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Abstract 
This study provides a comprehensive assessment of an extended set of modern classifiers
designed  for  electroencephalography  signal  analysis  in  brain-computer  interface  systems.
Using the modern model of the vector of cyclic rhythmically connected random processes for
estimating signal  characteristics,  the classifiers  compared encompass k-NN, Linear SVM,
Decision  Tree,  Random  Forest,  Multilayer  Perceptron,  AdaBoost,  and  Naive  Bayes.  By
decomposing signals into Fourier series, the optimal number of coefficients is investigated to
both reduce computational complexity and increase accuracy. To facilitate a transparent and
decisive  comparison  among  the  classifiers,  the  Confusion  Matrix  methodology  is  used.
Results  suggest  that  among the  diverse  range  evaluated,  Linear SVM, Naive Bayes,  and
Multilayer Perceptron classifiers showcased superior accuracy.
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1. Introduction

Brain-computer interface (BCI) systems [1, 2, 3] based on the processing and interpretation of
electroencephalography (EEG) signals play an important role in neuroscience and technology. EEG,
which captures the electrical activity of the brain, is a crucial component of the effective functioning
of BCI systems. Being a non-invasive and relatively cost-effective [4, 5] method, EEG provides real-
time information on brain activity, making it invaluable for BCI. The ability to accurately interpret
these EEG signals is vital, especially for people with movement disorders [6], as it facilitates direct
communication  between their  brain and external  devices,  giving them regained  independence.  In
addition  to  therapeutic  applications,  advances  in  EEG processing  are  improving  human-machine
interaction in sectors such as gaming [7], virtual reality [8, 9], and robotics control [10]. Moreover,
the ontological frameworks, as discussed by authors in the study [11], can be pivotal in enhancing
BCI systems by integrating diverse data sources, which is essential for expanding the applications of
BCI into fields like Chinese Image Medicine, offering new modalities for diagnosis and treatment
planning.

In a previous study [12], several classifiers were investigated and compared for classifying EEG-
recorded signals. However, this work did not delve deeply into each stage of signal processing. This
study provides a more detailed description of each processing step. Additional filtering methods will
be applied, and a new model, called a vector of cyclic rhythmically connected random processes, will
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be applied during the evaluation of the EEG signal characteristics. A Confusion Matrix will be used to
test the classifiers, which will increase the reliability of an experimentally based choice of the most
effective decision-making technologies in BCI systems.

2. Methodology

2.1. Signal registration

The processing of EEG signals in the BCI-system is commonly recognized to involve five [13, 14]
primary stages (Fig. 1), namely, signal registration, pre-processing of signals,  estimation of signal
characteristics, classification (recognition) of signals and computer interaction.

Figure 1: Main stages of signal processing by the BCI-system

Signal collection (registration) as the first stage of signal processing by the neurointerface system
in terms of accuracy and cost is significantly determined by hardware and software of BCI system.
Although the market for affordable and accessible neurointerfaces is relatively limited, there are some
cost-effective  solutions  [16]  available  that  can  facilitate  experiments  with  satisfactory  levels  of
accuracy and reliability. The choice of the Open Source Brain-Computer Interfaces (OpenBCI) [17]
platform was  justified  and  experimentally  tested  in  the  works  [12,  13,  14].  This  platform is  an
affordable, straightforward, and open-source solution that can be easily assembled in the your own
home.

Figure 2: The Ultracortex Mark IV headset is produced using a 3D printer

A non-invasive method of electroencephalography was chosen to register the electrical activity of
the scalp surface. The 8-channel version of the OpenBCI platform was utilized to record the signals. It



should  be  noted  that  the  8-channel  version can  easily  be expanded to 16 channels  by using  the
additional Daisy module. However, in this research, an 8-channel version was used, since only one
channel was enough for the experiment. C3 electrode and A2 reference electrode were used to record
the signals. The data sampling frequency for each channel is set to 250 Hz. Ultracortex "Mark IV"
was employed to securely attach the electrodes, with the device being made using a 3D printer at
home (see Fig. 2). To manage the recording of EEG signals, the OpenBCI GUI utility is utilized. The
measurement outcomes are saved on a microSD memory card directly integrated into the board. For
processing the acquired results, custom scripts were developed in Python, leveraging various auxiliary
libraries including Sklearn, Numpy, Scipy, Matplotlib, and others.

2.2. Pre-processing of signals

The subsequent step involves the pre-processing of the analyzed EEG signals, which involves the
utilization  of  Butterworth  filters.  In  the  initial  stage,  a  3rd  order  rejection  filter  is  employed  to
eliminate noise originating from the power grid at a frequency of 50 Hz (60 Hz). The signals prior to
and following the initial filtering stage are depicted in Figure 3 ((a) and (b), respectively).

In  the  second stage,  a  5th  order  bandpass  filter  is  employed.  For  this  experiment,  the  filter's
bandwidth  is  set  to  1-17  Hz,  effectively  removing low-frequency and high-frequency noise.  The
filtered signals, which are prepared for subsequent processing stages, are illustrated in Figure 3 с.

Figure 3: EEG signals filtering. Recorded signal (a), after 3rd order rejection filter (b), after 5th order
bandpass filter (c) [13]

2.3. Estimation of signal characteristics

In this study [14], a new mathematical model of vector EEG was proposed and substantiated in the
form of a vector of cyclic rhythmically connected random processes. By considering the stochasticity,
cyclicality, variability of the rhythm of multidimensional distribution functions, initial, central, and
mixed moment functions of the signals under investigation, it provides efficient statistical tools for
studying a wide range of characteristics of vector EEG.



The vector EEG mathematical model introduced in this study [14] aligns with methodologies used
in [15],  where  a  similar  vector  approach is  applied to  the  statistical  processing and modeling of
synchronously registered cardio signals of various physical natures, demonstrating the versatility and
applicability of such models across different domains of biomedical signal analysis

Using the estimated rhythm function [14], the pre-processed vector of signals will be segmented
into cycles. These cycles can further be divided (see Fig. 4) into active zones (when the operator
performs a  mental  controlling  action)  and passive  zones  (when the  operator's  mental  controlling
action is absent).

The obtained vectors of activity and passivity zones will be decomposed into Fourier series. This
decomposition allows us to form a vector of informative features for the classifiers using the Fourier
coefficients (see Fig. 4 (b) and (c)). In addition, these coefficients, when considered alongside Bessel's
inequality, provide a comprehensive framework for feature extraction. The resulting coefficients will
be used for training the classifiers to achieve optimal performance.

Figure  4: Visualization  of  EEG  signal  characteristics  across  two zones.  On  the  left,  three  plots
represent  to  the  activity  zone,  and  on  the  right,  three  plots  represent  the  passivity  zone.
Horizontally, plots (a) display mathematical expectations, (b) display cosine coefficients from the
Fourier series, and (c) display sine coefficients from the Fourier series

The Figure 4 shows the characteristics of the EEG signal in the zones of activity and passivity
using mathematical expectations and Fourier series coefficients. It can be seen from the graphs that
the primary information is concentrated in the first 30 coefficients, while the following coefficients
demonstrate noise-like properties.

2.4. Classification

The selection of a classifier plays a vital role in the development of neurointerface systems. This
study aims to assess the accuracy of well-known classifiers including k-Nearest Neighbors (k-NN),
Linear Support Vector Machine (Linear SVM), Decision Tree, Random Forest, Multilayer Perceptron
(MLP),  Adaptive  Boosting  (AdaBoost),  and  Naive  Bayes.  This  classifiers  are  common  [18]  in
machine learning due to their versatility, efficacy, and scalability. Their popularity stems from several
strengths: k-NN's simplicity and adaptability [18], SVM's robustness in high-dimensional spaces [19],
decision trees' interpretability [20], Random Forest's ensemble-based accuracy [21], MLP's capability
to  capture  non-linearities  [22],  AdaBoost's  iterative  refinement  [23],  and  Naive  Bayes'  speedy



predictions and efficiency with large datasets [24]. Their combined theoretical soundness and proven
real-world applicability make them first-choice tools for many practitioners.

The choice of these classifiers is justified by the following considerations.
The k-Nearest Neighbors algorithm (k-NN) is one of the simplest machine learning methods and

falls under the category of supervised learning [18]. Its fundamental principle is that an object is
classified based on the "votes" of its nearest neighbors in the feature space. The size of "k" denotes
the number of neighbors  participating in  the "voting".  The k-NN algorithm does not  require  any
predictive model, but instead utilizes all available training information during classification.

The  Support  Vector  Machines  (SVM)  method  is  a  powerful  and  flexible  machine  learning
technique used for classification and regression tasks. A Linear SVM is a specific instance of SVM,
where the decision boundary or hyperplane is linear [19].

The main idea behind Linear SVM [22] is to find a hyperplane that best separates the data into two
classes, maximizing the margin (distance) between the closest data points (support vectors) from both
classes. These points, which lie closest to the hyperplane and determine its position, are called support
vectors. Thanks to this strategy, Linear SVM exhibits good resistance to overfitting.

The Linear SVM algorithm implements a linear decision boundary, but to implement nonlinear
boundaries, a kernel SVM can be used, applying different kernel functions. In this case, the input data
is transformed into a higher-dimensional space where it can be linearly separated. Despite this, Linear
SVMs are used when data can be linearly separated, or when the feature space far exceeds the number
of  training  examples,  which  allows  for  high  computational  speed  and  simplicity  of  interpreting
results.

A Decision Tree is a common machine learning algorithm that is employed for both classification
and regression tasks. The principle of a Decision Tree involves dividing the input feature space into
segments,  with  each  corresponding  to  a  specific  class  or  a  predicted  value  [20].  Essentially,  a
Decision Tree is a binary tree in which each internal node signifies a test on one of the features, while
each leaf represents the predicted class or value.

Random  Forest  is  an  machine  learning  algorithm  that  constructs  multiple  decision  trees  and
combines their  predictions [21].  Usіng decision trees and their  individual  decisions,  it  effectively
handles  the  overfitting  issue  often  seen  in  a  single  decision  tree,  providing  more  generalized
predictions. It works well with both classification and regression tasks, can handle large datasets with
high dimensionality, and provides measures of feature importance, making it a versatile and widely
used algorithm in machine learning.

MLP is a type of artificial neural network widely used for classification and regression tasks. MLP
uses a supervised learning technique called backpropagation for training. It should be noted that the
inclusion of one or more non-linear hidden layers allows MLPs to solve problems that are not linearly
separable, adding to its versatility as a machine learning classifier.

AdaBoost  is  a  powerful  machine  learning  algorithm  that  works  by  combining  several  weak
learners, typically decision trees, to create a robust classifier that improves prediction accuracy. The
AdaBoost algorithm iteratively adjusts the weights of training instances by increasing the weights of
incorrectly classified instances and decreasing the weights of correctly classified instances. Thus, it
"adapts" by focusing more on difficult cases in subsequent iterations. The final prediction is made by
weighted voting, taking into account the accuracy of each weak learner, making AdaBoost effective
for both binary and multi-class classification problems [23].

The Naive Bayes classifier is a probabilistic machine learning algorithm based on applying Bayes'
theorem with strong independence assumptions between the features [24]. Despite its oversimplified
assumptions,  Naive  Bayes  classifiers  often  perform remarkably  well  in  many  complex  real-time
situations. The model is also favored for its efficiency and scalability, handling large datasets with
high dimensionality effectively.

2.5. Experiment Procedure

During  EEG  signal  capture,  there  are  multiple  technical  challenges,  largely  attributed  to  the
diminished amplitude of the signal. As it travels through the brain's protective layers, cerebrospinal
fluid, and the skull to reach the scalp, the signal's amplitude ranges merely between 1-100 microvolts,



with frequencies spanning from 0.1-100 Hz. The choice of electrode material and the tightness of
contacts also impact the quality of the recording.

To obtain an artifact-free EEG recording, it's crucial that the research participant remains relaxed
during the experiment, seated in a specialized comfortable chair. External light and sound stimuli
should  be  minimized.  Proper  electrode  placement  is  vital,  with  the  electrode-skin  resistance
maintained below 5 kOhms.

In this experiment, the participant performed a mental action of either extending or flexing the arm
for approximately one second, followed by a state of relaxation for the next second. This "mental
action-relaxation" cycle was repeated 100 times consecutively.

3. Results

The results of the study of the effectiveness of various classifiers for the analysis of EEG signals
are presented below. The Confusion Matrix was used to quantify the classification results. The main
calculations and analyzes were carried out for two operators, which helps to take into account possible
individual  characteristics  in  the  results.  Figures  5-8  shows  graphs  of  the  dependences  of  some
accuracy characteristics of the Confusion Matrix on the number of Fourier coefficients, which enables
the selection of both a classifier and a vector of informative features in BCI systems.

Figure 5. Accuracy (ACC)

Figure 6. The harmonic mean of precision and sensitivity (F1 score)



Figure 7. Fowlkes–Mallows Index (FM)

Figure 8. Balanced Accuracy (BA)

As can be seen from the figures 5-8, the classifiers were trained using the coefficients from the
Fourier series, and most of them showed similar behavior. Optimal performance was observed at 20-
40  coefficients;  as  the  number  of  coefficients  increases,  there  is  an  obvious  tendency  towards
overfitting, especially noticeable with the k-NN classifier, which can be explained by the noisy nature
of the subsequent coefficients, which have no informative value. 

4. Conclusion

In this study presents an in-depth evaluation of several modern classifiers for EEG signal analysis
in  the  realm  of  brain-computer  interface  systems.  Using  an  innovative  model  vector  of  cyclic
rhythmically connected random processes, it was possible to provide a reliable estimation of EEG
signal characteristics. The use of the Confusion Matrix further augmented the clarity of classifiers
comparison in BCI systems. Among the evaluated classifiers, which included k-NN, Linear SVM,
Decision  Tree,  Random  Forest,  Multilayer  Perceptron,  AdaBoost,  and  Naive  Bayes,  the  most
accuracy was observed from Linear SVM, Naive Bayes, and Multilayer Perceptron. Based on the
analysis  of  the  dependence of  the  main accuracy  characteristics  of  the  Confusion  Matrix on the
number of spectral components, the approach to the optimal selection of the vector of informative
features in BCI systems is substantiated.
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