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Abstract
The recent proposal of the European Union Data Act adopted by the European Commission has the
goal to create fair rules for sharing and using data. An important role in this context is the one played
by smart contracts, that are considered as a key technology to enable effective and consensual data
sharing. For this purpose, the proposal sets up some requirements for smart contracts, specifically in the
context of interoperability with applications that process data. There is a need for scientific work that
explains which steps to take so that smart contracts comply with the proposal. This paper aims to begin
addressing this gap by considering each one of the requirements and by providing a series of techniques
from different areas of computer science to comply with them.
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1. Introduction

The recent proposal of the European Union Data Act has been published by the European
Commission on 23 February 2022 [1]. Its goal is to create fair rules for sharing and using
data in order to boost the EU’s economy by making use of data generated from products and
services. While there has been much discussion by scholars from different fields about the
proposal itself, we believe that at this moment the scientific community is still lacking a work
that considers which actions to take and computer science methods to adopt so that smart
contracts are compliant with the requirements of the proposal. For instance, the article in [2]
suggests recommendations on how to address smart contracts to improve the Data Act, but it
does not analyze how existing technologies can be applied to satisfy the proposal. We plan to
start filling this void with this paper.

In the proposal, a smart contract is defined as "a computer program stored in an electronic
ledger system wherein the outcome of the execution of the program is recorded on the electronic
ledger". This definition differs from the historical one [3, Chapter 7] and it is closer to the concept
of smart contracts for blockchain, even if this technology is not explicitly mentioned in the
proposal. There can be different kinds of electronic ledgers, with blockchain being a distributed
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one. It differs from traditional ledger systems because it does not require the involvement of
third-party intermediaries, such as banks or notary companies. Instead, all transactions are
securely recorded in a transparent and immutable way on a decentralized ledger and verified by
network participants using cryptographic algorithms, reducing costs associated with traditional
payment systems, as external intervention is not required.

All of the requirements for smart contracts set out in the Data Act can be found in Chapter
VIII [1, Chapter 8], that treats interoperability, and more specifically in Article 28 and Article 30.
Most of the requirements are actually in Article 30, which constrains data sharing involving
smart contracts. On the other hand, Article 28 gives the essential requirements regarding
interoperability, and it also pushes for interoperability of smart contracts within the services
and activities of data space operators, especially in data sharing applications. This promotes
seamless integration and execution of smart contracts across the data space ecosystem. Smart
contracts are mentioned in Chapter VIII for a reason: besides the need for them to be regulated,
they are seen in this proposal as a tool to increase interoperability in data sharing applications.

In this paper, we first describe the requirements for smart contracts and interoperability
given by Article 30 and Article 28 of the EU Data Act proposal, and then we discuss state-of-art
techniques to comply with each of these requirements.

2. Smart Contracts and Interoperability Requirements

In this Section, we shortly describe the requirements regarding smart contracts that are set out
in Article 30 and Article 28 of the EU Data Act proposal. First, we focus on Article 30, which
outlines responsibilities of the vendor of an application using smart contracts or, in case such a
figure does not exist, the deployer of smart contracts for others. Following Article 30(1), they
should comply with the following essential requirements:

1. Robustness: Ensure that smart contracts are highly robust to prevent functional errors
and resist manipulation by third parties.

2. Safe Termination and Interruption: Implement mechanisms for terminating ongoing trans-
actions within smart contracts, allowing for resetting or halting operations to prevent
accidental executions.

3. Data Archiving and Continuity: Plan for archiving transactional data, smart contract logic,
and code if the smart contract needs to be terminated or deactivated to maintain a record
of past data operations (auditability).

4. Access Control: Implement rigorous access control mechanisms at both the governance
and smart contract layers to protect smart contracts.

In addition to these requirements, the entire Chapter VIII deals with interoperability, and
Article 28 states quite generically that "the means to enable the interoperability of smart contracts
within their services and activities shall be provided". Interoperability is defined in the proposal as
"the ability of two or more data spaces or communication networks, systems, products, applications
or components to exchange and use data in order to perform their functions".



3. Discussion

Blockchain is a shared data structure with three main data properties: immutability, distributabil-
ity, and decentralization. In a nutshell, the blockchain data structure (literally, a chain of blocks)
is shared in redundant copies among a distributed and decentralized network and it allows to
achieve that data is not tamperable (or rather, hardly tamperable) by a consensus mechanism
and cryptographic primitives. Given its properties, by design, the blockchain is a promising
data structure for smart contracts in view of satisfying the requirements of the EU Data Act.

We start by considering Article 30(1). For the first requirement, robustness, we recall that
smart contracts become immutable after being deployed in the blockchain, and therefore they
are resistant to manipulation by third parties. However, immutable programs, if not properly
checked, may lead to errors, bugs, and vulnerabilities that are immutable as well. For this reason,
the adoption of blockchain is not sufficient to completely guarantee robustness. In this context,
static analysis can clearly be applied to detect issues in an early stage of code development and
before code becomes immutable. Static analysis tools that check for errors in smart contracts
already exist, see [4]. Besides proving the correctness of contracts by applying formal methods
based on mathematical theories (see for instance [5], [6], [7]), specific extensions of these
methods could be developed to prevent functional errors in the context of data sharing.

Regarding safe termination in the second requirement, we recall that deciding whether a
Turing complete program terminates on all possible inputs is a famous undecidable problem in
computer science [8]. However, blockchains exploit the gas mechanism to ensure termination
of smart contracts: when a contract is executed, it also sets an amount of gas that is consumed
during the execution of its instructions. If the gas is depleted before the execution is completed,
then termination is forced, leading to a failure error. By applying formal verification, it is
possible to prove the correct functioning of the gas mechanism [9] and to detect unexpected
behaviors such as those due to out-of-gas vulnerabilities [10]. About the requirements for
terminating an ongoing transaction, since each transaction is executed atomically, it is not
possible to revert it after its approval. However, there are workarounds that permit to have
code inside a contract to specify exceptions to its execution. For what regards interruption or
reset operations to avoid accidental executions, there are already blockchain smart contracts
that support these concepts, but there exist no standards yet. For example, the selfdestruct
functionality of the Ethereum blockchain allows to destroy already deployed contracts [11].
Instead, the Pausable [12] contract proposed by OpenZeppelin implements an emergency
stop mechanism that can be activated by an authorized account to avoid accidental executions.

Concerning the third requirement, data archiving and continuity, we have that a blockchain
is based on a network where each peer keeps a (either full or partial) copy of the blockchain,
and since this structure is distributed and decentralized, these copies are typically located in
different geographical areas. In this manner, the blockchain keeps records of past data operations
and avoids single points of failure. In addition, industrial blockchains, such as Hyperledger
Fabric [13], allow to enrich contracts by importing general-purpose APIs to save data in different
formats, media, and other backup technologies. Additionally, a blockchain might need to
undergo maintenance operations, and it is essential that no data is lost during such phases: the
situation differs between the cases of permissioned and permissionless blockchains. In the first
case, access to the network and the ability to participate in the consensus process are restricted



to a specific group of participants, and it is possible to perform operations through network
governance. Moreover, this subset of peers also typically has the power to propose a plan for
halting, modifying, and restarting the blockchain with updated software, carefully migrating
the state of the previous version [14]. On the other hand, in a permissionless blockchain anyone
can join the network, validate transactions, and participate in the consensus process without
needing prior approval or identity verification. However, in this case maintenance can only
be performed on-chain, as there is no high-level entity that governs the entire chain and each
request must go through the consensus mechanism.

With respect to the fourth requirement, access control, we still need to consider the differences
between a permissioned and a permissionless blockchains. In the first case, it is explicitly
possible to set up governance on different levels, for instance by setting up a consortium [15] or
private channels for the transmission of sensitive data [16]. In the second case, it is not possible
to implement governance for the entire blockchain, as there are no permissions or restrictions
to use the blockchain. However, it is always possible to do this at the smart contract layer: for
instance, this is the case with contracts implementing Proxy Upgrade [17], which require to
be managed by special users named contract admin. In addition, blockchain technology can
be supported by models of self-sovereign identity [18] for digital identity management, where
users can control and use their sensitive data without disclosing it in the blockchain, thanks to
zero-knowledge protocols. Moreover, anomaly detection for blockchain [19] can be applied to
detect user behaviors that fall outside the normal range also after access has been granted.

The last point is the one about interoperability, which is the core of Chapter VIII and of
Article 28 [1]. As intuition suggests, an increase in the interoperability of smart contracts poses
new challenges, both technical for data sharing and ethico-legal for data privacy. We identified
two points of discussion regarding this. First, there is a problem of interoperability in-between
blockchains, as there is a lack of standardization for smart contracts, and different blockchain
platforms use different programming languages and even different consensus mechanisms.
Moreover, different blockchains may operate under different legal and regulatory frameworks,
and interoperability solutions need to account for these differences to ensure compliance. Having
a common language might not be achievable, but there is a need for at least a cross-language
framework for different blockchains to interact. However, such a framework implies new
non-trivial verification challenges [20]. Second, blockchains need to be interoperable also with
external data and applications [21]: in order for smart contracts to be useful, they often need
to be parameterized, i.e., to change their behavior depending on external data sources. This
can be achieved by using oracles that provide data to a smart contract. However, it might be
difficult to decide whether an oracle is trustable and reliable. An approach to this problem is to
use symbolic methods from the artificial intelligence research area: while subsymbolic methods
typically provide good results for a variety of tasks, they oftentimes are not explainable, that is,
they do not provide an explanation for their decisions. For instance, [22] gives a framework
that incorporates formal argumentation and negotiation in a blockchain environment to make
the decision-making process of an oracle transparent. After having the information of which
are the trustable oracles, we need to track the data in the contract to the corresponding oracle
source. Program analysis can help in tracking the information flows inside smart contracts,
and, for instance, it has already been used to identify data leaks related to GDPR in traditional
programs [23, 24, 25].
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