
On Challenges and Opportunities in the Translation
of Deep Neural Networks into Finite Automata
Marco Sälzer1, Eric Alsmann1 and Martin Lange1

1Faculty of Electrical Engineering and Computer Science, University of Kassel, Germany

Abstract
The certification of safety properties and interpretation of neural networks is a topic of great concern. We
recently devised an automata-based approach for addressing these tasks. It translates a neural network
with ReLU activations into a finite automaton, capturing the input-output relation induced by the neural
network. We report on a proof-of-concept implementation of this translation for a subclass neural
networks, so called binarized neural networks, pointing out difficulties and opportunities of the proposed
approach.

Keywords
Neural Networks, Finite Automata, Verification and Interpretation

1. Introduction

Reliable methods for verification and interpretation tasks regarding properties of (Deep) Neural
Networks (DNN) become increasingly important, due to the fact that DNN are used in a wide
area of applications, including safety-critical ones. Recently, a unified framework for handling a
broad range of such tasks was proposed in [1]. The idea is to translate a DNN 𝑁 , computing
R𝑚 → R𝑛, into a finite automaton, capturing the relation of pairs (𝑥,𝑦) ∈ R𝑚×R𝑛 induced by
𝑁 in the form of multi-track words. Similarly, usual safety properties like adversarial robustness
or output reachability [2] and interpretation properties like minimum sufficient reason [3] of
DNN can be translated into problems on automata, allowing automata-theoretic tools to be used
for the certification of such properties of DNN. We report on first experiments regarding the
performance of the proposed translation from DNN to finite automata. In Sect. 2 and Sect. 3 we
briefly introduce the theoretical foundations of this translation. In Sect. 4 we give an overview
of our results. In Sect. 5, we discuss difficulties and opportunities of this framework .

2. Preliminaries

A DNN-node 𝑣 is a computational unit, computing 𝑣(𝑥) = 𝜎(𝑏𝑣 +
∑︀𝑘

𝑖=1𝑤𝑖𝑥𝑖) where 𝑤𝑖 ∈ R
are the weights, 𝑏𝑣 ∈ R is the bias, 𝜎 : R → R is an activation function and 𝑘 is the input
dimension of 𝑣. A DNN -layer 𝑙 is a tuple 𝑙 = (𝑣1, . . . , 𝑣𝑙) of DNN-nodes with all 𝑣𝑖 having the

OVERLAY 2023: 5th Workshop on Artificial Intelligence and Formal Verification, Logic, Automata, and Synthesis,
November 7, 2023, Rome, Italy
$ marco.saelzer@uni-kassel.de (M. Sälzer); eric.alsmann@uni-kassel.de (E. Alsmann); martin.lange@uni-kassel.de
(M. Lange)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:marco.saelzer@uni-kassel.de
mailto:eric.alsmann@uni-kassel.de
mailto:martin.lange@uni-kassel.de
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


same input dimension. A DNN 𝑁 is a sequence of layers 𝑙1, . . . , 𝑙𝐿 such that for all 𝑙𝑖, 𝑙𝑖+1 the
input dimension of nodes in 𝑙𝑖+1 is equal to the size of 𝑙𝑖. The function computed by 𝑁 is given
by 𝑙𝐿(𝑙𝐿−1(. . . 𝑙1(𝑥) . . .)). In this work, we only consider DNN in which the activation function
at any node is the ReLU function relu(x) = max(0, x).

Let Σ be a finite alphabet. We denote the multi-track alphabet consisting of 𝑘-vectors of
symbols from Σ by Σ𝑘. A multi-track (nondeterminstic) finite automata (NFA) is defined as a
usual NFA with transitions over some Σ𝑘. Similarly, the language of such a multi-track NFA is
defined as usual. In the remainder of this paper the term NFA refers to such multi-track NFA
over a number of tracks 𝑘, which is clear from the context.

3. From Deep Neural Networks to NFA over Multi-Track Words

Let 𝑁 be some DNN computing R𝑚 → R𝑛, defining the relation 𝑅𝑁 = {(𝑥,𝑦) | 𝑥 ∈ R𝑚,𝑦 =
𝑁(𝑥)} of all its input-output pairs. Now, [1] presents a construction of a finite automaton 𝐴𝑁

over a multi-track alphabet Σ𝑚+𝑛 such that the language 𝐿(𝐴𝑁 ) of 𝐴𝑁 captures 𝑅𝑁 in the
sense that each word in 𝐿(𝐴𝑁 ) can be decoded into a pair (𝑥,𝑦) ∈ 𝑅𝑁 and each such pair of
𝑅𝑁 can be encoded into a word 𝑤 ∈ 𝐿(𝐴𝑁 ). An obvious way to encode a tuple (𝑥,𝑦) as a
word over some Σ𝑚+𝑛 is based on the usual binary encoding, leading to the use of automata
over infinite words. It can be observed that weak nondeterministic Büchi automata suffice [4, 1].
Here in this work we focus on finitely representable values: we assume that 𝑁 computes a
function over (Z∖2𝑖)𝑚 → (Z∖2𝑖)𝑛 where (Z∖2𝑖) are the dyadic rational numbers, which are
exactly those that have a finite binary representation. Furthermore, we assume that all weights
and biases used in 𝑁 are also from (Z∖2𝑖).1 Then, we can represent each (𝑥,𝑦) using a finite
word over Σ𝑚+𝑛 with Σ = {+,−, 0, 1, .}, used henceforth for the remainder of this article. For
example, the vector (−3.725, 9.125) is represented by

𝑤 =

[︂
−
+

]︂ [︂
0
1

]︂ [︂
0
0

]︂ [︂
1
0

]︂ [︂
1
1

]︂ [︂
.
.

]︂ [︂
1
0

]︂ [︂
1
0

]︂ [︂
0
1

]︂
.

We denote the function mapping such a multi-track word to the unambiguous vector of values
from (Z∖2𝑖) by dec. Then, one of the core results of [1] transfers easily.

Theorem 1. Let 𝑁 be a DNN with input dimension 𝑚 and output dimension 𝑛. There is NFA 𝐴𝑁

s.t. 𝐿(𝐴𝑁 ) = {𝑤 ∈ (Σ𝑚+𝑛)* | 𝑁(dec(𝑤1), . . . , dec(𝑤𝑚)) = (dec(𝑤𝑚+1), . . . , dec(𝑤𝑚+𝑛))}.

Proof sketch. First observe that a DNN-node computes its output using four basic operations: 1.
addition of two values; 2. multiplication of a value with a fixed constant; 3. addition of a value
with a constant; and 4. the application of the ReLU function. The relation of value triples and
tuples induced by each of these operations can be recognized by an NFA. We refer to [1] for
details with the indication that the constructions are similar for our setting. An example of an
NFA recognising the addition relation is given in Figure 1. Second, observe that we can combine
these NFA using join and projection operations on single tracks to build an NFA recognising the
1This restriction is no limitation considering the presumed applications of this translation, namely the verification
and interpretation of DNN used in practice. There DNN necessarily contain and work over finitely representable
parameters and values.



𝐴+

⎡⎣0
0
0

⎤⎦,
⎡⎣0
1
1

⎤⎦,
⎡⎣1
0
1

⎤⎦ ⎡⎣0
0
1

⎤⎦

⎡⎣0
1
0

⎤⎦,
⎡⎣1
0
0

⎤⎦,
⎡⎣1
1
1

⎤⎦

⎡⎣1
1
0

⎤⎦

⎡⎣0
0
0

⎤⎦,
⎡⎣0
1
1

⎤⎦,
⎡⎣1
0
1

⎤⎦ ⎡⎣0
0
1

⎤⎦

⎡⎣0
1
0

⎤⎦,
⎡⎣1
0
0

⎤⎦,
⎡⎣1
1
1

⎤⎦

⎡⎣1
1
0

⎤⎦
⎡⎣.
.
.

⎤⎦

⎡⎣.
.
.

⎤⎦

Figure 1: Sketch of an NFA that recognises the addition relation. For brevity reasons, we left out parts
of the automaton handling different sign symbols of words from (Σ3)* and parts ensuring that each
word has at least a single bit after the dot symbols.

input-output relation defined by a DNN-node. Then, we use the same operations to establish
an inductive procedure to generate an NFA recognising the input-output relation defined by a
DNN. This is possible due to the inductive structure of DNN as indicated in Sect. 2. Again, see
[1] for details.

4. A Proof-of-Concept Implementation

We present a proof-of-concept implementation, translating so called Binarized Neural Networks
(BNN), into input-output equivalent NFA as discussed in Sect. 3. The BNN model [5] evolved as
a simple but powerful neural network model, defined similar to DNN but with weights and bias
restricted to +1 and −1. It was shown, that BNN nearly achieve state-of-the-art performances
in comparison to standard DNN [6].

The code is written in Python.2 The construction of an NFA 𝐴𝑁 for a given BNN conceptually
follows the inductive construction described in Sect. 3 but uses two optimisations: first, we
represent transition labels symbolically. Consider the NFA for addition in Fig. 1. It is notable
that transitions are invariant under permutations of the labels in tracks one and two. This is not
surprising as addition is commutative. Consequently, the transition labels in these automata
can be stored symbolically as a pair (𝑟, 𝑛) with 𝑟 ∈ {0, 1} representing the resulting bit in the
addition, and 𝑛 ∈ N representing the number of 1-bits in the tracks to be added up. Second,
we use minimisation. After each construction that may create a non-minimal automaton,
explicit minimisation is employed. Since NFA minimisation is PSPACE-hard in general, we use
bisimulation quotienting instead. It may not produce minimal automata but it can be done in
low polynomial time [7], and it typically yields good results in practice [8].

As benchmarks we use semi-randomly generated BNN: the input size is 1, the output size of
the BNN is 1 and all layers in between consist of 2 nodes. We denote such BNN with BNNfix. The
parameters (weights and bias) of the considered BNNfix were chosen uniformly from {−1, 1}.
The benchmarks were computed on an Apple M1 Pro CPU with 32GB RAM. In the first part, we
run our translation without intermediate minimisation steps for BNNfix as specified above with
1 to 5 layers. The results are presented in the left chart of Fig. 2. The number of layers is plotted

2Available via https://github.com/marcosaelzer/NN2NFA

https://github.com/marcosaelzer/NN2NFA


Figure 2: Left chart: logarithmic scaled buildtime, number of nodes and number of transitions of the
NFA resulting from translating randomly generated BNNfix with increasing number of layers, from 1 to
5. Right chart: percentage of state set size reduction due to minimisations on 5 randomly generated
BNNfix each with 4 layers.

on the horizontal axis and the runtime, number of states/transitions on the two logarithmically
scaled vertical axes. The exponential blowup is clearly indicated by the linear interpolations
of the three data series, even for these relatively shallow BNNfix. The fluctuations are due to
the varying amount of −1 and 1 parameters. In the right chart of Fig. 2 we see the effect of
minimisation. We considered 5 randomly generated BNNfix with 4 layers. The chart depicts the
percentage of reduction of the state set due to minimisation. The state size reduction is >80%,
which indicates that our construction leads to an enormous amount of redundant states.

5. Discussion and Outlook

We presented a proof-of-concept implementation of the translation from DNN into finite
automata, here NFA over multi-track words, as introduced in [1]. The translation is exponential,
necessarily so since it reduces NP-hard DNN-reachability [9] to the NLOGSPACE problem for
emptiness of (weak) NBA. Unsurprisingly, this blow-up is visible in the benchmarks. In order to
achieve manageable runtimes, we focused our implementation on BNN of small size. There are
two takeaways from this restriction: first, the maximum representation size of a parameter in
the original DNN is crucial for the performance of the translation and, second, the inductive
approach presented in [1] leads to many redundant states as indicated by the high amount of
reduction achieved by minimising the NFA in intermediate steps. This opens a clear path for
future work. The presumed applications of the DNN to NFA translation, namely verification
and interpretation of DNN, are clearly tailored for DNN with parameters of small size, for
example Quantized Neural Networks [10]. Furthermore, the inductive translation approach
seems intractable, due to the amount of redundant states generated and, thus, future work must
focus on establishing a translation of a more direct manner.



References

[1] M. Sälzer, E. Alsmann, F. Bruse, M. Lange, Verifying and interpreting neural networks
using finite automata, 2022. arXiv:2211.01022.

[2] X. Huang, D. Kroening, W. Ruan, J. Sharp, Y. Sun, E. Thamo, M. Wu, X. Yi, A survey
of safety and trustworthiness of deep neural networks: Verification, testing, adversarial
attack and defence, and interpretability, Comput. Sci. Rev. 37 (2020) 100270. doi:10.1016/
j.cosrev.2020.100270.

[3] P. Barceló, M. Monet, J. Pérez, B. Subercaseaux, Model interpretability through the lens
of computational complexity, in: Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020. URL: https://proceedings.neurips.cc/paper/2020/hash/
b1adda14824f50ef24ff1c05bb66faf3-Abstract.html.

[4] B. Boigelot, S. Rassart, P. Wolper, On the expressiveness of real and integer arithmetic au-
tomata (extended abstract), in: Automata, Languages and Programming, 25th International
Colloquium, ICALP’98, Aalborg, Denmark, July 13-17, 1998, Proceedings, volume 1443 of
Lecture Notes in Computer Science, Springer, 1998, pp. 152–163. doi:10.1007/BFb0055049.

[5] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio, Binarized neural
networks, in: Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, 2016, pp. 4107–4115. URL: https://proceedings.neurips.cc/paper/2016/
hash/d8330f857a17c53d217014ee776bfd50-Abstract.html.

[6] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio, Quantized neural networks:
Training neural networks with low precision weights and activations, Journal of Machine
Learning Research 18 (2018) 1–30. URL: http://jmlr.org/papers/v18/16-456.html.

[7] R. Paige, R. Tarjan, Three partition refinement algorithms, SIAM Journal on Computing
16 (1987) 973–989.

[8] J. Högberg, A. Maletti, J. May, Backward and forward bisimulation minimization of tree
automata, Theoretical Computer Science 410 (2009) 3539–3552. doi:https://doi.org/
10.1016/j.tcs.2009.03.022, implementation and Application of Automata (CIAA
2007).

[9] M. Sälzer, M. Lange, Reachability is NP-complete even for the simplest neural networks,
in: Proc. 15th Int. Conf. on Reachability Problems, RP’21, volume 13035 of LNCS, Springer,
2021, pp. 149–164. doi:10.1007/978-3-030-89716-1\_10.

[10] T. Liang, J. Glossner, L. Wang, S. Shi, X. Zhang, Pruning and quantization for deep
neural network acceleration: A survey, Neurocomputing 461 (2021) 370–403. URL: https:
//doi.org/10.1016/j.neucom.2021.07.045. doi:10.1016/j.neucom.2021.07.045.

http://arxiv.org/abs/2211.01022
http://dx.doi.org/10.1016/j.cosrev.2020.100270
http://dx.doi.org/10.1016/j.cosrev.2020.100270
https://proceedings.neurips.cc/paper/2020/hash/b1adda14824f50ef24ff1c05bb66faf3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b1adda14824f50ef24ff1c05bb66faf3-Abstract.html
http://dx.doi.org/10.1007/BFb0055049
https://proceedings.neurips.cc/paper/2016/hash/d8330f857a17c53d217014ee776bfd50-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/d8330f857a17c53d217014ee776bfd50-Abstract.html
http://jmlr.org/papers/v18/16-456.html
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2009.03.022
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2009.03.022
http://dx.doi.org/10.1007/978-3-030-89716-1_10
https://doi.org/10.1016/j.neucom.2021.07.045
https://doi.org/10.1016/j.neucom.2021.07.045
http://dx.doi.org/10.1016/j.neucom.2021.07.045

	1 Introduction
	2 Preliminaries
	3 From Deep Neural Networks to NFA over Multi-Track Words
	4 A Proof-of-Concept Implementation
	5 Discussion and Outlook

