
Automata-Based Temporal Reasoning in Answer Set
Programming with Application to Process Mining
Francesco Chiariello

University of Naples Federico II, Italy

Abstract
We present a new approach for solving temporal problems using Answer Set Programming (ASP), which

exploits the automata representation of temporal specifications. This approach is then used to solve key

problems from Process Mining. The contributions of the paper are manifold. Firstly, for the Temporal

Logics community, it provides a tool to perform temporal reasoning. Secondly, for the ASP community,

it offers a method to intuitively handle time. Finally, for the Process Mining community, it provides both

tools and methods for analyzing event logs.

Keywords
Answer Set Programming, Automata Theory, Process Mining, Temporal Logics

1. Introduction

Answer Set Programming (ASP) [1] is a declarative problem solving approach that has become

very popular in recent years. This is partly due to the development of efficient ASP systems

such as DLV [2] and clingo [3]. Here, a problem is modeled as a logic program that is then fed

into an ASP system. The system computes the answer sets of the program, each corresponding

to a different solution to the problem.

In order to use ASP systems to solve problems involving temporal specifications, the idea we

propose [4] is to use the well-known relationship between finite-state automata and LTL𝑓 /LDL𝑓

formulae [5], stating that it is possible to construct an automaton that accepts exactly the traces

satysfing the formula. In fact, one can represent LTL𝑓 /LDL𝑓 formulae in an ASP program simply

by encoding the corresponding automata. In this way, checking whether a trace satisfies the

specifications reduces to checking whether the automata accept such a trace, which is easily

done in ASP. There are many advantages to considering ASP. First, it provides a clear and

concise syntax, inspired by Logic Programming and Prolog, to model problems. Second, the

minimality of its semantics makes it very efficient (compared to SAT) in solving reachability

problems, making ASP a natural choice for our techniques.

Process Mining (PM) [6?] is the research area at the intersection of Business Process

Management [7] and Data Mining [8]. It studies methods and techniques for analyzing event

logs to extract information related to the processes that generate such logs. An event log is

OVERLAY 2023: 5th Workshop on Artificial Intelligence and Formal Verification, Logic, Automata, and Synthesis,
November 7, 2023, Rome, Italy
$ francesco.chiariello@unina.it (F. Chiariello)

� https://www.francescochiariello.me/ (F. Chiariello)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:francesco.chiariello@unina.it
https://www.francescochiariello.me/
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

a collection of process traces, i.e. sequences of events, where an event contains information

about the business activity being performed. A process is a collection of traces achieving a

desired business goal, of which event logs constitute the observed traces. Processes are modeled

using different formalisms. Standard imperative process models are Petri nets [9, 10] and

BPMN [11, 12]. These models tend to over-constrain the process. Indeed, all models whose

traces satisfy some properties of interest are considered acceptable. In the case of declarative

specifications [13], it is assumed that the properties directly represent the model. In this way,

all the traces satisfying the properties are assumed to be part of the model (and nothing more).

Declarative specifications are typically expressed in DECLARE [14], LTL𝑓 [15], or LTL𝑝 [16].

Automata are a possible choice for process models that have gained increasing attention in

recent years. The main reason for this is their relation to temporal logics, which makes automata

easy to define and understand while preserving all the advantages of a procedural representation.

Indeed, if we think of a process as a set of process traces, that is, as event sequences constituting

a formal language, finite-state automata are a natural choice for modeling processes. In this

paper, we show how to encode automata in ASP together with various Declarative Process

Mining problems (that is, PM problems where processes are represented using declarative

specifications). The problems are then solved using ASP to simulate the run of the traces over

the automata.

The contributions of the presented approach are manifold and benefit different communities:

• For the Temporal Logics community, it provides a tool (an ASP system) to perform

temporal reasoning;

• For the ASP community, it offers a method (based on automata) to intuitively handle time;

• For the Process Mining community, it provides both tools and methods for analyzing

event logs.

2. Approach

Let’s consider a problem involving temporal specifications that admit a finite-state automaton

representation, i.e. for which there exists an automaton that accepts all and only the traces

satisfying the specification. Our approach, introduced in [17], consists of the following steps:

1. Convert the temporal specifications into automata;

2. Represent the automata into ASP;

3. Represent the traces into ASP;

4. Model the problem in ASP by adding generation and test rules;

5. Check the acceptance of traces by simulating the automata run over them.

Regarding the first point, this can be done in a pre-processing step, with available tools whose

choice depends on the logical formalism used. For example, for LTL𝑓 /LDL𝑓 specifications one

can use the state-of-the-art tool Lydia
1

[18]. In this paper, we are interested in the application of

such an approach to problems in Declarative Process Mining. Since, in this context, the traces

of interest are process traces, the tool employed is LTLp2DFA [19].

1

https://github.com/whitemech/lydia

It should be noted that the automata-based approach was independently proposed in [20,

21] for Temporal ASP [22, 23]. While they compare different automata representations and

conversion algorithms on toy examples [24] with the aim of determining the best representation,

their work lacks an experimental evaluation of real-world problems to show the feasibility and

scope of the approach.

Figure 1: Automaton of Response template

automaton (s0 , a , s1) .
automaton (s1 , b , s0) .
automaton (s0 , b , s0) .
automaton (s0 , " ∗ " , s0) .
automaton (s1 , a , s1) .
automaton (s1 , " ∗ " , s1) .
i n i t i a l (s0) .
a c c e p t i n g (s0) .

Listing 1: ASP encoding of the Response template

Figure 1 shows the automaton corresponding to the DECLARE template 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑎, 𝑏)
which is satisfied when ‘every time activity 𝑎 is performed, it is eventually followed by activity

𝑏’. This corresponds to the LTL𝑝 formula G(𝑎 → F𝑏). The ASP encoding is shown in Listings

2. Here, 𝑎 and 𝑏 represent placeholders for the activation and target activity of the Response

template, while the asterisk stands for any other activity.

s t a t e (S , 0) : − i n i t i a l (S) .
s t a t e (S2 , T) : − s t a t e (S1 , T − 1) , automaton (S1 , A , S2) , t r a c e (A , T) .

s a t (T) : − s t a t e (S , T) , a c c e p t i n g (S) .

Listing 2: ASP rules to update the current automaton state and to track the formula’s satisfaction

3. Application

In this section, we describe various PM problems and show how the approach described above

can be applied to them. For details on the encodings, the experimental evaluation, and the

comparison with the state-of-the-art tools, the reader is referred to [17].

Log Generation is the problem of generating a set of process traces, of some given length,

satisfying an input model. Conformance Checking is the problem of checking whether the traces

of a log satisfy a given input model. Finally, Query Checking is the problem of finding properties

of a process, by checking constraint templates, i.e., formulae with variables (the queries), against

the event log of the process. For a declarative model, these problems can be easily solved with

ASP once the automata corresponding to the model are available.

For log generation, we add the ASP generation rule

{trace(A,T):activity(A)}=1 :- time(T).

for guessing the candidate answer set corresponding to a trace, and a test rule to check whether

the trace is accepted by the automata. The case of conformance checking is even simpler since

no generation rule is required: the traces are already given. We just need to test whether they

are accepted. For query checking, we use the generation rule

{assignment(V,A):activity(A)} = 1 :- var(V).

to guess the instantiation of variables to activities and then check whether the input log satisfies

the formula obtained.

4. Conclusion

The problems we considered are relatively simple and are intended to demonstrate the potential

of the approach. However, the results were so satisfactory that the authors of the Declarative PM

toolkit RuM [25] integrated it into their application for log generation. Following our approach,

[26] proposes to use it for Process Discovery (i.e., finding a model of the log) while using the ASP

optimization capabilities to also take into account user preferences. Optimization capabilities

can also be used to solve other complex PM problems such as Trace Alignment (i.e. modifying a

log to make it compliant with a given model), which can be formulated as cost-optimal planning

[27]. Finally, we stress that, while we have considered PM problems, there is no reason to limit

ourselves to this particular domain, since the approach can be virtually applied to any problem

involving temporal specifications that admit automata representation.

Acknowledgments

The paper is based on my PhD Thesis ‘Automata-Theoretic Techniques for Declarative Process

Mining’ (2023). I thank my advisor Fabio Patrizi and my coauthor Fabrizio Maggi. Work

supported by the CeSMA project "Tecnologie abilitanti per il volo in formazione di piccole

piattaforme aerospaziali WP2", and the project "Borgo 4.0" POR Campania FESR 2014-2020.

References

[1] G. Brewka, T. Eiter, M. Truszczynski, Answer set programming at a glance, Commun. ACM

54 (2011) 92–103. URL: https://doi.org/10.1145/2043174.2043195. doi:10.1145/2043174.
2043195.

https://doi.org/10.1145/2043174.2043195
http://dx.doi.org/10.1145/2043174.2043195
http://dx.doi.org/10.1145/2043174.2043195

[2] M. Alviano, F. Calimeri, C. Dodaro, D. Fuscà, N. Leone, S. Perri, F. Ricca, P. Veltri, J. Zan-

gari, The ASP system DLV2, in: M. Balduccini, T. Janhunen (Eds.), Logic Programming

and Nonmonotonic Reasoning - 14th International Conference, LPNMR 2017, Espoo,

Finland, July 3-6, 2017, Proceedings, volume 10377 of Lecture Notes in Computer Sci-
ence, Springer, 2017, pp. 215–221. URL: https://doi.org/10.1007/978-3-319-61660-5_19.

doi:10.1007/978-3-319-61660-5_19.

[3] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, Multi-shot ASP solving with clingo, The-

ory Pract. Log. Program. 19 (2019) 27–82. URL: https://doi.org/10.1017/S1471068418000054.

doi:10.1017/S1471068418000054.

[4] F. Chiariello, F. Maggi, F. Patrizi, ASP-based declarative process mining (extended abstract),

in: Proceedings of the 38th Fabio Patrizi, Electronic Proceedings in Theoretical Computer

Science (EPTCS), 2022.

[5] G. De Giacomo, M. Y. Vardi, Linear temporal logic and linear dynamic logic on finite traces,

in: F. Rossi (Ed.), IJCAI 2013, Proceedings of the 23rd International Joint Conference on

Artificial Intelligence, Beijing, China, August 3-9, 2013, IJCAI/AAAI, 2013, pp. 854–860.

URL: http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997.

[6] W. M. P. van der Aalst, Process Mining - Data Science in Action, Second Edition, Springer,

2016.

[7] M. Weske, Business Process Management - Concepts, Languages, Architectures, Third

Edition, Springer, 2019.

[8] I. H. Witten, E. Frank, M. A. Hall, Data mining: practical machine learning tools and

techniques, 3rd Edition, Morgan Kaufmann, Elsevier, 2011.

[9] W. M. P. van der Aalst, The application of Petri nets to workflow management, J. Circuits

Syst. Comput. 8 (1998) 21–66.

[10] W. M. van der Aalst, C. Stahl, Modeling business processes - a Petri net-oriented approach,

in: CoopIS series, 2011.

[11] S. A. White, Introduction to BPMN, Ibm Cooperation 2 (2004) 0.

[12] T. Allweyer, BPMN 2.0 : introduction to the standard for business process modeling, 2016.

[13] C. Di Ciccio, M. Montali, Declarative process specifications: Reasoning, discovery, moni-

toring, in: W. M. P. van der Aalst, J. Carmona (Eds.), Process Mining Handbook, volume

448 of Lecture Notes in Business Information Processing, Springer, 2022, pp. 108–152. URL:

https://doi.org/10.1007/978-3-031-08848-3_4. doi:10.1007/978-3-031-08848-3_4.

[14] W. M. P. van der Aalst, M. Pesic, H. Schonenberg, Declarative workflows: Balancing

between flexibility and support, Comput. Sci. Res. Dev. 23 (2009) 99–113. URL: https:

//doi.org/10.1007/s00450-009-0057-9. doi:10.1007/s00450-009-0057-9.

[15] B. Finkbeiner, H. Sipma, Checking finite traces using alternating automata, Formal

Methods Syst. Des. 24 (2004) 101–127.

[16] V. Fionda, G. Greco, LTL on finite and process traces: Complexity results and a practical

reasoner, J. Artif. Intell. Res. 63 (2018) 557–623.

[17] F. Chiariello, F. M. Maggi, F. Patrizi, ASP-based declarative process mining, in: Thirty-Sixth

AAAI Conference on Artificial Intelligence, AAAI 2022, AAAI Press, 2022, pp. 5539–5547.

URL: https://ojs.aaai.org/index.php/AAAI/article/view/20493.

[18] G. De Giacomo, M. Favorito, Compositional approach to translate ltlf/ldlf into deterministic

finite automata, in: ICAPS, AAAI Press, 2021, pp. 122–130.

https://doi.org/10.1007/978-3-319-61660-5_19
http://dx.doi.org/10.1007/978-3-319-61660-5_19
https://doi.org/10.1017/S1471068418000054
http://dx.doi.org/10.1017/S1471068418000054
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
https://doi.org/10.1007/978-3-031-08848-3_4
http://dx.doi.org/10.1007/978-3-031-08848-3_4
https://doi.org/10.1007/s00450-009-0057-9
https://doi.org/10.1007/s00450-009-0057-9
http://dx.doi.org/10.1007/s00450-009-0057-9
https://ojs.aaai.org/index.php/AAAI/article/view/20493

[19] F. Chiariello, F. M. Maggi, F. Patrizi, From LTL on process traces to finite-state automata,

in: BPM (Demos / Resources Forum), volume 3469 of CEUR Workshop Proceedings, CEUR-

WS.org, 2023, pp. 127–131.

[20] S. Hahn, Automata techniques for temporal answer set programming, in: ICLP Technical

Communications, volume 345 of EPTCS, 2021, pp. 258–266.

[21] P. Cabalar, M. Diéguez, S. Hahn, T. Schaub, Automata for dynamic answer set solving:

Preliminary report, in: ICLP Workshops, volume 2970 of CEUR Workshop Proceedings,
CEUR-WS.org, 2021.

[22] P. Cabalar, R. Kaminski, P. Morkisch, T. Schaub, telingo = ASP + time, in: LPNMR, volume

11481 of Lecture Notes in Computer Science, Springer, 2019, pp. 256–269.

[23] P. Cabalar, Temporal ASP: from logical foundations to practical use with telingo, in:

Reasoning Web, volume 13100 of Lecture Notes in Computer Science, Springer, 2021, pp.

94–114.

[24] F. Chiariello, F. M. Maggi, F. Patrizi, A tool for compiling declarative process mining

problems in ASP, Softw. Impacts 14 (2022) 100435.

[25] A. Alman, C. Di Ciccio, D. Haas, F. M. Maggi, J. Mendling, Rule mining in action: The rum

toolkit, in: C. Di Ciccio, B. Depaire, J. D. Weerdt, C. D. Francescomarino, J. Munoz-Gama

(Eds.), Proceedings of the ICPM Doctoral Consortium and Tool Demonstration Track 2020,

volume 2703 of CEUR Workshop Proceedings, CEUR-WS.org, 2020, pp. 51–54.

[26] A. Ielo, F. Ricca, L. Pontieri, Declarative mining of business processes via ASP, in: G. D.

Giacomo, A. Guzzo, M. Montali, L. Limonad, F. Fournier, T. Chakraborti (Eds.), Proceedings

of the Workshop on Process Management in the AI Era (PMAI 2022), volume 3310 of

CEUR Workshop Proceedings, CEUR-WS.org, 2022, pp. 105–108. URL: http://ceur-ws.org/

Vol-3310/paper14.pdf.

[27] G. De Giacomo, F. M. Maggi, A. Marrella, F. Patrizi, On the disruptive effectiveness of

automated planning for ltlf -based trace alignment, in: S. Singh, S. Markovitch (Eds.),

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February

4-9, 2017, San Francisco, California, USA, AAAI Press, 2017, pp. 3555–3561. URL: http:

//aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14652.

http://ceur-ws.org/Vol-3310/paper14.pdf
http://ceur-ws.org/Vol-3310/paper14.pdf
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14652
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14652

	1 Introduction
	2 Approach
	3 Application
	4 Conclusion

