element spanned by elements ei(1), ei(2), ..., ei(m).  So the 

number of orbits of (U, ℾm(Fq)) equals to binomial coefficient C(n,m). Noteworthy that the cardinality of  n-1 

ℾm(Fq) is expressed by Gaussian binomial coefficient.  Unipotent subgroup U is generated by elementary 

transvections xi,j(t), i<j, tϵFq.  If we select i and j then  elements of kind  xi,j(t)  form root subgroup Ui,j, 

corresponding to the positive root ei-ej  of root system An-1. Let J be a proper subset of  {1, 2, …, n}=N, JS be 

Schubert cell containing symplectic subspace WJ spanned by ej  ϵ J, ∆(J)= { (i,j) | iϵ J, jϵN-J, i<j }. Then a 

subgroup U(J) generated by root subgroups Ui,j, (i, j) ϵ  ∆(J)  of order qk, k= |∆(J)| acts regularly on JS. It means 

that we can identify JS  and U(J).Noteworthy that each ℾm(Fq) has a unique largest Schubert cell of size q m(n-m), it 

is JS for J={n, n-1, n-2, … , n-m+1}. We denote this cell as mLS(q).   We consider the bipartite graph m,kIn(Fq) of 

the restriction  of I onto disjoint union mLS(Fq) and kLS(Fq). It is bipartite graph with bidegrees  qr and qs where 

r=|∆({n, n-1, n-2, \dots, n-m+1})- ∆({n, n-1, n-2, … , n-m+1}) ∩∆({n, n-1, n-2, … , n-k+1}) |  and s=|∆({n, n-1, 

n-2, … , n-k+1}) - ∆({n, n-1, n-2, …, n-m+1})∩ ∆({n, n-1, n-2, …, n-k+1})|. We refer to m,kIn(Fq) as Cellular 

Schubert graph and denote it as m,kCSn(Fq) graph. In particular case n=2m+1, k=m these graphs are known as 

Double Schubert graphs [13]. 

2.1. Schubert cellular graphs over commutative ring. 

  Let K be a commutative ring. We consider  group U=Un(K) of lower unitriangular n times n matrices with the  
entries from K. Let ∆ be the totality of all entries of (i, j), 1 ≤  i<j ≤ n, i. e. totality of positive roots from An-1. We 
identify element M from Un(K) with the function f: ∆→ K such that f(i,j)=mi,j. The restriction M|D of M on subset 

D of ∆ is simply f|D.   For each proper nonempty subset J of {1, 2, …, n } we define U(J) as totality of matrices 

M=(mi,j) from U such that (i, j) ϵ{∆- ∆(J)} implies that  mi,j=0.  We  define incidence system  n-1PG(K) as a totality 

of pairs (J, M), M ϵU(J) with type function t(J, M)=|J| and incidence relation given by conditions (1J,  1M) I (2J, 
2M)  if and only if one of subsets 1J and 2J is embedded in another one and  1M-2M) | ∆(1J )∩∆(2J) =1M ∙ 2M-2M ∙ 
1M.  We refer to this incidence system as projective geometry scheme over commutative ring K.  If K=F is the 



field  then n-1PG(F) coincides with n-1-dimensional projective geometry over F, i. e. totality of proper nonzero 

subspaces of the vector space F n(see [14]). The reader can find similar interpretations of  Lie geometries and their 

Schubert cells, their  generalisations  via pairs of type (irreducible root system, commutative ring $K$) are 

presented in  [5].  The concept of large and small Schubert cell in the classical case of field is presented in [15], 

[16]. 

 We  introduce ℾm(K), mLS(K) and graphs CS m,k n(K) for m=1, 2,  …, n-1 via simple substitution of K instead Fq. 

We refer to disjoint union of mLS(K), m=1, 2, …, n-1 with the restriction of incidence relation I and type 

function t on this set as Schubert geometry scheme of type An-1 over commutative ring K. We refer to elements 

of this incidence system aslinear codes of Schubert type.  We can define Schubert schemes over other Dynkin-

Coxeter diagrams.  

 

2.2 Linguistic graphs of type (r, s, p) and symbolic computations. 
 

     Let K be a commutative ring. We refer to an incidence structure with a point set P=Ps,m=Km+s and a line set 

L=Lr,m=Km+r as linguistic incidence structure I m(K)  of type (r, s, m) if point  x=(x1, x2,…, xs, xs+1, xs+2,…,  xs+m) 

is incident to line y=[y1, y2, …, yr, yr+1, yr+2, …, yr+m] if and only if the following relations hold 

 

a1xs+1+b1yr+1=f1(x1, x2 ,..., xs, y1, y2,… , yr) 

 

a2xs+2+b2yr+2=f2(x1, x2, ..., xs, xs+1, y1, y2, … , yr, yr+1) 

                               

                                          ...  

 

amxs+m+bmyr+m=fm(x1, x2, …, xs, xs+1, …, xs+m, y1, y2, … , yr, yr+1, …, yr+m)  

 

where aj and bj, j=1,2, …, m are not zero divisors, and fj are multivariate polynomials with coefficients from K. 

Brackets and parenthesis allow us to distinguish points from lines (see  [5] and further references). 

     The colour ρ(x)=ρ((x))  (ρ(y)=ρ([y])) of point  (x)  (line [y])  is defined as projection of an element  

(x) (respectively [y]) from a free module on its initial s (relatively r) coordinates. As it follows from the 

definition of linguistic incidence structure for each vertex of incidence graph there exists the unique neighbour 

of a chosen colour. 

     We refer to ρ((x))=(x1, x2, …, xs) for  (x)=(x1, x2, …, xs+m) and  ρ([y])=(y1, y2, …, yr) for  [y]=[y1, y2, … , yr+m] 

as the colour of the point and the colour of the line respectively.  

     For each bϵ Kr and p=(p1, p2, …, ps+m)  there is the unique neighbour of the point [l]=Nb(p) with the colour b. 

Similarly, for each c ϵ Ks and line l=[l1, l2, …, lr+m] there is the unique neighbour of the line (p)= Nc([l]) with 

the colour c.  We refer to operator of taking the neighbour of vertex accordingly  chosen colour as 

neighbourhood operator.  

    On the sets P and L of points and lines of linguistic graph we define jump operators  1J=1Jb(p)=(b1, b2, …, bs, 

p1, p2, …, ps+m), where (b1, b2, …, bs)ϵKs  and 2J=2Jb([l])=[b1, b2, …, br, l1, l2, …, lr+m], where (b1, b2, …, br)ϵKr. 

We refer to tuple (s, r, m) as type of the linguistic graph I.   

   We say that point (p) is line [l] are adjacent in the linguistic graph  I if 1Jb(p)I 2Jc[l] for some colours  b ϵKs 

and c ϵKr. Let ψ stands for the adjacency relation of the linguistic graph. We say that linguistic graph  has 

degree d, d≥2 if maximal degree of nonlinear multivariate polynomials fi, i=1, 2, …, m is d. 

    Noteworthy, that the path v0, v1, …, vk in the linguistic graph Im_ is determined by starting vertex v0  and 

colours of vertexes v1, v2,  …, vk such that  ρ(vi)≠ ρ(vi+2) for i=0, 1, …, k-2. 

    Let us consider the sequence of colours c(1), c(2), c(3), c(4), c(5) where c(1) and c(4), c(5) are from Ks and  

c(2), c(4) are elements of Kr. 

    Let v0=(x) be a general point of the graph I then for the vertices   v1=1Jc(1)(v0), v2=Nc(2)(v1), v3=2Jc(3),(v2),  

v4=Nc(4)(v3), v5=1Jc(5)(v4)  the  relations v0ψv3, v2 ψv5 holds. 

     We consider the tuple of colours c(1), c(2)…., c(t), t=1 mod 4 such that c(i)ϵKs for i=0,1 mod 4 

and c(i) ϵKr for i=2,3 mod 4. 

   We refer to the sequence of vertexes  v1 =1J(v0), v2=Nc(2)(v1), v3=2Jc(3), v4=Nc(4)(v3), v5=1J(v4), v6=Nc(6)(v5), 

v7=2Jc(7)(v6), v8=Nc(8)(v7),…., vt-1=Nc(t-1)(vt-2), vt=1J(vt-1) as walk on the adjacency graph with the starting point 

(x) and the colour trace c(1), c(2), …, c(t). 

   For each  positive integer l we can consider  graph  Im(K) together with  lIm= Im(K[y1, y2, …, yl]) defined by the 

same polynomials fi, i=1, 2,  …, m with coefficients from K. 



   Assume that l=m+s. We can consider the walk on the adjacency graph  ψ(K[y1, y2, …, yl]) of length 4t+1 with 

starting point (y1, y2, …, ys, ys+1, ys+2, …, ym+s) and colours  c(1), c(2), …, c(t) such that c(i)ϵK[y1, y2, …, ys]s for 

i=0,1 mod 4 and  c(i)ϵK[y1, y2, …, ys]r for i=2,3 mod 4.   

 Assume that c(t)=(h1(y1, y2,...,ys), h2(y1, y2,…, ys), …, hs(y1, y2,…, ys)). 

    Then v1=(h1, h2, …, hs, g1, g2,…, gm). Let us consider the polynomial map I(K),c Pass,  cϵ K[x1,x2,…, xs] (2t+1)s+2rt   

of K s+m to itself which sends (y1, y2,…,ys, ys+1,…, ys+m) to vt, i. e. the map  

        y1 → h1(y1, y2,...,ys),        y2 → h2(y1, y2,...,ys),…,   ys → hs(y1, y2,...,ys), 

        ys+1 → g1(y1, y2,...,ys, ys+1, ys+2,...,ys+m),  ys+2 → g2(y1, y2,...,ys, ys+1, ys+2,...,ys+m),…,        ys+m → gm(y1, y2,...,ys, 

ys+1, ys+2,...,ys+m),         

   It is easy to see that this transformation is bijective if and only if the map         y1 → h1(y1, y2,...,ys), y2 → h2(y1, 

y2,...,ys),  …, ys → hs(y1, y2,...,ys), is bijective on Ks ([5] ).  Defined above transformations form a semigroup  
I(K)SP of multivariate transformation. Some basic properties of this semigroup are discussed in [5]. 

     Of course we can use lines instead of points and define another semigroup I(K)Sl formed by transformation of 

kind   I(K),cPass,  cϵ K[x1,x2,…, xs] (2t+1)r+2 ts   acting on the variety Km+r. 

       We can treet the sequence c from K[x1,x2,…, xs] l    as the tuple of its coordinates ci from K[x1,x2,…, xs]  and 

define degree of  c as   of  polynomials ci(x1, x2,…, xs). The following two statements are proven in [5].  

 

Theorem 1.  

    Let K be a commutative ring. Cellular Schubert  graph  CSm,k
n(K) is a linguistic graph of degree 2 of type 

 (s, r, p) where 

s=|∆({n, n-1, n-2, …, n-m+1})- ∆({n, n-1, n-2, …, n-m+1}) ∩∆({n, n-1, n-2, …, n-k+1}) |,   

r=|∆({n, n-1, n-2, …, n-k+1}) - ∆(\{n, n-1, n-2, …, n-m+1\}) ∩∆({n, n-1, n-2,…, n-k+1})| and 

 p=|∆({n, n-1, n-2,…,n-m+1) ∩∆({n, n-1, n-2, …, n-k+1}) |.       

Theorem 2. 

    Let CSm,k
n(K)be a Cellular Schubert as in the previous statement.Then transformations I(K),c Pass,  cϵ 

K[x1,x2,…, xs] (2t+1)s+2rt,  t ≥5   , cϵK[x1,x2,…, xs] (2t+1)s+2rt   of the affine space Ks+p such that 

deg(c(i))+deg(c(i+1))≤2 for  i=1  mod 2, i<t and deg(c(t))≤2,  are elements of Cremona semigroup of degree  

≤2. If the lefthand side of  one of the written above  inequalities is 2 then the degree of the transformation is 2.           

3.  Public key based on Cellular Schubert graph 

3.1.  Construction of the map. 

As usually we have to describe procedures for the owner of the key (Alice) and public user Bob. We start from 

the generating procedure for the multivariate map. 

      Alice selects parameter n,  constants ᾳ and β from open interval (0, 1) together with constants a and b from 

Z.  For the simplicity we assume that 0<ᾳ < β. 

    She sets parameters m=[ᾳn+a] and k=[βn+b], where parenthesis denote the flow function and a and b are 

selected constants. Alice takes finite field  F=Fq, q=2d,  d ≥32. Alice computes parameter s, r and p of the 

linguistic graph CSm,k
n(K). She selects the length of path j of kind j=4t+1.Alice  will use vector space F s+p  as 

space of the plaintexts. Thus she selects parameters d1=deg c(1), d2=deg c(2),…, dt= deg c(t) which satisfy the 

condition of theorem 2. She selects them from {0,1, 2} under the condition that di_+di+1_=2 for each odd 

parameter and  dj =2. 

 Alice forms maps c(i),  i=1, 2, …. , j-1 of kind (f1(y1, y2,…, ys), f2(y1, y2,…, ys),…, fs(y1, y2,…, ys)) or (g1(y1, y2,…, 

ys), g2(y1, y2,…, ys),…, gr(y1, y2,…, ys)) of degree di.  She can form these tuples of polynomials via selection of 

their coefficients as pseudorandom or genuinely random parameters.  

    Alice selects linear transformation (y1, y2,…, ys-1)→(y1, y2,…, ys-1)C=(l1(y1, y2,…, ys),  l2(y1, y2,…, ys),…, ls-

1(y1, y2,…, ys), ys→(ys) 2 ) where C is the matrix of the Singer cycle which is a linear transformation of order qs-1-

1, (see [17])  and forms c(j) as the tuple (l1(y1, y2,…, ys),  l2(y1, y2,…, ys),…, ls-1(y1, y2,…, ys), (ys) 2 ). She 

constructs the transformation I(K),c Pass=F of Theorem 2 with selected as above c=(c(1), c(2),…, c(j)).   

Finally Alice selects bijective affine  transformation T1 and T2 and computes the  

standard form of T1FT2=G. 

She  presents multivariate rule G to public users. 

Remark. The choice of cj insures that the inverse map of G  has a polynomial degree ≥  

 2d-1 (see [13]). 

     Noteworthy that the choice T2=(T1)-1 insures that cyclic group generated by G has order multiple to qs-1 -1. 

      Thus public user (Bob) works with the space of plaintexts (Fq) k, k=p+s. He is able to encrypt his plaintext 

in time O(k3). 

 



3.2.  Description of decryption procedure. 
 

     Let us consider the private key procedure for the decryption. Assume that Alice gets the ciphertext  z=(z1, z2, 

…, zs+p).  

Step 1.  

She treats it as column vector and computes (T2) -1(z)=(q1, q2, …, qs , qs+1,..., qs+2, ..., qs+p)=(p). 

Step 2.  

  Alice uses the matrix C of the  Singer cycle to solve the following equations. l1(x1, x2, ..., xs)=q1, l2(x1, x2, … , 

xs)=q2,…, ls-1(x1, x2, … , xs)=qs-1, (xs) 2=qs 

 Assume that xi=di, i=1, 2, …, s is the solution. 

 Step 3.  

She computes numerical colours 

c(i)(d1, d2, …, ds)=(ia1, ia2, …, ias)=(ia)  for i=1, 0 (mod 4), i≤j. 

 c(i)(d1, d2, …, ds)=(ib1, ib2, …, ibr)=(ia)  for i=2, 3 (mod 4), i<j. 

Step 4.  

Alice forms the point  1(p) of the graph CSm,k
n(Fq). in the form 1Jc(j-1)(p)=(j-1a1, j-1a2,  ..., j-1as, qs+1, qs+2,  …., qs+p). 

Step 5. She computes the path in this Schubert adjacency graph with the starting point  1(p) and  other vertexes  

Nc(j-2)(1(p))=2v, 2Jc(j-3)(2v)=3v, Nc(j-4)(3v)=4v,…, Nc(1)(j-2v)=j-1v, 1Jc(0)(j-1v)=v where c(0)=(d1, d2,…, ds). 

Step 6. 

Alice treats v as column vector and computes the plaintexts as (T1) -1(v)=(r1, r2, …, rs+p). 

 
3.3.  Complexity estimates in the case of general position. 
 

Let us assume the case of presented above public key in the case of finite field Fq of characteristic 2. So the 

space of plaintext will be a vector space (Fq) m where m=s+p= =O(n2), the colour spaces for points and lines 

will be the vector spaces (Fq)s and (Fq) r where r=O(n2) and s = O(n2). It will be convenient for us to  use 

parameter n for the estimation of the complexity of  decryption procedure for Alice 

 The complexity of computation of the image of  T1
 I(K),c Pass T2 is determined by the time of computation of the 

path in the adjacence Schubert graph from the selected point from  (Fq)m accordingly to the sequence of 

numerical colours i(a), i=1, 2,…,j obtained via the specialisation of the tuples c(j) of quadratic polynomials in s 

variables. 

    The key parameter for the computation of the complexity is j.  The natural selection is j=O(n). Each  i(a) can 

be computed O(n6). So the sequence of numerical colours of length j can be computed in time O(n7). 

Computation of the values of operators 1J and 2J takes O(n2) elementary operation.  The computation of 

neighbour N(v) of v  with colour c will take time O(n4).The repetition of this operation j times costs O(n5). 

Noteworthy that computation of affine transformation in O(n2) variables takes time O(n4).   These arguments 

evaluate general complexity of the computation of the plaintexts as O(n7). 

        It means that the complexity of decryption is O(m3.5) where m is the dimension of the space of plaintexts 

4.  Conclusions. 

   Modern public key cryptography is based on the complexity of  hard unsolved problems. 

Especially important is the fundamental assumption of cryptography  that there are no polynomial-time 

algorithms for solving any NP-hard problem. A consequence of this assumption is that there are 

cryptographically interesting problems that are hard to solve in the quantum setting. Each of five core directions 

of Post Quantum Cryptography is based on the complexity of some $NP$-hard problem. The paper is connected 

with the following two directions. 

  Code-based cryptography (see [20]).  

        Cryptographic primitives based on the hardness of decoding random linear codes are historically the first 

post-quantum systems. Since the late 1970s schemes like McEliece encryption have withstood a long series of 

cryptanalytic attacks. In order to embed a trapdoor that enables decryption one converts a structured code with 

good decryption capabilities like a Goppa code by linear transformations into a "random-looking" code C. An 

attacker now faces the problem to either distinguish C from a purely random code using the properties of the 

underlying structured code or to directly decode C.  

 The last approach leads to the best known generic attacks. Recent significant progress on decoding binary linear 

codes C of dimension n leads to a new trend in  code-based cryptography based on the usage of linear codes that 

are different than Goppa code initially proposed by McEliece (MDPC codes, Rank codes, quasi-cyclic codes, 

and others). New approach promises to decrease the size of the public key. 



   Multivariate cryptography (see [18]).  

Multivariate cryptography is usually defined as the set of cryptographic schemes using the computational 

hardness of the Polynomial System Solving problem over a finite field. Solving systems of multivariate 

polynomial equations is proven to be NP-hard or NP-complete. That is why these schemes are often considered 

to be good candidates for post-quantum cryptography. The first multivariate scheme based on multivariate 

equations was introduced by Matsumoto and Imai in 1988. Later J. Patarin found  nice and efficient 

cryptanalytic solution to break this scheme (see [11] or [19]). Two following schemes suggest the most robust 

solutions. They are  HFE (Hidden Field Equations) and UOV (Unbalanced Oil and Vinegar), both developed by 

J. Patarin in the late 1990s.  Special variants of these schemes have been submitted to the post-quantum 

standardization process organized by NIST. During this process new cryptanalytic methods to break these 

cryptosystems were found (see [7]). It motivates development of new public keys of Multivariate Cryptography. 

        We suggest the usage of the bridge between Coding Theory and Multivariate Cryptography based on the 

pairs of kind (PGn(Fq), PGn(Fq[x1, x2, …, xn])) where PGn(Fq) is classical finite n-dimensional projective 

geometry and PGn(Fq[x1, x2, …, xn]) is its natural analogue  defined over multivariate ring Fq[x1, x2, …, xn]. 

    For the construction of public key a hidden problem to find a path between two vertexes of the adjacency 

Schubert graph of PGn(Fq[x1, x2, …, xn] ) used. We take these vertexes ‘’in general position’’, i.e. they are of 

different type and belong to distinct largest Schubert cells. In the case of finite field Fq, q=2d  the multivariate 

rule is given by the system  of quadratic equations. The choice of large d (like d=32, d=64) insures that the 

inverse map has a very large polynomial degree.  

 The new bijective public rule can be used as instrument of encryption as well as for making digital signatures. 

The suggested new public key algorithm is an obfuscation of the multivariate cryptosystem of [13]. 
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