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Abstract
One way towards the design of trustable, explainable, and interpretable artificial intelligence models is
to focus on symbolic machine learning models, such as decision trees. While decision trees are already
intelligible in principle, the logical rules they enclose may still be redundant, in particular with respect
to some underlying theory. Moreover, propositional decision trees have been recently generalized to
the case of modal logic; modal decision trees turn out to be more expressive than propositional ones, so
their corresponding modal rules are proportionally harder to understand and minimize. In this paper we
approach the problem of minimizing logical rules extracted from (modal) decision trees modulo some
external theory.
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1. Introduction

Decision trees are part of a collection of logic-based learning methods that include learning
DNF/CNF formulas, Horn formulas, and decision lists, and characterized by the implicit assump-
tion that each instance of a dataset can be seen as a logical model. Among such methods, decision
trees are probably the most successful one. Learning an optimal decision tree, that is, a decision
tree with a minimum number of nodes, is an Σ𝑃

1 -hard problem [1], so learning decision trees is
often accomplished with heuristics such as entropy-based algorithms (e.g., CART [2], C4.5 [3],
or ID3 [4]). Classic decision trees are propositional. Typically, edge conditions are simple literals
(e.g., 𝐴𝑔𝑒 > 45, 𝐺𝑒𝑛𝑑𝑒𝑟 =𝑀 ), so given the set 𝒱 of the variables of the problem, one can fix
a propositional vocabulary 𝒜𝒫 = {𝑉 ◁▷ 𝑣 | 𝑉 ∈ 𝒱, 𝑣 ∈ R}, where ◁▷∈ {<,≤,=,≥, >} and
then interpret edge conditions as literals built from propositions in 𝒜𝒫 . As a consequence, a
branch in a classic propositional decision tree is seen as a logical term, that is, a conjunction

OVERLAY 2023: 5th Workshop on Artificial Intelligence and Formal Verification, Logic, Automata, and Synthesis,
November 7, 2023, Rome, Italy
$ giovanni.pagliarini@unife.it (G. Pagliarini); andrea.paradiso@edu.unife.it (A. Paradiso);
sasha.rubin@sydney.edu.au (S. Rubin); guido.sciavicco@unife.it (G. Sciavicco); ioneleduard.stan@unibz.it
(I. E. Stan)
� 0000-0002-8403-3250 (G. Pagliarini); 0000-0002-3614-2487 (A. Paradiso); 0000-0002-3948-129X (S. Rubin);
0000-0002-9221-879X (G. Sciavicco); 0000-0001-9260-102X (I. E. Stan)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:giovanni.pagliarini@unife.it
mailto:andrea.paradiso@edu.unife.it
mailto:sasha.rubin@sydney.edu.au
mailto:guido.sciavicco@unife.it
mailto:ioneleduard.stan@unibz.it
https://orcid.org/0000-0002-8403-3250
https://orcid.org/0000-0002-3614-2487
https://orcid.org/0000-0002-3948-129X
https://orcid.org/0000-0002-9221-879X
https://orcid.org/0000-0001-9260-102X
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


of literals, and a class 𝐶 is identified by the union of branches that are labeled with it; the
corresponding formula, which is a disjunction of conjunctions of literals, that is, a DNF formula,
is called class-formula. In this sense, each data point, or instance, of a dataset, can be seen
as a propositional interpretation. If 𝜙 is the class-formula for 𝐶 in the tree 𝜏 , from a logical
point of view a decision tree assigns an instance 𝐼 to the class 𝐶 if 𝐼 , viewed as propositional
interpretation, satisfies 𝜙.

To overcome some of the limitations of propositional decision trees, several generalizations
have been proposed; a very recent one consists of replacing propositional logic with modal
logic [5]. Modal decision trees are based on the idea that instances of non-scalar datasets (e.g.,
time series, texts, images, videos, and graphs) can be seen as finite Kripke structure (i.e., a certain
type of transition system). Thus, in the simplest case, a (non-scalar) instance 𝐼 is described as
a tuple 𝐼 = (𝑊,𝑅, 𝑉 ), where 𝑊 is a finite set of worlds (among which an initial world 𝑤0 is
identified), 𝑅 ⊆𝑊 ×𝑊 is an accessibility relation, and 𝑉 :𝑊 → 2𝒜𝑃 is a valuation function
that maps every world to the subset of propositional letters that are true on it. It can be shown
that most types of data points can be, in fact, seen as Krikpe structure, allowing one to effectively
generalize propositional learning to modal (propositional) learning (instances with a single
world are, in fact, propositional). Modal decision trees have been introduced in [6] in their
temporal form, and later extended and applied to a variety of domains and tasks [7, 8, 9, 10, 11]),
and their properties have been studied in [5]. Modal decision trees have a general, syntactical
definition, which can be instantiated with a specific modal language ℒ; real-world non-scalar
datasets can be seen as sets of multi-relation Kripke models, and real-world modal logics used
in learning are in fact multi-modal logics with high expressive power. However, most basic
results can be stated in the simple case of single-relation structures and uni-modal logic, and
then easily generalized. Learning modal decision trees is accomplished with heuristic learning
algorithms inspired by their propositional counterparts. Class-formulas from modal decision
trees can be extracted as in the propositional case, and they have the form of conjunctions of
disjunctions of formulas (each called a path-formula); as before, an instance 𝐼 is classified into a
class 𝐶 by a decision tree 𝜏 if and only if 𝐼 , seen as a Kripke interpretation, satisfies 𝜙 on the
initial world 𝑤0, where 𝜙 is the class-formula extracted from 𝜏 for 𝐶 .

Since decision tree learning algorithms are sub-optimal, class-formulas may display some
kind of redundancy. At the propositional level, for example, a very simple case occurs when a
product includes the conjunction of two literals of the type 𝑉 > 𝑣 and 𝑉 > 𝑣′, being 𝑣 ≥ 𝑣′;
clearly, 𝑉 > 𝑣′ can be omitted. More generally, one can consider the situation in which a given
learning problem is linked to a finite theory 𝒯 , possibly provided by an expert and/or induced
by the nature of propositional letters, that may help simplifying the learned model; for example,
we may know that 𝐹𝑒𝑣𝑒𝑟 > 38 implies 𝐻𝑒𝑎𝑑𝑎𝑐ℎ𝑒 = 𝑇𝑟𝑢𝑒, so that a term that contains both
literals may, again, be simplified. In this paper, we want to define the problem of simplifying
class-formulas modulo a theory, and discuss an initial approach to its solution.

2. Minimization of Modal Class-Formulas Modulo Theory

Given a (modal) decision tree for a fixed language ℒ and vocabulary 𝒜𝒫 , a theory 𝒯 written
in the language ℒ, a class 𝐶 , and the class-formula 𝜙 for 𝐶 , we can formulate the problem of



Algorithm 1: TheoryMinimize.

function TheoryMinimize(𝜙, 𝒯 ):
return TMin(𝜙,𝑁𝑢𝑙𝑙, 𝒯 )

end
function TMin(𝜙,𝜙𝑝𝑎𝑟𝑒𝑛𝑡, 𝒯 ):

if 𝜙 ̸= 𝜆𝑙𝑖𝑡 then
if 𝜙 = 𝜉1 ∧ 𝜉2 then 𝜙← (TMin(𝜉1, 𝜙, 𝒯 ) ∧ TMin(𝜉2, 𝜙, 𝒯 ))
else if 𝜙 = 𝜉1 → 𝜉2 then 𝜙← (TMin(𝜉1, 𝜙, 𝒯 )→ TMin(𝜉2, 𝜙, 𝒯 ))
else if 𝜙 = ♢𝜉 then 𝜙← ♢TMin(𝜉, 𝜙, 𝒯 )
else if 𝜙 = □𝜉 then 𝜙← □TMin(𝜉, 𝜙, 𝒯 )
if 𝜙 ̸= 𝜉1 ∧ 𝜉2 then 𝜙←𝑀𝑎𝑟𝑘(𝜙)
else if 𝜙 = 𝜉1 ∧ 𝜉2 and 𝜙𝑝𝑎𝑟𝑒𝑛𝑡 ̸= 𝜉1 ∧ 𝜉2 then

(𝜙,𝑀𝑎𝑝)← ReplaceMarkedSubFormulasWithNewLetters(𝜙)
𝜙′ ← CNFMin(𝜙 ∧ 𝒯 )
𝜙← ReplaceLettersWithSubFormulas(𝜙′,𝑀𝑎𝑝)

return 𝜙
end

finding the smallest (in terms of number of symbols) 𝜙′ equivalent to 𝜙 in every model in which 𝒯
holds universally; in other words, we ask that for every instance 𝐼 such that for every world 𝑤 it
is the case that 𝐼, 𝑤 ⊩ 𝜓 for each 𝜓 ∈ 𝒯 , it so happens that 𝐼, 𝑤0 ⊩ 𝜙 if and only if 𝐼, 𝑤0 ⊩ 𝜙′.
In the general case of modal decision trees, class-formulas have the form

(𝜙1
1 ∧ 𝜙1

2 ∧ . . . ∧ 𝜙1
𝑛1
) ∨ . . . ∨ (𝜙𝑚

1 ∧ 𝜙𝑚
2 ∧ . . . ∧ 𝜙𝑚

𝑛𝑚
),

where each 𝜙𝑗
𝑖 (called path-formula) is a formula that belongs to a specific grammar. So, this

problem is at least Σ𝑃
2 -hard, as it can be reduced to the propositional DNF minimization with

an empty theory [12], and it is its natural generalization to the case of decision trees.
A two-step sub-optimal approach towards the solution to the above problem, in the particular

case in which 𝒯 only contains propositional implications of the type (𝜆1 ∧ 𝜆2 ∧ . . . ∧ 𝜆𝑧 → 𝜆)
(where 𝜆 and each 𝜆𝑖 is a propositional literal); the efficiency of such an approach depends,
among other aspects, on the efficiency of the algorithm Norm(𝜙) that, given 𝜙, returns its logical
negation 𝜙′ (in the same grammar).

In step one (Alg. 1) we take advantage from the fact that class-formulas present typical
patterns for which the theory can be exploited towards a simplification, considering each path-
formula of each term (𝜙𝑗

1∧𝜙
𝑗
2∧ . . .∧𝜙

𝑗
𝑛𝑗 ) individually. First, the procedure inductively searches

for a maximal subtree of the syntax tree of the considered formula that is a conjunction. Then, it
substitutes every conjunct that is not a literal with a fresh propositional letter (ReplaceMarked-
SubformulasWithNewLetters), using a map to keep trace of each substitution. Finally, it delegates
the process of minimizing the size of the obtained conjunctive formula within the theory to
an heuristic minimization algorithm CNFMin, before replacing back the fresh letters with the
original subtrees (ReplaceLettersWithSubFormulas). The call CNFMin(𝜆1 ∧ 𝜆2 ∧ . . . ∧ 𝜆𝑛 ∧ 𝒯 )
returns a conjunction 𝜆𝑠1 ∧ . . . ∧ 𝜆𝑠𝑙 (𝑙 ≤ 𝑛, 𝑠1, . . . , 𝑠𝑙 ∈ [1, 𝑛]) such that for every 𝜆𝑖 with



Algorithm 2: PropositionalMinimize.

function PropositionalMinimize(𝜙):
(𝜙,𝑀𝑎𝑝)← ReplaceConjunctsWithNewLiterals(𝜙)
𝜙′ ← DNFMin(𝜙)
return ReplaceLiteralsWithConjuncts(𝜙′,𝑀𝑎𝑝)

end
function ReplaceSubFormulasWithNewLiterals(𝜙):

𝑀𝑎𝑝← ∅
foreach 𝜉 ∈ Conjuncts(𝜙) do
if 𝑀𝑎𝑝[𝜉] does not exist then
𝑡̃← 𝑁𝑒𝑤𝐿𝑒𝑡𝑡𝑒𝑟()
𝑀𝑎𝑝[𝜉]← 𝑡̃
𝑀𝑎𝑝[Norm(¬𝜉)]← ¬𝑡̃

𝜉 ←𝑀𝑎𝑝[𝜉]
return (𝜙,𝑀𝑎𝑝)

end

𝑖 /∈ {𝑠1, . . . , 𝑠𝑙} it is the case that 𝜆𝑠1 ∧ . . . ∧ 𝜆𝑠𝑙 ∧ 𝒯 → 𝜆𝑖 is valid, and that the subset
{𝜆𝑠1 , . . . , 𝜆𝑠𝑙} is minimal. A procedure CNFMin as we have described it can be obtained by sim-
ply adapting a deletion-based procedure, namely, plain deletion-based MES extraction, from [13].
As an example, the term

□(𝑝 ∧ ¬𝑞 ∧ ♢𝑟 ∧ 𝑠) ∧ 𝑡

would be reduced to the term
□(¬𝑞 ∧ ♢𝑟) ∧ 𝑡

if 𝒯 contained the implications ¬𝑞 → 𝑝 and ¬𝑞 → 𝑠.
In step two (Alg. 2), we operate on the whole class-formula by uniformly substituting every

(top-level) conjunct in every term of the class-formula being considered with a fresh literal
(ReplaceConjunctsWithNewLiterals), delegating the size minimization of the resulting DNF
formula to a procedure DNFMin [14, 15], and performing a backward, consistent substitution
(ReplaceLiteralsWithConjuncts). The correctness of this approach is based on the auxiliary
function Norm, whose existence we assumed. As an example, the class-formula

(𝜙1 ∧ ¬𝜙2 ∧ 𝜙3) ∨ (𝜙1 ∧ 𝜙3)

would be reduced to the class-formula

𝜙1 ∧ 𝜙3.

3. Conclusions

We defined the problem of minimization of class-formulas extracted from (modal) decision trees,
and we proposed an initial, heuristic approach to its solution.
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