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Abstract
The shock absorber of a vehicle is not only needed for a comfortable driving experience, but it is also
essential for vehicle safety. Especially in autonomous driving, vehicles must monitor themselves and
schedule maintenance before a component fails. In this work, we develop a methodology to predict the
degradation of a shock absorber using machine learning methods and perform predictive maintenance
recommendations. In the first step, we learn the damping coefficient from acceleration data using a
neural network. Afterward, we extrapolate this value to predict future behavior. For this, we use the
concept of operational design domains to formalize the point up until vehicle functionality is unrestricted
and there is no risk to vehicle safety.
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1. Introduction

The goal of predictive maintenance [1] is to detect a failure before it happens or spreads
to the extent that it endangers vehicle safety. The range in which the vehicle or a specific
component can perform all its driving functions as planned can be formulated by operational
design domain (ODD) language. The Society of Automotive Engineers (SAE) defines ODD as
the "Operating conditions under which a given driving automation system, or feature thereof, is
specifically designed to function, including, but not limited to, environmental, geographical, and
time-of-day restrictions, and/or the requisite presence or absence of certain traffic or roadway
characteristics" [2]. Right now, formalizing and standardizing the ODD notation receives lots of
attention. The British Institute for Standardisation has formulated the ODD in a table format
[3]. The Association for Standardization of Automation and Measuring Systems (ASAM) is
working on the formalization of an ODD in the form of a new language called OpenODD
[4]. This language consists of logical expressions and query semantics that describe the ODD.
Similar to the ODD of a vehicle, we define the ODD of a vehicle component for predictive
maintenance as the operating conditions under which the component is functional. For this, the
ODD specifies conditions and boundaries under which the vehicle component is guaranteed to
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work appropriately. Our research addresses the suspension systems and especially the shock
absorbers of a car. The health monitoring task provides the current state within the ODD of
the shock absorber, while the predictive maintenance task estimates degradation by predicting
violations of the ODD specification. This leads to a timely call for maintenance.

Various shock absorber models have been studied in the past. In [5], the quarter-car model
we will also use is verified. In [6], multiple types of sensors that can be installed in a shock
absorber are being characterized and tested. All these sensors are useful to obtain information
on the health of a shock absorber during vehicle operation. [7] examines the detection and
isolation of sensor faults in shock absorbers. For detecting the faults, a support vector machine
is employed. Since degradation also means energy loss, it is also possible to monitor the health
of shock absorbers using temperature data [8]. In [9], the authors conclude that degradation is
a function of the complete energy dispersed over a lifetime and the intensities of the individual
shocks. In [10], the monitoring of shock absorbers is modeled as an unsupervised learning
problem by monitoring all four shock absorbers of the car through accelerometers. The obtained
data is then clustered through a principal component analysis, where the clusters correspond to
different types of faults. In [11], a neural network is trained to correctly classify the state of
a shock absorber from sensor data. For this, the network obtains preprocessed sensor data as
input and outputs a four-dimensional vector, where each dimension represents the state of the
shock absorber. Similar approaches can be found in [12], where machine learning classifiers are
estimating the leaking of oil from a shock absorber. In [13], the durability of shock absorbers
for different types of roads is analyzed, leaving out predictive maintenance recommendations.

In [14], the authors model the degradation process as a stochastic process influenced by
random impact events. To monitor the health status of the shock absorber we model it as
a regression problem, which we solve by using neural networks. For this, we use domain
knowledge and real-life data to extrapolate the health status to make future predictions.

2. Health Monitoring and Predictive Maintenance for Shock
Absorbers

Most predictive maintenance methods work according to the same scheme [15]. In the first step,
sensor data from the vehicle is acquired and pre-processed. Then, the health indicator (HI) of
the vehicle is determined. The HI represents the current condition of the shock absorber. Based
on this, we make a rest of useful life (RUL) prediction. If the HI describes the temporal position
of the shock absorber within the ODD, the RUL is a metric 𝑑 between the current HI and the
boundary 𝜕 of the ODD, i.e., RUL(𝑛) := 𝑑(HI(𝑛), 𝜕ODD). We then utilize the estimated RUL
to make a predictive maintenance recommendation. In our simulation, we use the quarter car
model [16]. The basic assumption is that the weight of the car is distributed equally among
the four wheels. We can then describe the vertical dynamics by a system of partial differential
equations. For the street model, we use road data captured by a LIDAR scanner from [17] and
extract several street profiles (Figure 1).



Figure 1: Vertical Acceleration of a car over a street (red)
with different damping coefficient values

To model the degradation of the
suspension system, we make the
simplified assumption to consider
the damping coefficient 𝑘𝐵 of the
damper as HI. The damping coef-
ficient for an oscillation describes
the rate at which the damping de-
creases. A high damping coefficient
means that the oscillation quickly
decreases and thus ends quickly. A
low damping coefficient means the
object still has visible deflections after a long time. It has been shown in [18] that the damping
coefficient decays exponentially

𝑘𝐵(𝑛) = 𝑎𝑛𝑏 + 𝑐 (1)

in the number of full cycles 𝑛 of the shock absorber, i.e., maximal deflections for some constants
𝑎, 𝑏, 𝑐 ∈ R. Let 𝜅 denote the damping coefficient value, for which we assume that the component
can no longer safely perform its actual functionality. The corresponding ODD is then given
as ODD =

{︀
𝑛
⃒⃒
𝑘𝐵(𝑛) ≥ 𝜅

}︀
and its boundary 𝜕ODD =

{︀
𝑛
⃒⃒
𝑘𝐵(𝑛) = 𝜅

}︀
. Then, using the

OpenODD notation [4] we can define the ODD by

DETERMINE v a l u e _ d e g r a d e d WHEN ( v a l u e <= 𝜅 )
SUITABLE ∗ EXCEPT WHEN v a l u e _ d e g r a d e d

Since RUL(𝑛) gives the number of cycles until reaching the boundary of the ODD, we get
𝑘𝐵(𝑛+RUL(𝑛)) = 𝜅 and therefore an explicit representation for the RUL by

RUL(𝑛) = 𝑑(𝑘𝐵(𝑛), 𝜕ODD) = max

{︃(︂
𝜅− 𝑐

𝑎

)︂ 1
𝑏

− 𝑛, 0

}︃
. (2)

Hence, for a RUL prediction, it is sufficient to estimate 𝑎, 𝑏, 𝑐. For our example of a predictive
maintenance recommendation, we use the following procedure (Figure 2). At first, we collect
vertical acceleration data 𝑧𝑛 for the shock absorber model, which can be assumed to be measured
by vehicle sensors.

Vehicle

𝑧𝑛

Predictive
Maintenance
recommendation

Neural
Network 𝑢𝜃

Feature
Store

RUL
prediction

𝑢𝜃(𝑧𝑛) {𝑢𝜃(𝑧𝑖)|𝑖 ≤ 𝑛} 𝑎, 𝑏, 𝑐

Figure 2: Pipeline for performing a predictive maintenance recommendation from accelerating data

In our simulation environment, we generate this data by solving the quarter-car model for a
randomly selected road using a given data set with decreasing damping values over time. Our



implementation uses an Euler method [19] to solve the model for a defined input signal 𝑧𝑛.
The resulting signal values are transmitted to the cloud. Afterward, the signal is transmitted
to a neural network 𝑢𝜃, with parameters 𝜃, that estimates the current damping coefficient
𝑘𝐵(𝑛) ≈ 𝑢𝜃(𝑧𝑛). The network is trained on simulated data of possible roads with different
damping coefficients and has learned to interpolate the space of possible damping coefficient
values on the known roads. The past determined values for the damping coefficient represent
the degradation of the shock absorber. Each time a new damping value is estimated, a new
model is fitted to this data that describes the decrease in the damping coefficient by solving the
minimization problem

min
𝑎,𝑏,𝑐

𝑛∑︁
𝑖=0

(︁(︁
𝑎𝑖𝑏 + 𝑐

)︁
− 𝑢𝜃(𝑧𝑖)

)︁2
, (3)

that we get from comparing the estimated damping coefficients to the general form given in
(1). After estimating the parameters, we use them to determine the future behavior. Then, we
can check whether this determined value still lies in the ODD and whether to give a predictive
maintenance recommendation.

3. Results and Discussion

We use a ResNet18 network [20] for determining the damping coefficient, which achieves an
average error of 5.67 on test data with values between 1400 and 1000. For now, we use the
mean squared error as training loss. In the future, we also want to test loss functionals that
penalize too-high determined damping constants more than too-low ones. In this way, we want
to ensure that predictive maintenance recommendations are issued too early rather than too
late since we consider a safety-critical domain. For solving the optimization problem in (3)
we use the BFGS algorithm (Figure 3). In some of our experiments, a problem occurs when
the algorithm gets stuck in a local minimum such as a horizontal best-fit line. In future work,
we want to solve this problem by additional regularization terms. In this paper, we assumed

Figure 3: Predicting Damping Coeffi-
cients

that the degradation depends only on the time steps
but not the street profile. In future work, we also want
to include the absorbed energy by the shock absorber
in our degradation model. In our example, we have
considered a fixed number of road profiles and used
a neural network to interpolate the space of possible
damping coefficients on this limited set. Later we want
to examine an extended pipeline able to estimate the
degradation for roads that are not part of the training
data within a realistic vehicle simulator [21]. All in all,
we have demonstrated a way to denote the RUL of a
shock absorber as a metric to the ODD boundary and
estimate it through machine learning. In conclusion,
an efficient estimation of the damping coefficient opens
many possible use cases.
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