
Composition of Nondeterministic Services for LTL𝑓

Task Specification
Giuseppe De Giacomo1,2, Marco Favorito3 and Luciana Silo2,4

1University of Oxford, UK
2Sapienza University of Rome, Italy
3Banca d’Italia, Italy
4Camera dei Deputati, Italy

Abstract
In this paper, we study the composition of services so as to obtain runs satisfying a task specification
in Linear Temporal Logic on finite traces (ltl𝑓 ). We study the problem in the case services are nonde-
terministic and the ltl𝑓 specification can be exactly met. To do so, we combine techniques from ltl𝑓
synthesis, service composition à la Roman Model and reactive synthesis.
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1. Introduction

The service-oriented computing (SOC) paradigm uses services to support the development
of rapid, low-cost, interoperable, evolvable, and massively distributed applications. Services
are considered autonomous, platform-independent entities that can be described, published,
discovered, and loosely coupled in novel ways [1]. Service composition, i.e. the ability to
generate new, more useful services from existing ones, is an active field of research in the
SOC area and has been actively investigated for over a decade. Particularly interesting in this
context is the so-called Roman Model [2, 3, 4, 5] where services are conversational, i.e., have an
internal state and are modeled as finite state machines (FSM), where at each state the service
offers a certain set of actions, and each action changes the state of the service in some way.
The designer is interested in generating a new service, called target, from the set of existing
services specified using an FSM, too. The goal is to see whether the target can be satisfied by
properly orchestrating the work of the component service and building a scheduler called the
orchestrator that will use actions provided by existing services to implement action requests.

In this paper, we consider a variant of the Roman Model where the composition is task-
oriented, and this makes it more similar to Planning in AI [6, 7, 8]. Specifically, we are given
a task, and we want to synthesize an orchestrator that, on the one hand, reactively chooses
actions to form a sequence that satisfies the task and, on the other hand, delegates each action
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to an available service in such a way that at the end of the sequence, all services are in their
final states. We consider the available services as nondeterministic, in the sense that when the
orchestrator delegates to them an action, they will change state in a nondeterministic (devilish
vs. angelic) way, as studied, e.g. in [3]. We draw from the work on declarative process modeling
in Business Process Management (BPM) in which the task specification is expressed in Linear
Temporal Logic on finite traces (ltl𝑓 ) [9] with the so-called declare assumption that only one
action can be selected at each point in time [10]. This gives us a rich way to specify dynamic
tasks that extend over time. We give a formal definition of composition and a provably correct
technique to actually solve the composition problem and obtain the orchestrator. The technique
is readily implementable. The solution technique is based on finding a winning strategy for
a two-player game over a particular dfa game, as done, for example, in ltl𝑓 synthesis [11].
Although this paper has a foundational nature, we observe that these kinds of task-oriented
compositions are increasingly becoming important in smart manufacturing [12].

2. Composition of Nondeterministic Services for LTL𝑓 Tasks

In this section we present our service composition in the case the available service are nonde-
terministic. Unlike the classical Roman model, we do not have an explicit specification of the
target service to realize, but rather, a high-level specification of a task to accomplish expressed
as an ltl𝑓 formula.

2.1. Nondeterministic Services Framework

In the Roman Model [2], each (available) service is defined as a tuple 𝒮 = ⟨Σ, 𝐴, 𝜎0, 𝐹, 𝛿⟩
formed respectively by: a finite set Σ of service states, a finite set 𝐴 of services’ actions, an
initial state 𝜎0, a set of final states 𝐹 (i.e., states in which the computation may stop, but does
not necessarily have to), and a transition relation 𝛿 ⊆ Σ×𝐴× Σ. For convenience, we define
𝛿(𝜎, 𝑎) = {𝜎′ | (𝜎, 𝑎, 𝜎′) ∈ 𝛿}, and we assume that for each state 𝜎 ∈ Σ and each action 𝑎 ∈ 𝐴,
there exist 𝜎′ ∈ Σ such that (𝜎, 𝑎, 𝜎′) ∈ 𝛿 (possibly 𝜎′ is an error state 𝜎𝑢 that will never reach
a final state). Actions in 𝐴 denote interactions between service and clients. The behaviour of
each available service is described in terms of a finite transition system that uses only actions
from 𝐴. Consider a task specification 𝜙 expressed in ltl𝑓 over the set of propositions 𝐴, and
consider a community of 𝑛 services 𝒞 = {𝒮1, . . . ,𝒮𝑛}. An infinite trace of 𝒞 is an infinite
alternating sequence of the form 𝑡 = (𝜎10 . . . 𝜎𝑛0), (𝑎1, 𝑜1), (𝜎11 . . . 𝜎𝑛1), (𝑎2, 𝑜2) . . . where
for every 0 ≤ 𝑘, we have (i) 𝜎𝑖𝑘 ∈ Σ𝑖 for all 𝑖 ∈ {1, . . . , 𝑛}, (ii) 𝑜𝑘 ∈ {1, . . . , 𝑛}, (iii) 𝑎𝑘 ∈ 𝐴,
and (iv) for all 𝑖, 𝜎𝑖,𝑘+1 = 𝛿𝑖(𝜎𝑖𝑘, 𝑎𝑘+1) if 𝑜𝑘+1 = 𝑖, and 𝜎𝑖,𝑘+1 = 𝜎𝑖𝑘 otherwise. A history of
𝒞 is a finite prefix of a trace of 𝒞. Given a trace 𝑡, we call states(𝑡) sequence of states of 𝑡, i.e.
states(𝑡) = (𝜎10 . . . 𝜎𝑛0), (𝜎11 . . . 𝜎𝑛1), · · · . The choices of a trace 𝑡, denoted with choices(𝑡),
is the sequence of actions in 𝑡, i.e. choices(𝑡) = (𝑎1, 𝑜1), (𝑎𝑚, 𝑜𝑚), . . . . Moreover, we define
the action run of a trace 𝑡, denoted with actions(𝑡), the projection of choices(𝑡) only to the
components in 𝐴. Due to nondeterminism, there might be many traces of 𝒞 associated with the
same action run. states, choices and actions are defined also on history ℎ, in a similar way.

An orchestrator is a function 𝛾 : (Σ1 × · · · × Σ𝑛)
* → 𝐴× {1 . . . 𝑛} that, given a sequence

of states, returns the action to perform, and the service (actually the service index) that will



perform it. Given a trace 𝑡, with histories(𝑡), we denote the set of prefixes of the trace 𝑡 that
ends with a services state configuration. A trace 𝑡 is an execution of an orchestrator 𝛾 over
𝒞 if for all 𝑘 ≥ 0, we have (𝑎𝑘+1, 𝑜𝑘+1) = 𝛾((𝜎10 . . . 𝜎𝑛0) . . . (𝜎1𝑘 . . . 𝜎𝑛𝑘)). If we consider
𝒯𝛾,𝒞 be the set of such executions we can have many executions for the same orchestrator,
despite the orchestrator being a deterministic function (due nondeterminism of the services). If
ℎ ∈ histories(𝑡) for some (infinite) execution 𝑡 ∈ 𝒯𝛾,𝒞 , we call ℎ a finite execution of 𝛾 over 𝒞.
We say that some finite execution ℎ is successful, denoted with successful(ℎ), if the following
two conditions hold: (1) actions(ℎ) |= 𝜙, and (2) all service state 𝜎𝑖 ∈ last(states(ℎ)) are such
that 𝜎𝑖 ∈ 𝐹𝑖. If for execution 𝑡 ∈ 𝒯𝛾,𝒞 there exist a finite prefix history ℎ ∈ histories(𝑡) such
that successful(ℎ), we say that 𝑡 is successful. Finally, we say that an orchestrator 𝛾 realizes the
ltl𝑓 specification 𝜙 with 𝒞 if, for all traces 𝑡 ∈ 𝒯𝛾,𝒞 , 𝑡 is successful. Since the orchestrator at
every step chooses the action and the (index of the) service to which the action is delegated, it
guarantees the (complete) sequence of actions that satisfy the ltl𝑓 task specification. Hence,
when the orchestrator stops, all services are left in their final states.

The composition problem is: given the pair (𝒞, 𝜙), where 𝜙 is an ltl𝑓 task specification over
the set of propositions 𝐴, and 𝒞 is a community of 𝑛 services 𝒞 = {𝒮1, . . . ,𝒮𝑛}, compute, if it
exists, an orchestrator 𝛾 that realizes 𝜙.

2.2. Nondeterministic Services Solution Technique

To synthesize the orchestrator we rely on a game-theoretic technique: (i) we build a game
arena where the controller (the orchestrator) and the environment (the service community) play
as adversaries; (ii) we synthesize a strategy for the controller to win the game whatever the
environment does; (iii) from this strategy we will build the actual orchestrator. Specifically, we
proceed according to the following steps.

Step (1) First, from the ltl𝑓 task specification we compute the equivalent Nondeterministic
Finite Automaton (nfa) of an ltl𝑓 formula 𝒜𝜙 = (𝐴,𝑄, 𝑞0, 𝐹, 𝛿) using the ltl𝑓2nfa algorithm
[13]. Only one action is executed at each time instant.
Step (2) From this nfa we define a controllable Deterministic Finite Automaton (dfa) on the

alphabet 𝐴×𝑄, 𝒜act = (𝐴×𝑄,𝑄, 𝑞0, 𝐹, 𝛿act), where everything is as in 𝒜𝜙 except 𝛿act, with
which can give the control of the transition to the controller. This means that for every sequence
of actions 𝑎1, . . . , 𝑎𝑛 accepted by the nfa𝒜𝜙, there exists a corresponding alternating sequence
𝑞0, 𝑎1, . . . , 𝑞𝑛 accepted by the dfa𝒜act, and viceversa. In other words, when we project out the
𝑄-component from the accepted sequences of 𝒜act, we get a sequence of actions satisfying 𝜙.
Step (3) Then, we compute the product of such dfa 𝒜act with the services, obtaining the

composition dfa 𝒜𝜙,𝒞 again extending the alphabet with new symbols, which this time are
under the control of the environment. Intuitively, the dfa 𝒜𝜙,𝒞 over alphabet 𝐴′ is a syn-
chronous cartesian product between the nfa 𝒜𝜙 and the service 𝒮𝑖 chosen by the current
symbol (𝑎, 𝑞, 𝑖, 𝜎) ∈ 𝐴′. The “angelic” nondeterminism of 𝒜𝜙 and the “devilish” nondetermin-
ism coming from the services is cancelled by moving the choice of the next nfa state and the
next system service state in the alphabet 𝐴′. It can be shown that there is a relationship between
the accepting runs of the dfa 𝒜𝜙,𝒞 and the set of successful executions of some orchestrator 𝛾
over community 𝒞 for the specification 𝜙.

Step (4) The dfa obtained is the arena over which we play the so-called dfa game [11]. It is



a game between two players: the environment and the controller. 𝒳 is the set of uncontrollable
symbols (under the control of the environment), 𝒴 is the set of controllable symbols (under
the control of the controller). This is a classical problem and can be solved as follows. First,
we define the controllable preimage 𝑃𝑟𝑒𝐶(ℰ) of a set ℰ of states of 𝒢 as the set of states 𝑠
s.t. there exists a choice for symbols 𝒴 s.t. for all choices of symbols 𝒳 , game 𝒢 progresses
to states in ℰ . Then, we define the set Win(𝒢) of winning states of a dfa game 𝒢, i.e., the
set formed by the states from which the controller can win the DFA game 𝒢. Specifically,
Win(𝐺) is defined as the least-fixpoint, making use of approximates Win𝑘(𝒢) denoting all
states where the controller wins in at most 𝑘 steps: (1) Win0(𝒢) = 𝐹 (the final states of 𝒢);
and (2) Win𝑘+1(𝒢) = Win𝑘(𝒢) ∪ PreC (Win𝑘(𝒢)). Then, Win(𝒢) =

⋃︀
𝑘 Win𝑘(𝒢). Com-

puting Win(𝒢) requires linear time in the number of states in 𝒢. Indeed, after at most a
linear number of steps Win𝑘+1(𝒢) = Win𝑘(𝒢) = Win(𝒢). It can be shown that a DFA
game 𝒢 admits a winning strategy iff 𝑠0 ∈ Win(𝒢), and the resulting strategy is a transducer
𝑇 = (𝒳 × 𝒴, 𝑄′, 𝑞′0, 𝛿𝑇 , 𝜃𝑇 ) formed by: the input alphabet 𝒳 × 𝒴 , the set of states 𝑄′, the
initial state 𝑞′0, the transition function 𝛿𝑇 : 𝑄′ × 𝒳 → 𝑄′ s.t. 𝛿𝑇 (𝑞,𝑋) = 𝛿′(𝑞, (𝑋, 𝜃(𝑞)), and
𝜃𝑇 : 𝑄 → 𝒴 is the output function defined as 𝜃𝑇 (𝑞) = 𝑌 s.t. if 𝑞 ∈ Win𝑖+1(𝒢) ∖ Win𝑖(𝒢)
then ∀𝑋.𝛿(𝑞, (𝑋,𝑌 )) ∈ Win𝑖(𝒢) [11]. Given a strategy in the form of a transducer 𝑇 ,
we can obtain an orchestrator that realizes the specification as follows. Let the extended
transition function 𝛿*𝑇 of 𝑇 is 𝛿*𝑇 (𝑞, 𝜀) = 𝑞 and 𝛿*𝑇 (𝑞, 𝑤𝑎) = 𝛿𝑇 (𝛿

*
𝑇 (𝑞, 𝑤), 𝑎). Then, for

every sequence 𝑤 of length 𝑚 ≥ 0 𝑤 = (𝑋1, 𝑌1) . . . (𝑋𝑚, 𝑌𝑚), where for each index 𝑘,
𝑌𝑘 and 𝑋𝑘 are of the form (𝑎𝑘, 𝑞𝑘, 𝑜𝑘) and 𝜎𝑜𝑘,𝑘 respectively, we define the orchestrator
𝛾𝑇 ((𝜎10 . . . 𝜎𝑛0), (𝜎11 . . . 𝜎𝑜1,1 . . . 𝜎𝑛1), . . . (𝜎1𝑚 . . . 𝜎𝑜𝑘,𝑚 . . . 𝜎𝑛𝑚)) = (𝑎𝑚+1, 𝑜𝑚+1), where
(𝑎𝑚+1, 𝑞𝑚+1, 𝑜𝑚+1) = 𝜃𝑇 (𝛿

*
𝑇 (𝑞0, 𝑤)). We can reduce the problem of service composition

for ltl𝑓 task specifications to solving the dfa game over 𝒜𝜙,𝒞 with uncontrollable symbols
𝒳 =

⋃︀
𝑖Σ𝑖 and controllable symbols 𝒴 = 𝐴 × 𝑄 × {1, . . . , 𝑛}. It can be shown that the

service composition realizability problem with community 𝒞 for the satisfaction of an ltl𝑓 task
specification 𝜙 can be solved by checking whether 𝑞′0 ∈ Win(𝒜𝜙,𝒞), and that the problem can
be solved in at most exponential time in the size of the formula, in at most exponential time in
the number of services, and in polynomial time in the size of the services.

3. Conclusion and Future Works

In this paper, we have studied an advanced form of task-oriented compositions of nondeter-
ministic services. In future works, we want to analyze the composition in stochastic settings.
In this case, we will model nondeterminism using probability distributions over the services’
successor states by considering the objective of maximizing the satisfaction probability of the
specification. The services will be considered stochastic, in the sense that delegated actions
change the service state according to a probability distribution, as studied, e.g., in [14, 4]. The so-
lution technique will solve a bi-objective lexicographic optimization [15] over a special Markov
Decision Process [16], allowing to minimize the services’ utilization costs while guaranteeing
maximum probability of task satisfaction. Moreover, since service composition has become very
relevant in smart manufacturing [17, 18], we want to expand the use of it in a Digital Twins
(DT) scenario as in [12].
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