
A template-based analysis of GRL∗

Gautier Dallons, Patrick Heymans, Isabelle Pollet

Computer Science Department, University of Namur
{gdl,phe,ipo}@info.fundp.ac.be

Abstract. The goal-oriented paradigm is widely popular in Require-
ments Engineering. However, the central notion of goal remains one of the
most controversial in the field. A possible cause might be that research
has devoted too little attention to studying the ontological foundations of
goal-oriented languages. In this paper, we have studied the case of GRL,
the goal-oriented requirements language being standardized by the ITU.
Our analysis followed the template-based approach proposed by Opdahl
and Henderson-Sellers. After defining a metamodel for GRL, we have
applied the template to each of its constructs to extract and formalize
detailed syntactic and semantic information. The semantic part of the
template focuses on establishing a mapping between a construct and its
meaning, defined in term of the Bunge-Wand-Weber ontology. Evalua-
tions of both GRL and the template are provided as well as suggestions
to improve them.

1 Introduction

In 2003, the UEML thematic network (IST-2001-34229, www.ueml.org) started
to develop the so-called Unified Enterprise Modeling Language (UEML), a con-
ceptual modeling language designed to be a common ground for (1) representing
the various aspects of the enterprise and (2) facilitating the exchange of enter-
prise models. Reaching these objectives was deemed of utmost importance to
improve the development, interoperability and integration of enterprise informa-
tion systems. In 2004, UEML 1.0 was delivered. Due to the nature of the UEML
project1, UEML 1.0 allows mainly the modeling of process aspects but leaves
out other aspects (such as static information, functional and non-functional re-
quirements, resources and goals) and covers only a small set of the identified
requirements. It was defined by integrating subsets of three existing Enterprise
Modeling Languages (EMLs) – namely GRAI [3], EEML [6] and IEM [10] – by
following a methodology inspired by database integration [13]. Development of
the UEML has since then been taken over by the InterOP Network of Excel-
lence [1]. It is currently an on-going activity carried out by a consortium made of

∗This work is supported by the Commission of the European Communities under
the sixth framework programme (InterOP Network of Excellence, Contract 508011) [1]

1The UEML project lasted only 15 months and its objectives were confined to
demonstrate the feasibility of using UEML for exchanging models among three enter-
prise modeling software environments.



the leading practionners and researchers in the domain of Enterprise Modeling
(EM). The adopted language development approach reconciles scientific rigour
and pragmatism. First, it is a requirements document under continuous elab-
oration that drives the language development process. Second, commonly used
EMLs are analysed, each in turn, according to a quality evaluation framework
inspired by [8] in order to guarantee that not only the most used but also the
most appropriate and sound constructs are incorporated in the UEML defini-
tion. Third, the integration of these constructs into the UEML is done in such
a way that syntactic and semantic problems (widespread in other unified lan-
guages, such as UML) do not arise. Examples are synonymous, homonymous,
underdefined, ill-defined, overly complex or poorly integrated constructs. Finally,
evaluations of the successive versions of the language are performed to provide
continuous feedback to the language development requirements and process.

The work reported in this paper describes some contributions of the authors
towards the development of UEML 2.0. We focus on the analysis of existing
EMLs and, more specifically, on the analysis of GRL, the goal-modeling language
standardized by the ITU [4]. The language is presented in Sect. 2. The template-
based approach [12] used to analyse EML constructs is sketched in Sect. 4. The
analysis template is to be applied to every construct pertaining to a language’s
abstract syntax (aka metamodel). Since GRL does not have a proper metamodel,
we had to define it ourselves (Sect. 3). The template-based analysis of GRL
constructs follows (Sect. 5) and then undergoes discussion (Sect. 6). Because
of space limitations, it was impossible to reproduce and discuss in this paper
the analyses of all the GRL constructs that we performed but the companion
technical report [2] provides the full details. We conclude with a summary and
an outlook towards future work (Sect. 7).

2 GRL in a nutshell

GRL stands for Goal-oriented Requirements Language. It results from the in-
tegration of the i* goal-modeling language [16] and the NFR framework [11].
The latter consists of a language and method designed to represent and reason
about non-functional requirements (NFRs). Both languages originate from re-
search performed at the University of Toronto and were among the first ones to
consider goals as first-class citizens. However, each of them has a different focus.
Indeed, NFR, which is a few years older than i*, had for primary concern the
modeling of NFRs and the various types of relationships between them (and-
and or- decomposition, positive and negative contributions, etc.). NFR comes
with goal decomposition strategies as well as propagation algorithms to estimate
the satisfaction of higher-level goals given the (more measurable) attainment or
non-attainment of lower-level ones. i*, on the other hand, focuses on modeling
the intentions of and strategic dependencies between actors. Dependencies be-
tween actors concern goals, softgoals, resources and tasks. It is the key concept
of goal that makes the link between the two notations.



GRL is now in its third version and is a component of URN, the Unified
Requirements Notation standardized by the ITU. URN has two main compo-
nents : Use Case Maps (URN-UCM, see [5]) and GRL aka URN-NFR. Note that
two other well-known and widely used languages are standardized by the ITU,
namely MSCs and SDL.

Analysis of GRL was given a high-priority by the UEML development team
(1) because the lack of goal and NFR modeling is currently a major drawback
of UEML; (2) because of the popularity that the GRL notation is expected to
gain through its development by an international standardization body such
as the ITU; (3) because GRL is already the result of the integration of two
complementary pioneering goal-oriented languages; and (4) because a relatively
precise definition of GRL’s syntax is public, which we have not found to be the
case for other goal-oriented languages.

Details on the constructs of the language will be given in Sect. 2 where we
report on their analysis. At this stage, we will just give an overview by quoting
[4]:

The URN-NFR language specified here is GRL [. . . ], which is a
language for supporting goal-oriented modeling and reasoning about
requirements, especially non-functional requirements. It provides con-
structs for expressing various types of concepts that appear during the
requirement process. There are four main categories of concepts: actors,
intentional elements, non-intentional elements, and links. The intentional
elements in GRL are goal, task, softgoal, resource and belief. They are
intentional because they are used for models that allow answering ques-
tions such as why particular behaviours, informational and structural
aspects were chosen to be included in the system requirements, what al-
ternatives were considered, what criteria were used to deliberate among
alternative options, and what the reasons were for choosing one alterna-
tive over the other. Actors are holders of intentions, they are the active
entities in the environment or the system, who want goals to be achieved,
tasks to be performed, resources to be available and softgoal to be sat-
isficed. Links are used to connect isolated elements in the requirement
model. Different types of link depict different intentional relationships.
Non-intentional elements are equipped as a mechanism to refer to objects
outside GRL model.

In addition to a general introduction from which the above paragraph is
taken, the standard essentially has the following content:

– 3 concrete syntaxes for GRL : a textual syntax (expressed in BNF), a graph-
ical syntax (expressed in BNF augmented with topological information) and
an XML syntax (expressed with as an XML Document Type Definition
(DTD));

– informal semantic definitions of constructs;
– examples of GRL models;
– a tutorial.



No abstract syntax is provided2. Thus, we provided our own that we elabo-
rated from the sources listed above. Doing this, we encountered inconsistencies,
ambiguities and underdefinitions. We will mention them as we go along and
explain how we choosed to resolved them.

3 A metamodel for GRL

As a metamodeling language, we use standard UML Class Diagrams. Fig. 1 is
the top-level view of the metamodel. The 4 main types of elements mentioned
in the quoted paragraph in the previous section appear immediately: Actor,
IntentionalElement, NonIntentionalElements, and link (that was renamed
IntentionalRelationship, to be compliant with the syntax definition). Ex-
cept Model and ModelType, which are generic to all the languages we plan to
examinate, all the classes in this and subsequent diagrams are specific to GRL.
We have located them in the GRL package in order to avoid confusion in a
multilanguage context.

Fig. 2 details the 5 kinds of intentional elements: Softgoal, Resource, Task,
Goal and Belief. Various abstract classes appear: IEButBelief (denoting all in-
tentional elements except beliefs), Correlator, Contributee and Contributor.
These latter classes are somewhat artificial. We introduced them for the sole
purpose of showing graphically (vs. in OCL) and succintly the groups of classes
which are likely to play a role wrt an intentional relationship (see Fig. 3). For
example, in GRL, the contributee in a contribution relationship is either a belief,
a softgoal or an intentional relationship. Therefore, we have introduced a super-
class Contributee generalizing Belief, Softgoal and IntentionalRelationship.
All such superclasses have stereotype <<PossibleRole(s)>> and are named af-
ter their corresponding roles (except IEButBelief, for brevity)3.

The metamodel continues on Fig. 4. Details on selected constructs will be
given in Sect. 4. For full details, please refer to the companion technical report
[2].

4 Template-based analysis of modeling languages

In this section, we briefly present the template that we have used for analyzing
the GRL constructs. The template was proposed by Opdahl and Henderson-
Sellers [12] as a means to systematize the description of EML constructs. It can
be used for various purposes like comparing and integrating EML constructs or,
simply, for better understanding them. Translating models from one EML to
another is another possible use.

In version 1.1 of the template (the latest at the time of writing), each con-
struct is defined by filling in the following sections:

2However, the document indicates that this is foreseen.
3This avoids using less readable OCL constraints or overloading the diagram with

a relationship for each subclass able to play a role



Non-Intentional 
Element

name
description [0..1]

External 
Specification

external type
external name
model name

GRL Model
name

Actor
name
description [0..1]

Intentional 
relationship

Identifier [0..1]

0..1

1
refers

0..*

0..*

refers to

1

0..*

implying

1

1..*

constructed with
1

1..*

constructed with

Intentional 
element

name
Description [0..1] 

Attribute
name

« PossibleRole(s) » 
Value

Expression

11 is evaluated by

0..*

0..1
has

Model Type

1

0..*
from

URN-FR : Model 
Type

UML : Model 
Type

SDL : Model 
Type

« instantiate »
« instantiate »

« instantiate »

0..1
holds 0..*

0..*

0..1

has

▼

{Disjoint}

▼

▼

▼

▼

▼
▼

▼

▼ ▼

GRL : Model 
Type

« instantiate »

Model

1

0..*from▼

{exactly-one}

A GRL Model Definition is 
from a GRL model type

A External Specification is 
not from a GRL model 

type

Fig. 1. Top-level view of the GRL metamodel



GoalTaskSoftgoal
name [0..1]
type

Resource Belief

Intentional 
element

name
Description [0..1]

« PossibleRole(s) »
IE-but-belief

« PossibleRole(s) »
Contributee

« PossibleRole(s) »
Contributor

« PossibleRole(s) »
Correlator

Intentional 
relationship

Identifier [0..1]

Priority
0..1

1 has
Evaluation Label0..1

1 evaluated

Non-Intentional 
Element

name
description [0..1]

1

topic

0..*

▲

▼
▼

{Partition}

{Disjoint}

{Partition}

{Disjoint}

{Disjoint}

Fig. 2. GRL metamodel: zoom on intentional elements

Intentional 
relationship

Identifier [0..1]

DecompositionMeans-endsContribution

Dependency Correlation

{Partition}

Fig. 3. GRL metamodel: types of intentional relationships



1

dependum 0..*

Actor
name
description [0..1]

Decomposition

Means-ends

Contribution

Dependency

Correlation

1

from0..*

1
to

0..*

0..*

1..*

contributor

1 from

0..*

1

0..*

contributee

« PossibleRole(s) »
Depender/
Dependee

« PossibleRole(s) »
Correlator

1 0..*correlator

Task

Softgoal
name [0..1]
type

Intentional 
element

name
Description [0..1]

« PossibleRole(s) »
IE-but-belief Goal

« PossibleRole(s) »
Contributee

« PossibleRole(s) »
Contributor

0..*

1

to

dependee

0..*

1

depender

1

0..*

1

0..*corelatee

▲
▲

▲

{Disjoint}

▲

▲

▲

▲

▲

▲

▲

{Disjoint}

Component/
Dependum

Fig. 4. GRL metamodel: zoom on intentional relationships



1. Preamble. General issues are specified here, i.e., construct, diagram type,
language name and version, acronyms and external resources.

2. Presentation. Such issues as lexical information (icons, line styles), syntax
and layout conventions are specified here.

3. Semantics. This section is the most important as well as the most complex.
It requires the analyst to answer the four following questions:
– Is the construct at the instance or type level?
– Which class(es) of things in the world does the construct represent?
– Which property(-ies) of those things does the construct represent? Things

and properties are the basic building blocks upon which the other BWW
concepts are built. Due to lack of space, we will only introduce such
BWW concepts when we need them in the sequel.

– Which segment of the lifetimes of those property(-ies) and things does
the constructs represent? This question is only relevant for constrcuts
denoting behavioural properties.

– What is the modality of the assertions made using the construct? Is it
that something is the case (regular assertion)? Is it that somebody wants
something to be the case? Is it that somebody knows that something is
the case? Etc.

4. Open issues. All the issues that the template failed to address should be
mentioned here.

The section devoted to semantics is based on the Bunge-Wand-Weber (BWW)
ontology [15], a now widespread reference for the semantic evaluation of informa-
tion system concepts. However, this ontology, despite recent efforts to formalize
it and make it more accessible [14], remains complex, sometimes ambiguous and
not so well-known by EM experts. One of the main advantages of the template
is that is does not require its users to be BWW nor ontology experts. It helps
relate EML constructs to the the abstract categories of BWW by asking simple
questions, giving practical recommendations and providing concrete examples.

5 Template-based analysis of GRL constructs

Due to space limitations, we cannot describe in detail the analysis of each con-
struct. The interested reader will find the detailed analyses of the other con-
structs in the technical report [2]. In this section, we skip the trivial syntax-
related points to concentrate on the semantics (section 3 of the template). Our
analysis is summarized on table 1. The leftmost column lists the GRL constructs.
The upper part of the table lists the intentional elements while the lower part is
devoted to intentional relationships. If a construct is mapped to a BWW class,
this is indicated in the middle column. If it is mapped to a BWW property,
this is indicated in the rightmost column. Note that we do not claim that this
semantic mapping is better than any other. We have tried to be as faithful as we
could to the GRL and BWW definitions but, in the end, it remains the product
of our subjectivity. It is exposed here for the purpose of being discussed with
peers.



The Actor construct is mapped to the BWW ThingsActingOnTheProposedSys-
tem class. In BWW, “acting” has a broad meaning. This mapping entails that
an actor is someone or something (see Sect. 6) having some influence on the fu-
ture system. Similary, the Resource construct is mapped to the ActedOnThings
class. In our mapping, this class means that a Resource is a thing on which
someone or something can act.

The Goal, Softgoal and Belief constructs are all mapped to a state law
property. For Goal and Softgoal, this is explained by the fact that these con-
structs were deemed to constrain the possible states of the proposed system: an
actor wants something to be true in the proposed system, thereby constraining
the possible states of the system. As an example, if we have a goal “increase
the number of orders taken in charge” then there is a constraint on the possible
future system states. A Belief is also a state law but true in both the current
and future world (with or without the proposed system). Goal and Softgoal
have been given a modality representing that their corresponding state law are
wanted by some actor. Belief, like all other GRL constructs, is just a regular
assertion.

Task is mapped to a transformation law. Indeed, a task will have an impact
on the system and will hopefully result on a change of the state of world.

The Means-End relationship is also mapped to a transformation law. The
end is an objective to be achieved by the proposed system and the means is the
way of achieving it. So, Means-End defines a transformation from the current
system/state to a next state closer to the future system. Decomposition is also
a transformation law. For example, a system with only one task evolves towards
a system with several tasks which are the sub-task of the previous one. We
understand Means-End and Decomposition as two kinds of system refinements.

The Dependency relationship is mapped to a state law. This relationship de-
notes the dependency of an actor on another wrt an object of dependency, called
the dependum. The state of the dependum is constrained by the dependency be-
tween actors. Hence a state law.

Finally, Contribution and Correlation are mapped to mutual property. A
contribution is a shared property between two coupled objects. In BWW terms,
this amounts to a mutual property. A correlation is similar, except that it does
not happen by design but by side-effect.

6 Discussion

6.1 Assessment of GRL

First, we recall the subjectivity of the results exposed in the previous section.
This is actually reinforced by the fact that the GRL specification is quite impre-
cise. Indeed, in the specification, we found only very broad semantic definitions
and the tutorial does not help us to precise them. Most of the time, our inter-
pretation has played a key-role in the understanding of GRL constructs. This
could be seen as a force since, this way, the GRL application domain remains



Table 1. Summary of the GRL template analysis

GRL construct Class entry Property entry

Actor ThingsActingOnTheProposedSystem -
Goal - State Law
Task - Transformation Law

Softgoal - State Law
Resource ActedOnThings -
Belief - State Law

Means-ends - Transformation Law
Dependency - State Law

Decomposition - Transformation Law
Contribution - Mutual
Correlation - Mutual

vast. From our point of view, this is a weakness because we were left with many
questions which could be a major impediment if one has to make a concrete
GRL model or to transform an existing GRL model into another notation. For
example, in [4], an Actor is defined as an active entity that carries out actions
to achieve goals by exercising its know-how. What about a group of people? Is
it an actor? Can we consider types of actors? Are actors always people or can
they be things (like expert systems)? Are roles also considered actors as in i*.
Having no answer, we stayed with the broadest interpretation but miss a way
to differentiate these concepts in the language. Similar questions were raised for
the other constructs as well. They can be found in the technical report.

Another problem we encountered is the existence of contradictions between
the concrete syntaxes from which we had to build the metamodel. We had to
make choices that do not necessarily represent the intentions of the GRL authors.
For example, the textual syntax sometimes allows so-called short-hand forms
which compliance with the informal semantics was deemed doubtful. An example
is decomposition. In the text, only tasks are said to be decomposable. However
the syntax allows a shortcut where a goal can be decomposed. In this case, we
have decided to stick to the text and ignore the syntax definition. The meta-
model presented in this article was constructed in this spirit.

Finally, we think the textual syntax could be improved especially wrt to
the chosen keywords which are not always intuitive. For example, the syntax of
decomposition is defined by the following rule: DECOMPOSITION Optional
Identifier FROM sub-element TO Decomposed Element
We think the FROM and TO keywords are quite misleading in this order. A
more intuitive definition could be: DECOMPOSITION Optional Identifier
OF Decomposed Element INTO sub-element



6.2 Assessment of the template-based approach

For our purpose, the template was found to be very useful. It helped to raise
a number of important issues about the analysed language which have been
exposed in the previous sections. We particularly appreciated its ease of use
even for those who, like us, are not BWW experts. Some familiarity was quickly
gained by browsing through the many available examples, especially the analyses
of well-known UML constructs. Still, we think that some improvements could be
brought to the template.

First, it appeared that the predefined BWW concepts were quite broad. They
were more or less sufficient because the semantic description of GRL is itself
quite vague and wide-embracing. However, we encountered some problems. For
example, a goal and a dependency are both BWW state laws although they
are very different concepts. Hence, it is important to still refer to the initial less
formal definitions to understand the differences. It would become quite dangerous
to compare directly two concepts mapped to a single BWW class without looking
at the original definitions, unless new BWW classes can be defined by the user.
This was not attempted in this first use of the template. Similarly, although we
did not detail the various contribution and correlation subtypes at this stage,
we foresee the same problem to occur here.

Another point is the modality field. Currently, it only asks whether the as-
sertion is modal or not. It was sufficient because GRL is not very precise here
either but a more fine-grained list of modalities could be provided. This could
be useful, for example, if we had to capture categories of goals such as those
proposed by [7] or [9]. More details are given in the Related Work section of the
technical report.

Finally, we think that tool support could be of great help to fill in the var-
ious entries. It could give more guidance (by restricting the possible values),
allow safer reuse than copy and paste (which was heavily used throughout the
analysis and was the source of many mistakes), and directly create the links be-
tween BWW and metamodel elements (which would facilitate other automated
treatments and visualisations).

7 Summary and future work

In this paper, we have reported on the experimental analysis of the GRL language
through the template-based approach defined by Opdahl and Henderson-Sellers.
Despite its simplicity and its discussed limitations, the template allowed us to
identify a number of pending important issues in the current GRL specification.
We have also proposed a metamodel for GRL which was not available before-
hand. Modulo some improvements, we think that the template is likely to scale
up to be a solid basis for the analysis and comparison of Enterprise Modeling
Languages needed for the elaboration of UEML 2.0. However, due to the amount
of subjectivity that we had to put into the analysis, we first need to discuss our
results with peers before we can reach a stable consensus.



In the future, we plan to improve the analysis with the feedback obtained
and go deeper into the exploration of constructs that necessitate the creation of
custom BWW definitions. Other Enterprise Modeling Languages will be anal-
ysed. Then, we will proceed to the selective integration of the analysed languages
and constructs into UEML 2.0. For this larger scale applications, tool support
is deemed crucial and will be investigated readily.

Acknowledgements: We thank Andreas Opdahl for the time he spent shar-
ing his knowledge and reviewing our analysis.

References

1. INTEROP project website. http://www.interop-noe.org/, April 2004.
2. Gautier Dallons, Patrick Heymans, and Isabelle Pollet. A template-based analysis

of grl. Technical report, University of Namur, March 2005.
3. G. Doumeingts. GRAI: Méthode de Conception Des Systèmes En Productique.

PhD thesis, University of Bordeaux I, France, 1984. in french.
4. ITU. Recommendation z.151 (grl) - version 3.0, September 2003.
5. ITU. Recommendation z.152 (ucm) - version 3.0, September 2003.
6. H.D. Jorgensen and S. Carlsen. Emergent workflow: Integrated planning and per-

formance of process instances. In Proc. Of Workflow Management’99. Münster,
Germany, 1999.

7. Evangelia Kavakli. Goal oriented requirements engineering: A unifying framework.
Requirements Engineering Journal, 6(4):237–251, 2002.

8. J. Krogstie and A.Sølvberg. Information systems engineering: Conceptual modeling
in a quality perspective. Technical report, NTNU, January 2 2000.

9. Emmanuel Letier. Reasoning about Agents in Goal-Oriented Requirements Engi-
neering. PhD thesis, Universit Catholique de Louvain, 2001.

10. Kai Mertins and Roland Jochem. Quality-Oriented Design of Business Processes.
Kluwer Academic Publishers, Boston/Dordrecht/London, 1999. ISBN 0-7923-8484-
9.

11. John Mylopoulos, Lawrence Chung, and Brian Nixon. Representing and using non-
functional requirements: a process-oriented approach. IEEE Trans. Softw. Eng.,
18(6):488–497, 1992.

12. Andreas L. Opdahl and Brian Henderson-Sellers. A template for defining enterprise
modeling constructs. J. Database Manag., 15(2):39–73, 2004.

13. Michaël Petit. Some methodological clues for defining a unified enterprise mod-
elling language. In Kurt Kosanke, Roland Jochem, James G. Nell, and Angel Or-
tiz Bas, editors, Enterprise Inter- and Intra-Organisational Intergration - Building
an International Consensus. Kluwer Academic Publishers, kurt kosanke, roland
jochem, james g. nell and angel ortiz bas (editors) edition, 2003. ISBN 1-4020-
7277-5.

14. Michael Rosemann and Peter Green. Developing a meta model for the bunge—
wand—weber ontological constructs. Inf. Syst., 27(2):75–91, 2002.

15. Yair Wand and Ron Weber. An ontological model of an information system. IEEE
Trans. Softw. Eng., 16(11):1282–1292, 1990.

16. Eric S. K. Yu. Towards modeling and reasoning support for early-phase require-
ments engineering. In RE ’97: Proceedings of the 3rd IEEE International Sympo-
sium on Requirements Engineering (RE’97), page 226. IEEE Computer Society,
1997.


