
Forward LTL𝑓 Synthesis: DPLL At Work
Marco Favorito1

1Banca d’Italia, Italy

Abstract
We present a forward-search-based approach for specifications expressed in Linear Temporal Logic
on finite traces (ltl𝑓). We exploit the observation that the DFA game arena coming from the ltl𝑓
can be seen as an AND-OR graph. The idea is that for many problem instances the solution can be
found without computing the whole game arena, as done by the classical backward ltl𝑓 synthesis
approach. The procedure, implemented in the tool Nike, is a depth-first AND-OR graph search based
on two primitives: state-equivalence checking and search node expansion. State-equivalence checking is
based on syntactic equivalence and knowledge compilation techniques, whereas search node expansion
is based on a procedure inspired by the famous Davis-Putnam-Logemann-Loveland (DPLL) algorithm.
Nike won the ltl𝑓 Realizability Track in the 2023 edition of SYNTCOMP.

Keywords
Linear temporal logic on finite traces, LTL𝑓 Synthesis, AND-OR Graph Search

1. Introduction
Program synthesis is the task of finding a program that provably satisfies a given high-level
formal specification [1]. A commonly used logic for program synthesis is Linear Temporal Logic
(ltl) [2, 3], typically used also in model checking [4]. ltl on finite traces (ltl𝑓) [5], a variant of
ltl to specify finite-horizon temporal properties, has been recently proposed as specification
language for temporal synthesis [6]. The ltl𝑓 synthesis setting considers a set of variables
controllable by the agent, a (disjoint) set of variables controlled by the environment, and a ltl𝑓
specification that specifies which finite traces over such variables are desirable. The problem
of ltl𝑓 synthesis consists in finding a finite-state controller that, at every time step, given the
values of the environment variables in the history so far, sets the next values for each agent
proposition such that the generated traces comply with the ltl𝑓 specification.

The basic technique for solving ltl𝑓 synthesis amounts to constructing a deterministic finite
automaton (dfa) corresponding to the ltl𝑓 specification, and then considering it as a game
arena where the agent tries to get to an accepting state regardless of the environment’s moves.
A winning strategy, i.e. a finite controller returned by the procedure, can be obtained through a
backward fixpoint computation for adversarial reachability of the dfa accepting state. State-
of-the-art tools such as Lydia [7] and Lisa [8] are based on the classical approach. The main
drawback of this technique is that it requires to compute the entire dfa of the ltl𝑓 specification,

OVERLAY 2023: 5th Workshop on Artificial Intelligence and Formal Verification, Logic, Automata, and Synthesis,
November 7, 2023, Rome, Italy
$ marco.favorito@bancaditalia.it (M. Favorito)
� https://marcofavorito.me (M. Favorito)
� 0000-0001-9566-3576 (M. Favorito)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:marco.favorito@bancaditalia.it
https://marcofavorito.me
https://orcid.org/0000-0001-9566-3576
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

which in the worst case can be doubly exponential in the size of the formula. Therefore, the
dfa construction step becomes the main bottleneck.

A natural idea is to consider a forward search approach that expands the arena on-the-fly
while searching for a solution, possibly avoiding the construction of the entire arena. Forward-
based approaches are at the core of the best solution methods designed for other AI problems:
Planning with fully observable non-deterministic domains (FOND) [9, 10, 11, 12], where the
agent has to reach the goal, despite that the environment may choose adversarially the effects
of the agent actions, and Planning in partially observable nondeterministic domains (POND),
also known as contingent planning, where the search procedure must be performed over the
belief-states [13, 14, 15]. However, techniques developed for such problems cannot be applied to
ours directly, which may result in a PDDL specification with exponential size e.g. see [16, 17].

For these reasons, researchers have been looking into forward search techniques specifically
conceived for solving ltl𝑓 synthesis, considering the DFA game as an AND-OR graph search.
Two notable attempts in this direction have been presented in [18], proposing the tool Ltlfsyn,
and [19] with the tool Cynthia. Our work builds on top of them, by improving certain design
and implementation details, especially regarding the state-equivalence checking and the search
node expansion components, together with a Binary Decision Diagram (BDD)-based check
to achieve completeness when certain conditions are met. Nike uses a computationally-cheap
syntactical equivalence between state formulas, not used in previous works. Furthermore, a
novel search graph expansion technique is proposed, based on a procedure inspired by the
famous Davis-Putnam-Logemann-Loveland (DPLL) algorithm. As in [18, 19], the problem is
then reduced to an AND-OR graph search, where the OR nodes represent the agent’s choices,
and the AND nodes represent the environment’s choices. The search algorithm used is a classical
depth-first AND-OR graph search algorithm. The ltl𝑓 synthesis problem is realizable iff there
is a winning strategy for the corresponding AND-OR graph. More details can befound in [20].

2. DPLL-based Forward ltl𝑓 Synthesis
The Search Algorithm. Algorithm 1 describes the AND-OR search procedure that is at
the core of Nike. The algorithm is basically a top-down, depth-first traversal of the AND-OR
graph induced by the on-the-fly dfa construction, proceeding forward from the initial state,
and excluding strategies that lead to loops. The forward-based generation of the AND-OR
graph is based on formula progression and on an abstract GetArcs function that, taken in
input a search node 𝑛, it produces the next available player moves and successor states. The
presence of loops must be carefully handled; when a loop is detected at node 𝑛, the procedure
returns false, temporarily considering 𝑛 as a failure node. Note that node 𝑛 is not tagged as
failure, since it is unknown whether all the or-arcs of 𝑛 are explored. If later during the search
𝑛 is discovered as a success node, such information must be propagated from 𝑛 backwards to
the ancestor nodes of 𝑛. It should be noted that, in a forward search on an AND-OR graph, it
is critical to handle loops with the assistance of this backward propagation, implemented in
BackProp (Line 28), as illustrated in [21]. For more details on the search algorithm, please refer
to the original paper [19]. Overall, Algorithm 1 is very similar to the one used by [19], except that
instead of relying on the abstract Expand function (see Line 20 of Algorithm 1 of their paper),
our approach relies on two primitive operations: state-equivalence checking and search node

expansion. The state-equivalence check is used to check state equivalence, and it is implicitly
used in functions like InPath to detect loops. The search-node expansion is represented by
the generating function GetArcs and does not have to precompute all successors (Cynthia), or
slavishly enumerating all possible agent’s and env’s variables assignments (Ltlfsyn).
Algorithm 1 Forward ltl𝑓 Synthesis

1: function Synthesis(𝜙) return strategy
2: if IsAccepting(𝜙) then
3: AddToStrategy(𝜙, true)
4: return GetStrategy()
5: InitialGraph(𝜙)
6: 𝑛 := GetGraphRoot()
7: found := Search(𝑛, ∅)
8: if found then return GetStrategy()
9: return EmptyStrategy()◁ 𝜙 is unrealizable

10: function Search(𝑛, path) return True/False
11: if IsSuccessNode(𝑛) then return True

12: if IsFailureNode(𝑛) then return False

13: if InPath(𝑛, path) then ◁ We found a loop
14: TagLoop(𝑛) return False

15: 𝜓 :=FormulaOfNode(𝑛)
16: if IsAccepting(𝜓) then
17: TagSuccessNode(𝑛)
18: AddToStrategy(𝜓, true)
19: return True
20: for (𝑎𝑐𝑡,AndNd) ∈GetArcs(𝑛) do
21: for (𝑟𝑒𝑠𝑝, 𝑠𝑢𝑐𝑐) ∈GetArcs(AndNd) do
22: found :=Search(𝑠𝑢𝑐𝑐, [path|𝑛])
23: if ¬found then Break
24: if found then
25: TagSuccessNode(𝑛)
26: AddToStrategy(𝜓, 𝑎𝑐𝑡)
27: if IsTagLoop(𝑛) then
28: BackProp(𝑛)
29: return True
30: TagFailureNode(𝑛)
31: return False

State-Equivalence Checks. We now describe
two state-equivalence checking approaches: BDD-
based and hash-consing based. The first one
(BddBasedEqCheck) is that, for a search node 𝑛,
we take its associated ltl𝑓 formula 𝜓 with For-
mulaOfNode (remember that search node is as-
sociated with an ltl𝑓 formula). Then, we com-
pute xnf(𝜓), which is propositionally equivalent
to 𝜓. Finally, we get its BDD representation, i.e.
𝐵𝜓 :=BddRepresentation(xnf(𝜓)𝑝). We do these
operations both for 𝑛1 and 𝑛2, yielding 𝐵xnf(𝜓1)

and 𝐵xnf(𝜓2). The equivalence check whether the
two BDDs point to the same BDD node (𝐵xnf(𝜓1)=
𝐵xnf(𝜓2)). If true, then it means, by the canonicity
property of BDDs, that the associated (proposition-
alized) formulas are propositionally equivalent.

The second check (HashConsingEqCheck) is
based on structural equivalence: two search nodes 𝑛1
and 𝑛2 are considered equivalent if their formulas
𝜓1 and 𝜓2 have the same syntax tree.To make the
comparison fast, we can use hash consing [22] which
is a technique used to share values that are struc-
turally equal. Using hash consing, two formulas can
be stated as structurally equivalent if they point to
the same memory address, achieving constant time

equality check. Since this equivalence check is sound but not complete, to guarantee the ter-
mination of this version of the search algorithm, we propose the following procedure: given a
synthesis problem, first execute Algorithm 1 with HashConsingEqCheck as equivalence check
and the search node expansion procedure (DpllGetArcs, see below). As soon as, during the
execution, the size of the formula of any generated search node becomes greater than a given
threshold 𝑡, then abort the execution and resort to the search algorithm Algorithm 1 based on
BddBasedEqCheck and DpllGetArcs. Currently, we use a threshold 𝑡 = 3 · |𝜙|.
DPLL-based Search Node Expansion. Given a search node 𝑛, our expansion node function
DpllGetArcs returns a generator over pairs (move, node), where move is a mapping from
variables to truth values (the absence of a variable is considered a don’t care), and node is a
ltl𝑓 formula that, as required by ours and [19] search framework, represents a search node
(either AND or OR). Informally, an agent/environment move is found by picking a variable,
assigning a boolean value, and replacing the value to the state formula. The resulting formula
is processed again until there are no agent/environment variables. The overall assignment is
considered as the next move to explore, and the successor state is computed by applying formula

progression rules (See the function RmNext and Proposition 4 of [20]). Note that such kind
of procedure is suitable for our use-case because of their depth-first nature, which implies a
low-space requirement, and because of their "responsive" nature: a candidate move is proposed
in linear time on the number of variables (possibly better thanks to simplifications). Note that
DpllGetArcs abstract specification that can be customized by the way variables are chosen
and by which value is assigned to them first. In our tool, we consider them in alphabetical
order (as future work we aim to provide less naive and more meaningful orderings), and the
assignments strategies are three: True-First (i.e. the first assigment considered is always true),
False-First (i.e. the first assigment considered is always false), and random (i.e. the assignment
considered is random). Due to lack of space, we underspecified some details in the description
of the theory behind the tool, which can be found in [20].

3. Implementation and Evaluation

Figure 1: SYNTCOMP23 results for the ltl𝑓 track.

Our prototype implementation, Nike, is an
open-source tool implemented in C++11
(github.com/marcofavorito/nike). More
specifically, Nike uses Syfco to parse the
synthesis problems described in TLSF for-
mat [23] to obtain the ltl𝑓 specification and
the partition of agent/environment propo-
sitions. Nike integrates the preprocessing
techniques presented in [18] to perform
one-step realizability/unrealizability checks,
which is implemented using CUDD (see be-
low), at the beginning of the synthesis pro-

cedure. If neither one-step check succeeds, the AND-OR search begins. The search algorithm
used by Nike is a recursive depth-first search algorithm, which is detailed below. Since the
procedure is correct and terminates, either the search procedure does not find a winning strategy,
in which case the answer to the ltl𝑓 synthesis problem is “unrealizable”, or a winning strategy
is found, and therefore the outcome is “realizable”. We use n-ary trees with hash-consing for
representing the ltl𝑓 formulas and performing the hash-based state-equivalence checking. The
BDD library CUDD-3.0.0 [24] instead is used for the BDD-based state-equivalence checking.
Figure 1 shows the experimental evaluation over benchmarks from the literature [25]. As can
be seen, Nike achieved the best performances among other competitive tools for ltl𝑓 synthesis.

4. Conclusion

In this paper we presented the tool Nike, the best forward search ltl𝑓 synthesis approach so
far, and the first that is truly competitive with the considered state-of-the-art tools based on
backward computation. We think this work sets the foundations for a new family of forward ltl𝑓
synthesis algorithms, and opens several research avenues for investigating effective branching
heuristics for the DPLL-based search graph expansion (e.g. non-chronological backtracking), or
better termination strategies for searching with hash-consing-based state-equivalence checking.

https://github.com/marcofavorito/nike

Acknowledgements

This line of research has started from earlier research work supported by the ERC-ADG White-
Mech (No. 834228).

References

[1] A. Church, Application of recursive arithmetic to the problem of circuit synthesis, Journal
of Symbolic Logic 28 (1963).

[2] A. Pnueli, The temporal logic of programs, in: FOCS, 1977.
[3] A. Pnueli, R. Rosner, On the Synthesis of a Reactive Module, in: POPL, 1989.
[4] C. Baier, J. Katoen, Principles of model checking, 2008.
[5] G. De Giacomo, M. Y. Vardi, Linear Temporal Logic and Linear Dynamic Logic on Finite

Traces, in: IJCAI, 2013.
[6] G. De Giacomo, M. Y. Vardi, Synthesis for LTL and LDL on Finite Traces, in: IJCAI, 2015.
[7] G. De Giacomo, M. Favorito, Compositional approach to translate LTL𝑓 /LDL𝑓 into deter-

ministic finite automata, in: ICAPS, 2021.
[8] S. Bansal, Y. Li, L. M. Tabajara, M. Y. Vardi, Hybrid compositional reasoning for reactive

synthesis from finite-horizon specifications, in: AAAI, 2020.
[9] M. Ghallab, D. S. Nau, P. Traverso, Automated planning - theory and practice, 2004.

[10] H. Geffner, B. Bonet, A Concise Introduction to Models and Methods for Automated
Planning, 2013.

[11] A. Cimatti, M. Roveri, P. Traverso, Strong planning in non-deterministic domains via
model checking, in: AIPS, 1998.

[12] A. Cimatti, M. Pistore, M. Roveri, P. Traverso, Weak, strong, and strong cyclic planning
via symbolic model checking. 1–2 (2003).

[13] J. H. Reif, The complexity of two-player games of incomplete information, JCSS 29 (1984).
[14] R. P. Goldman, M. S. Boddy, Expressive planning and explicit knowledge, in: AIPS, 1996.
[15] P. Bertoli, A. Cimatti, M. Roveri, P. Traverso, Strong planning under partial observability,

Artif. Intell. 170 (2006).
[16] A. Camacho, J. A. Baier, C. J. Muise, S. A. McIlraith, Finite LTL Synthesis as Planning, in:

ICAPS, 2018.
[17] A. Camacho, S. A. McIlraith, Strong fully observable non-deterministic planning with LTL

and LTL𝑓 goals, in: IJCAI, 2019.
[18] S. Xiao, J. Li, S. Zhu, Y. Shi, G. Pu, M. Y. Vardi, On-the-fly synthesis for LTL over finite

traces, in: AAAI, 2021.
[19] G. De Giacomo, M. Favorito, J. Li, M. Y. Vardi, S. Xiao, S. Zhu, Ltlf synthesis as AND-OR

graph search: Knowledge compilation at work, in: IJCAI, 2022.
[20] M. Favorito, Forward ltlf synthesis: Dpll at work, arXiv preprint arXiv:2302.13825 (2023).
[21] M. G. Scutellà, A note on dowling and gallier’s top-down algorithm for propositional horn

satisfiability, J. Log. Program. 8 (1990) 265–273.
[22] L. P. Deutsch, An interactive program verifier (1973).

[23] S. Jacobs, G. A. Perez, P. Schlehuber-Caissier, The temporal logic synthesis format tlsf v1.2,
2023. arXiv:2303.03839.

[24] F. Somenzi, CUDD: CU Decision Diagram Package. Univ. of Colorado at Boulder (2016).
[25] G. Perez, SYNTCOMP 2023 Results | The Reactive Synthesis Competition, 2023. URL:

http://www.syntcomp.org/syntcomp-2023-results/.

http://arxiv.org/abs/2303.03839
http://www.syntcomp.org/syntcomp-2023-results/

	1 Introduction
	2 DPLL-based Forward ltlf Synthesis
	3 Implementation and Evaluation
	4 Conclusion

