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Abstract 
We discuss the use of the Hilbert transform for the analysis of periodically nonstationary random 

signals (PNRSs), whose carrier harmonics are modulated by jointly stationary high-frequency 

random processes. The narrow-band modulations are considered. A representation of the signal in 

the form of a superposition of high-frequency components is obtained and it is shown that these 

components are jointly periodically nonstationary random processes (PRNPs). The properties of 

the band-pass filtered signals are examined, and it is shown that band-pass filtering can reduce 

both the number of signal variance cyclic harmonics and their amplitudes. We show that it is 

possible to extract the quadratures of narrow-band high-frequency modulation processes using the 

Hilbert transform. 
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1. Introduction 

The vibration signal in many cases can be described as a superposition of stochastically amplitude- 

and phase-modulated carrier harmonics with multiple frequencies [1-5]. Note that this representation 

is the characteristic feature of PNRP [6-8]. Taking this into consideration, we can analyze in more 

detail the covariance and spectral structures of stochastical modulations of PNRP carrier harmonics. 

Separation of the individual modulated harmonics and their quadratures can be performed using band-

pass filtering and the Hilbert transform [9]. Unfortunately, the properties of the Hilbert transform of 

vibration signals in most works are analyzed only superficially, without the involvement of the PNRP 

harmonic series representation. In this paper we consider the use of the Hilbert transform for analysis 

of the PNRP with high-frequency modulation, i.e., in the case when the spectra of the modulating 

processes are concentrated in an interval whose lower boundary is higher than the highest carrier 

frequency of the signal. 

2. Model of multicomponent periodically non-stationary random signal 

The PNRP mean function     m t E t , where E  is the operator of the mathematical 

expectation, the covariance function        b t u E t t u, , ,        t t m t , are periodical 

functions of time, i.e.    m t m t P   ,      b t u b t P u, , , where P is period. If  m t  are 

absolutely integrable time functions over interval  0 P, , namely 

  
0

P

m t dt ,    
0

P

b t u dt u, ,  
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then they can be represented in the form of a Fourier series as follows: 
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integer numbers,  is the set of natural numbers and 
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The mean function in Eq. (1) describes the deterministic part of the vibrations, which is usually 

associated with the macroscopic defects of mechanical systems, such as imbalance, eccentricity, 

misalignment, etc. The stochastic part   t  contains information about the non-linearity and non-

stationarity of the vibration signal caused by friction forces, changes in the viscosity of lubricants, 

surface irregularities, etc. An analysis of the stochastic part, including its periodical non-stationarity 

characteristics, i.e. the Fourier coefficients 
   

kB u  in Eq. (2), allows defects to be detected in the 

early stages after their initiation [10-12]. 

The covariance components  kB  satisfy the equality: 

         
  0ik u

k kB u B u e .  

The zero
th
 covariance component is an even function: 

        
 0 0B u B u . It is also a positive 

definite function [6, 12, 13]. Thus 
   

0B u  has all the properties of the covariance function of 

stationary random processes. Therefore, this quantity is called a covariance function of stationary 

approximation of PNRP [6, 12, 13]. If 

 





 b t u du, ,  

then we can introduce the function 
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which is called the instantaneous spectral density of PNRP. Taking into account the Fourier series in 

Eq. (2), we have 
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Proceeding from the PNRP series representation [6, 9, 13], 

     


 0ik t
k

k

t t e , (4) 

where  k t  are jointly stationary random processes, we can deduce that the properties of the mean 

in Eq. (1) and covariance function in Eq. (2) are determined by the properties of modulating processes 

. The mathematical expectations of  are equal to the Fourier coefficients of the mean 

function     k km t E t m: . The cross-covariance functions        k lklR u E t t u , where 

 k t  k t



     k k kt t m , determine the Fourier coefficients of the PNRP covariance function with the 

number  k l r : 

         





 0il u
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B u R u e, . (5) 

It follows from Eq. (5) that the random process in Eq. (3) is periodically non-stationary of the second 

order only in the case when some of the cross-covariance functions of the modulation processes are not 

equal to zero. The zero
th
 covariance component is defined by the auto-covariance functions of  l t : 
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Substituting Eq. (5) into Eq. (3), we obtain the equality: 
        

  




  0k l k l
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f f l, , (6) 

where 
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It follows from (6) that the correlations of the PNRP spectral harmonics and the correlations of the 

modulating processes in series representation in Eq. (4) are equivalent. 

3. High-frequency modulation of multi-component signal 

Consider PNRS, which are represented by finite stochastic series 
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We suppose that the power spectral densities of the modulating processes 
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are concentrated in the interval      0 0m m,  and that    0 0m L . This modulation we shall 

call high-frequency modulation. 

3.1. Signal representation for narrow-band modulation 

We assume that the high-frequency quadratures in Eq. (4) are narrow-band (i.e.  0m ) and can 

be described by the Rice representations: 
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Using Eqs. (8)–(10) each component of Eq. (7) can be written in the form: 

                         0 0 0 0 0 0
c s c s
k k k kt k t t k t t k t t k tcos sin cos sin  

                                                                           0 0 0 0
c s
k kv t k t v t k tcos sin , 

 

where 

         
1

2
c c s
k k kt p t q t ,          

1

2
s s c
k k kt p t q t ,  

        
1

2
c c s
k k kv t p t q t ,         

1

2
s s c
k k kv t p t q t .  

Introducing the complex random processes 
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for the signal representation gives: 
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The time changes in the signal covariance function are defined by the correlations of the narrow-

band components Eqs. (11) and (12), where the correlations of the component shifted by 0  define 

the first harmonic of the covariance functions, and the correlations of the components shifted by 02  

define the second harmonics, etc. To obtain a compact formula for the signal covariance function, we 

rename each component   

k t  in the following way: 
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where           
 

 c c s s
k k k kt t t t,  . We can then represent the signal in the form: 
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3.2. Extraction of quadratures and signal band-pass filtering. 

To analyze the structure of the quadrature correlations in more detail, we can separate the narrow-

band components: 

                   0 0 0 0cos sinc s
k k kt t k t t k t , (14) 
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using filtering with the corresponding transfer function, i.e.: 
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A Hilbert transform of Eqs. (14) and (15) gives: 
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From Eqs. (14) and (16), and Eqs. (15) and (17), we obtain: 
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The relations in Eqs. (18)–(21) can be used to create techniques for processing experimental data 

to extract the high-frequency quadratures and to analyze their properties. The covariance and spectral 

structure of the quadratures may have specific features for a given fault in the mechanism. 

The signal power spectrum density is equal to the sum of the power spectral density of the narrow-

band components in Eqs. (14) and (15), i.e. 
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The spectra in Eqs. (23) and (24) contain sharp peaks around the points 0k , which are 

concentrated within the intervals 
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Let us consider the properties of the signal in Eq. (13) after band-pass filtering; the transfer 

function for  0  is defined by 
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The signal in Eq. (13) after filtering is presented by the following expression (where N L ): 
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For its covariance function, we get 
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where     1S N r N, ,  for 0r  and    1S r N N, ,  for 0r . The variance of the 

output signal in Eq. (26) is equal to 
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As we can see, the filtering of the signal in Eq. (13) with the bandwidth in Eq. (25) reduces the 

number of the harmonics for its variance and also changes the value of their amplitudes. This is a 

consequence of the reduction of the number of the components of the signal in Eq. (13), whose cross-

covariances result in time changes of the variance. Note that filtering also reduces the power of the 

stationary background, which is determined by the zero
th
 covariance component in Eq. (27). 

4. Discussion 

It should be noted that the works which devoted to an envelope or square envelope analysis of 

vibration [14–21], largely stimulates investigations, the results of which are presented in this paper. 

The envelope technique is empirical, and the results were interpreted as a blind transfer of the 

definitions and well-known consequences of the Rice representation analysis for the simplest case 

when the spectra of the deterministic quadratures are narrower than the frequency of the harmonic 

carrier. 



The theoretical analysis performed above illustrates that this interpretation is incorrect in cases 

where vibrations are modeled as PNRSs, which can generally be represented by a superposition of the 

amplitude- and phase-modulated carrier harmonics. This multi-component superposition adequately 

describes the properties of the stochasticity and the recurrence of the numerous natural and man-made 

processes, including vibrations [6–13]. Using the Hilbert transform, the component quadratures can 

be extracted and their auto- and cross-covariance functions can be estimated on the basis of the 

obtained time series. In this way, the quadratures of the high-frequency oscillations that modulate the 

PNRS carrier harmonics can also be studied. 

5. Conclusions 

It has been shown that the application of the Hilbert transform to a PNRS, the carrier harmonics of 

which are amplitude or amplitude-phase modulated by high-frequency, jointly stationary random 

processes, does not change the structure of the signal covariance; that is, the Fourier coefficients of 

the covariance functions of the signal and its Hilbert transform (the covariance components) are the 

same. 

The issue of filtering of the raw signal for selection of the informative frequency band must also be 

re-formulated. It is necessary to consider it in terms of the filtering of a PNRS, which has some 

special features that must be taken into consideration for a more effective choice of band. In the case 

of narrow-band modulation, a PNRS is represented by the superposition of the high-frequency, 

narrow-band components which are stationary (but jointly, periodically non-stationary) random 

processes. The component quadratures can be extracted using the Hilbert transform. An auto- and 

cross-covariance analysis of the quadratures allows us to study the covariance structure of a PNRS in 

more detail. 
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