
Adopting Open Source development tools in a 
commercial production environment –  

are we locked-in? 

Anna Persson1, Henrik Gustavsson1, Brian Lings1, Björn Lundell1, 
Anders Mattsson2, Ulf Ärlig2 

1 University of Skövde, School of Humanities and Informatics, P.O. Box 408, 
SE-541 28 Skövde, Sweden 

{anna.persson, henrik.gustavsson, brian.lings, 
bjorn.lundell}@his.se 

http://www.his.se 
2 Combitech Systems AB, P.O. Box 1017, SE-551 11 Jönköping 

{anders.mattsson, ulf.arlig}@combitechsystems.com 

Abstract. Many companies are using model-based techniques to offer a com-
petitive advantage in an increasingly globalised systems development industry. 
Central to model-based development is the concept of models as the basis 
from which systems are generated, tested and maintained. The availability of 
high-quality tools, and the ability to adopt and adapt them to the company 
practice, are important qualities. Model interchange between tools becomes a 
major issue. Without it, there is significantly reduced flexibility, and a danger 
of tool lock-in. We explore the use of a standardised interchange format (XMI) 
for increasing flexibility in a company environment. We report on a case study 
in which a systems development company has explored the possibility of com-
plementing their current proprietary tools with open source products for sup-
porting their model-based development activities. We found that problems still 
exist with interchange, and that the technology needs to mature before indus-
trial-strength model interchange becomes a reality. 

1   Introduction 

The nature of the information systems development industry is changing under the 
pressures brought about by increased globalisation. There is competition to offer 
cheaper but higher quality products faster. To stay competitive, many companies are 
using model-based techniques to offer rapid prototyping, fast response to require-
ments change and improved systems quality. Central to model-based development is 
the concept of models as the major investment artefacts; these are then used as the 
basis for automatic system generation and test. Tools for the development, mainte-
nance and transformation of models are therefore at the heart of the tool infrastruc-
ture for environments which support model-based development practice.  



One potential danger for companies is tool lock-in. Tool lock-in exists if the mod-
els developed within a tool are accessible only through that tool. It has long been 
recognised that the investment inherent in design artefacts must be protected against 
tool lock-in, not least for maintenance of a long-lived application. Such lock-in ef-
fects are recognised as a risk, which can have severe consequences for an individual 
company [1]. The tool market is dynamic, and there is no guarantee that a tool, or 
tool version used to develop a product will remain usable for the lifetime of the prod-
uct [2] [3]. In order to protect against such problems, models must be stored together 
with the version of the tool with which they were created. Even this is not guaranteed 
to succeed: hardware changes may mean that old versions of tools can no longer be 
run – unless hardware is also maintained with the tool. Such lock-ins are therefore 
undesirable for tool users. This may not be the case for some tool vendors, who may 
view lock-in as a tactic to ensure future business by keeping customers tied to their 
products [1]. 

The availability of high-quality modelling tools, and the ability to adopt and adapt 
them to a company context, are also important qualities. A variety of different devel-
opment tools can be applied during a systems development project, including tools 
for the design of UML diagrams, tools for storing models for persistence, and tools 
for code generation [4]. The ability to seamlessly use and combine the various tools 
used within a project is highly desirable [4]. The reality for many designers is there-
fore an environment in which a mix of tools is used, and for flexibility many compa-
nies are considering a mix of proprietary and open source tools to cover their needs. 
The interchange of design artefacts between tools becomes critical in such environ-
ments. One special case of this is geographically distributed development where 
partners in different locations are working in different environments, using different 
tool sets. 

Model interchange functionality can therefore significantly increase flexibility and 
reduce exposure to lock-in effects. There are two accepted ways in which model 
interchange can be undertaken: via software bridges, and via an open interchange 
standard. For example, the i-Logix Rhapsody tool offers a VB software bridge to 
allow the import of models from the IBM Rose tool, utilising its proprietary API. 
Such ad hoc provision is neither guaranteed nor universal, and can inhibit the devel-
opment and organisational adoption of new tools. Neither does a bridge lessen the 
burden of having to save a tool with the models produced by it – a bridge requires the 
tool to be running in order to allow access to the model. 

The more flexible (and scalable) approach is to support interchange through an 
open interchange standard. In an ITEA report, open source software is seen as one 
way of avoiding dependence on a single vendor [5]. Adherence to open standards has 
always been viewed as central to the open source movement, and key to achieving 
interoperability [6, p. 83]. An implied message to the open source community is that 
adoption of open source tools will depend heavily on their ability to interchange 
models with other tools using an open data standard. 



2   Model Interchange Using an Open Standard 

Over the years, many standardised interchange technologies have been proposed. 
Current interest centres on OMG’s XML Metadata Interchange format (XMI) [7] [8] 
[9] [10]. In theory, any model within a tool can be exported in XMI format and im-
ported into a different tool also supporting XMI. 

In principle, XMI allows for the interchange of models between modelling tools in 
distributed and heterogeneous environments, and eases the problem of tool interop-
erability [7] [8] [9] [10] [11, p. 72] [12]. As most major UML modelling tools cur-
rently offer model interchange using XMI [13] [14], tool lock-in should not be a 
problem. This could offer the prospect of an invigorated tool market, with niche 
suppliers offering specialised functionality knowing that lock-in is not a factor in 
potential purchasing.  

Although XMI can be used for the interchange of models in any modelling nota-
tion, according to OMG [7] one of the main purposes of XMI is to serve as an inter-
change format for UML models. The interchange of XMI-based UML models be-
tween tools is realized by the export and import of XMI documents. An XMI docu-
ment consists of two parts: an XML document of tagged elements, and a Document 
Type Declaration (DTD) – or schema in XMI version 2.0 – specifying the legal tags 
and defining structure. 

Exporting a model into an XMI document is done by traversing the model and 
building an XML tree according to a DTD. The XML tree is then written to a docu-
ment. Other tools can recreate the model by parsing the resulting XMI document. An 
overview of how an XMI document for an UML model is generated is shown in 
figure 1. 

 

 
Fig. 1. Generation of XMI document for a UML model (from [14]) 
 
OMG state that “In principle, a tool needs only to be able to save and load the data it 
uses in XMI format in order to inter-operate with other XMI capable tools” [7]. 
From this description tool integration using XMI-based model interchange may seem 
to be simple. However, a number of reports have suggested that in practice having a 
tool with XMI support is no guarantee for a working interchange, something we 
wished to explore in a case study. 

For example, Damm et al. [15] encountered some problems with XMI-based 
model interchange when integrating their UML modelling tool Knight with two 
proprietary UML modelling tools. One problem was incompatibility between tools 
that support different versions of XMI. Today, there are four versions of XMI recog-
nised by OMG: versions 1.0, 1.1, 1.2 and 2.0 [7] [8] [9] [10], and different tool pro-



ducers have adopted different versions of XMI. What should be a straightforward 
export/import situation instead requires extra transformations, between versions of 
XMI. The authors state that “The IBM Toolkit and the Rose plug-in produce XMI 
files that are compatible, but neither of them is compatible with ArgoUML which 
uses an earlier version of the XMI specification” [15].  

XMI-based model interchange may also be troublesome between tools supporting 
the same version of XMI, as discussed by Süß et al. [16] and Stevens [14]. According 
to Süß et al. [16]: “Most modelling tools support an XMI dialect that more or less 
complies with the XMI specification”. According to Stevens [14]: “Some incompati-
bilities between XMI written by different tools still exist” since two tools using the 
same version of XMI and UML do not necessary generate the same XMI representa-
tion of a certain model [14]. 

In this paper we consider the use of XMI in UML modelling tools for model inter-
change. We report on a case study in which a systems development company has 
explored the possibility of addressing tool lock-in and complementing their current 
proprietary tools with open source tools for supporting their model-based develop-
ment activities. The use of open source software is appealing to many organisations, 
given reports of “very significant cost savings” [17, p. 325]. The study concentrated 
on UML models, and specifically class diagrams – among the most widely used 
UML diagramming techniques, and with “the greatest range of modeling concepts” 
[18, p. 35].  

In the case study, we consider class diagrams taken from commercial development 
projects in order to investigate whether XMI-based model interchange is a current 
option for the company. One aspect of the study was to explore whether it would be 
possible to use open source modelling tools to complement their current (proprietary) 
tool usage within the company context. 

3   The Case Study 

Combitech Systems AB (hereafter referred to as Combitech) is a medium sized, geo-
graphically distributed enterprise working with advanced systems design and soft-
ware development, electronic engineering, process optimisation and staff training. It 
has approximately 230 employees and covers a broad spectrum of business areas 
such as defence, aviation, automotive, medical and telecoms. 

The company has a long experience of systematic method work and model based 
systems development. In several development projects UML is used (e.g. [19]), but 
other modelling techniques are used as well. The company uses three of the major 
case tools supporting both UML and time-discrete modelling: Rose Realtime (from 
IBM), Rhapsody (from i-Logix) and TAU (from Telelogic). 

Combitech has an interest in exploring the potential of open source tools to com-
plement its current tool suite, and is also sensitive to the potential problem of tool 
lock-in. With this in mind, a case study was set up to explore the potential of XMI-
based export and import to offer a strategy for tool integration and tool-independent 



storage formats. For the purposes of the case study, they chose to look at existing 
UML class diagrams developed using the Rhapsody tool. 

Rhapsody is a proprietary development tool which supports all diagram types de-
veloped according to UML version 2.0 (for information, see [20]). Interchange of 
UML models is supported by export and import of XMI version 1.0 for UML version 
1.1 and 1.3 [21]. Apart from UML modelling, requirements modelling, design-level 
debugging, forward engineering (generation of C, C++ and Ada source code) and 
automatic generation of test cases are also supported in the tool. The version of 
Rhapsody used currently by the company and in this study is 5.0.1. 

Two production models developed by Combitech, hereafter referred to as “Model 
A” and “Model B”, were used in the study. The two models, developed in different 
versions of Rhapsody (version 3.x and version 4.x respectively), consist of approxi-
mately 170 and 60 classes, respectively. The classes have different kinds of attributes 
and operations and make use of all common association types available in a UML 
class diagram. 

Model A describes a device manager for an application platform used in an em-
bedded system, and was developed using a “pair programming” activity. The model 
is one of many developed in a two-year project that in total involved about 50 system 
developers divided into 9 teams.  

Model B is a high level architectural model of an airborne laser based bathymetry 
system for hydrographic surveys, and was itself developed by a single developer. The 
model is taken from a development project of about 4 man-years. 

To explore the open source aspects, three open source UML modelling tools have 
been used in the study: ArgoUML v.0.16.1 (hereafter referred to as Argo; for infor-
mation see [22]), Fujaba (a recent nightly build, as the most recent stable version 
does not support XMI; for information see [23]) and Umbrello UML Modeler v.1.3.0 
(hereafter referred to as Umbrello; for information, see [24]). These tools were se-
lected for the study since they support UML class diagrams and interchange of such 
diagrams using XMI. A systematic review of available open source modelling tools 
revealed no other tools with these properties. The tools, all supporting UML v.1.3, 
are presented in table 1. 

Table 1. Open source UML modelling tools used in the study 

 Argo 
http://argouml.tigris.org 

Fujaba 
http://www.fujaba.de 

Umbrello 
http://uml.sourceforge.net 

XMI version 1.0 1.1 1.2  
Storage format Project-specific Project-specific XMI 
UML models All except object  Class, state, activity  All except object  
Forward eng.  Java, C++, PHP Java Java, C++, PHP, ...  
Reverse eng.  Java Java C++ 
Platform All (Java based) All (Java based) Linux (with KDE)  
Active develop-
ers  

Approx. 25 Approx. 35 Approx. 5 

License BSD Open 
Source  

GNU Lesser Gen-
eral Public  

GNU General 
Public  



 
It should be noted that only 5% of open source projects are developed by more than 5 
developers [25, p. 68], so all of these are sizeable developments (information as pub-
lished on each tool’s mailing list in August 2004). 

In order to explore interchange fully, a round-trip interchange scenario was de-
vised. Each of the two models, developed at different times and by different develop-
ers within the company, were to be exported as an XMI document for import into an 
open source tool, and then exported by that tool for re-import into Rhapsody (see 
figure 2). If such a test succeeded, with no semantic loss, then we could conclude 
that interchange of the model was possible – and lock-in absent. Round-trip is neces-
sary to counter the possibility that lock-in was simply extended to two tools. 

In what follows our approach to model interchange is described. The procedure 
described applies for both models used, and also for a third (small) test model cre-
ated as a control. Using this third model we were able to check the basic ex-
port/import functionality in each tool. The numbered steps relate to the numbering in 
figure 2. 

 

 
Fig. 2. Overview of model interchange 

4   Results from the Case Study 

4.1   Step 1: Bring up Models in Rhapsody 

The models used were developed in two different and earlier versions of the Rhap-
sody tool used in the exploration. The first step was to bring up each model in the 
current version of Rhapsody (5.0.1) for visual inspection, ready for export. 



4.2   Step 2: Export Models from Rhapsody 

Each model was then exported from Rhapsody into an XMI 1.0 document for UML 
1.3. The document representing Model A consisted of 174,445 lines of XMI code, 
that for Model B 36,828 lines. 

4.3 Step 3: Validate XMI documents 

At this stage we checked whether each document conformed to the XMI DTD (speci-
fied by OMG), by using two independent XML validation tools: XMLSPY 
(www.altova.com) and ExamXML (http://www.a7soft.com). Export from Model B 
was found to be valid, but not that from Model A. Both validation tools stated that 
the exported XMI document for model A had a structure which deviated from the 
standard specified by OMG. The problem related to non-conformance with an order-
ing dependency in the XMI DTD. This was repaired manually in order to allow tests 
to continue. Such repair is extremely difficult without specialised tool support: the 
file consists of 174,445 lines of XMI code, which in any case is very difficult for a 
human reader to comprehend. 

4.4   Step 4: Import Models into Open Source Tools 

An attempt was made to import each XMI document into each of the three open 
source tools, resulting in a model as represented in the tool’s internal storage format, 
and available for inspection through its presentation layer. 

Neither of the XMI documents exported from Rhapsody (and modified in the case 
of Model A) could be imported into either Fujaba or Umbrello. This was not unex-
pected, as Fujaba and Umbrello support only the import of later XMI versions to that 
used in Rhapsody, and it was evident from inspection of the documentation that 
backwards compatibility was not a feature of the XMI versions. This is because later 
versions have very different structure from XMI v.1.0. For both models, Fujaba sim-
ply hangs whilst in Umbrello nothing happens, and control is returned to the user 
with no feedback.  

It is possible to translate between versions of XMI. At the time of writing no open 
source converters were available to allow further testing with these tools. However, 
the Poseidon tool from Gentleware (www.gentleware.com) – which is based on the 
code base from ArgoUML – claims to import versions 1.0, 1.1 and 1.2 of XMI and 
export version 1.2 (Gentleware, 2004). We therefore attempted to use Poseidon 
(Community Edition, version 2.6) to import Rhapsody’s exported XMI 1.0 file with a 
view to exporting XMI v.1.2 for import into Umbrello. The XMI v.1.0 file exported 
from Rhapsody for model B could not initially be imported into Poseidon. However, 
after deleting an offending line, detected after inspection of Poseidon’s log files, 
import was successful. Poseidon’s exported XMI v.1.2 file was used for further tests 
with Umbrello. 



Testing continued by attempting to import Rhapsody’s exported XMI v.1.0 docu-
ments for Models A and B (modified in the case of A) into Argo, and import the 
XMI v.1.2 document exported from Poseidon into Umbrello. Success was expected 
with the first two tests, since the structure of the XMI documents representing the 
models were each confirmed as conforming to the XMI v.1.0 standard by both vali-
dation tools, and Argo and Rhapsody both claim to support this version of XMI. 
Successful transfer via Poseidon was considered less likely, as several transforma-
tions are involved. 

Even after repair, import of model A into Argo failed. There are many comments 
attached to various elements in the UML model, and these were exported into XMI 
format. Although valid according to the XMI DTD, some of these caused problems 
for the Argo importer. It is unclear why only certain attachments caused problems. 
After significant experimentation, the XMI document was modified (with semantic 
loss) such that import into Argo became possible. The XMI v.1.0 document for 
Model B was successfully imported into Argo.  

The XMI v.1.2 document exported from Poseidon was not valid, and so could not 
be imported into Umbrello. As a final test, a small test model developed in Poseidon 
was exported. Even this could not be successfully imported into Umbrello, and no 
further tests were made with that tool. Subsequent to the test we found that the prob-
lem lies with illegal characters generated in Poseidon’s IDs, and has been noted in 
the vendor’s forum as an issue to be resolved. 

4.5   Step 5: Visual Inspection  

A visual inspection was performed to compare each model as imported with its 
original in Rhapsody. A part of model A is shown in figure 3, firstly in Rhapsody 
and then in Argo. It should be noted that versions of UML earlier than 2.0 do not 
cater for the exchange of presentation information, so comparison will be of content 
only. Given the size of the models this is not a simple task, and some manipulation 
of the presentations was made to help in the visual checks. 
 

 
Fig. 3. Screen shots from Model A in Rhapsody(Left) and Argo(Right) 



4.6 Step 6: Models exported from open source tool 

Each model was exported from Argo into an XMI document in order to test its ex-
port facility. This generated a new XMI v.1.0 file for each of models A and B. 

4.7   Step 7: Visual Inspection 

At this stage we again checked whether the documents conformed to the XMI DTD. 
Neither exported XMI document was valid. This was due to a misspelling generated 
by Argo in the exported XMI. Once corrected (using a separate text editor) the docu-
ments became valid.  

4.8   Step 8: Model Import to Rhapsody 

Each model exported from Argo was imported into Rhapsody, to complete a round-
trip interchange. In each case, import (of the repaired XMI) was successful. 

4.9 Step 9: Visual Inspection 

A visual inspection was performed to determine whether the content of each model 
was identical with the original version of it in Rhapsody. Once again, it is extremely 
difficult for models of this size to be checked for semantic loss, particularly as pres-
entation information is not preserved with XMI versions available in the tools. How-
ever, in the visual inspection, using some manual repositioning in the Rhapsody tool 
to assist the process, no inconsistencies were found. 

4.10   Step 10: Final Test 

As a final test, each model (revised as necessary) was repeatedly put through the 
complete cycle. It was observed that the XMI file grew through the addition of an 
extra enclosing package on each export (by Rhapsody and by Argo). This makes no 
semantic difference to the model, but can be considered an inconvenience. 

5   Summary and Implications 

Like many companies, Combitech is currently committed to tools provided by more 
than one vendor. Although its current tool mix seems highly appropriate, Com-
bitech’s experience is that the tool market is dynamic: products come and go, and 
market leaders change over time. Most projects within the company involve many 
man years of effort and the company is very aware of the need to protect its own and 



its customers’ investments. It is also aware of the need to take full advantage of tech-
nology advances.  

Further, in the company’s experience, different developers prefer different aspects 
of tools and it is quite likely that a particular developer may prefer a specific tool for 
a particular task. In fact, the company view is that some current open source tools 
have clear potential for supporting aspects of its UML modelling activities, and envi-
sion a hybrid tool mix as the most likely scenario in the future. Combitech is also 
increasingly finding that customers are knowledgeable about UML, and envisages a 
future scenario in which parts of solutions are developed at customers’ sites (perhaps 
using specialised tools). All of this heightens the company’s interest in model inter-
change between tools, and XMI is currently the most commonly supported open data 
standard. It can be noted that OMG describes XMI as a general interchange standard 
and does not in this respect distinguish between different XMI versions, stating that 
“XMI allows metadata to be interchanged as streams or files with a standard format 
based on XML” [7]. This raises the question of whether XMI should actually be 
referred to as a standard interchange format. If tools supporting different XMI ver-
sions cannot interchange their XMI documents then the interchange format may 
seem weakly standardized, and it is the different versions of XMI by themselves that 
are standardized, not the overall XMI format. It is also worthy of note that this dis-
tinction is not made clear by all manufacturers of products, many making inter-
change claims for their products which are therefore not sustainable in practice. It is 
important that companies are well aware of the exact position with XMI, as it can 
feature highly in adoption decisions – as witnessed, for example, in OMG News [27], 
where one company focused on adherence to standards (including XMI) when adopt-
ing the Rhapsody tool.  

Although OSS tools offer support for XMI-based model interchange equal to that 
in commercial tools, better could be expected. It is interesting to note that no open 
source tool yet offers conformity with the latest version of the standard, or offers the 
ability to import documents formatted in more than one version of XMI. It is also 
interesting that a major commercial tool only offers conformance with XMI v.1.0.  
Commercial tools offer proprietary bridges to other tools, particularly market leaders, 
and may even make efforts to improve XMI interchange by catering for product-
specific interpretations of XMI. However, the OSS community can be expected to 
offer high conformance with any open standard, and not to resort to tool-specific 
bridging software. Further, it could be argued that a goal for OSS tools should be to 
offer reliable import and export of documents conforming to any of the XMI ver-
sions, in this way offering both openness and an important role in the construction of 
interchange adapters – especially useful for legacy situations. As a special case, one 
hopes that OSS tools will lead the way in conformance with XMI 2.0 and UML 2.0. 
With the advent of UML 2.0 and XMI 2.0, there is a real possibility of standard 
interchange both horizontally and vertically within the tool chain. 

Compatibility between XMI versions is not the only requirement for successful 
XMI-based model interchange between tools. Tools must guarantee the export of 
XMI documents which conform to any normative XMI document structure specified 



by OMG. As apparent from this study this is not yet guaranteed. Export of invalid 
XMI documents is a serious issue that tool developers need to address. 

The results of the study also show that complexity of models may cause inter-
change problems: less complex models seem easier for tools to handle. It is impor-
tant that future studies should explore interchange issues using medium to large-
scale models in order to subject tools to realistic modelling constructs from real us-
age contexts. Architectures for model-based systems development rely heavily on 
model interchange. To support such development in a globally distributed environ-
ment, robust and general export/import functionality must be provided. This will 
require effective and continued feedback from practice on the actual and attempted 
use of open data standards in systems development. 

Acknowledgement 

This research has been financially supported by the European Commission via FP6 
Co-ordinated Action Project 004337 in priority IST-2002-2.3.2.3 ‘Calibre’ 
(http://www.calibre.ie). 

References 

1. Statskontoret: Free and Open Source Software – a feasibility study. 2003:8a. Statskontoret, 
Stockholm. http://www.statskontoret.se/upload/Publikationer/2003/200308A.pdf (2003) 

2. Lundell, B. and Lings, B.: Changing perceptions of CASE-technology. Journal of Systems 
and Software, 72(2) (2004) 271-280 

3. Lundell, B. and Lings, B.: Method in Action and Method in Tool: a Stakeholder Perspec-
tive. Journal of Information Technology, 19(3), (2004) 215-223 

4. Boger, M., Jeckle, M., Mueller, S. and Fransson, J.: Diagram Interchange for UML. In: 
Proceedings of UML 2002 – Unified Modeling Language: Model Engineering, Concepts, 
and Tools (Jezequel, J.-M., Hussmann, H. and Cook, S. Eds.). Springer-Verlag, Berlin 
(2003) 398-411 

5. ITEA: ITEA Report on Open Source Software. January 2004, ITEA Office Association, 
Available via: www.itea-office.org (2004) 

6. Fuggetta, A.: Open Source Software: An Evaluation. Journal of Systems and Software, 
66(1) (2003) 77-90 

7. OMG: OMG-XML Metadata Interchange (XMI) Specification, version 1.0, 
http://www.omg.org/docs/formal/00-06-01.pdf (2000) 

8. OMG: OMG-XML Metadata Interchange (XMI) Specification, version 1.1, 
http://www.omg.org/docs/formal/00-11-02.pdf (2000) 

9. OMG: XML Metadata Interchange (XMI) Specification, version 1.2, 
http://www.omg.org/cgi-bin/doc?formal/2002-01-01 

10.OMG: XML Metadata Interchange (XMI) Specification, version 2.0, 
http://www.omg.org/docs/formal/03-05-02.pdf (2003) 

11.Obrenovic, Z. and Starcevic, D.: Modeling multimodal human-computer interaction. IEEE 
Computer, 37(9) (2004) 65-72 



12.Brodsky, S: XMI Opens Application Interchange. IBM, 30 March,  
http://www-4.ibm.com/software/ad/standards/xmiwhite0399.pdf (1999) 

13.Jeckle, M.: OMG’s XML Metadata Interchange Format XMI. In: Proceeding of XML 
Interchange Formats for Business Process Management (XML4BPM 2004): 1st Workshop 
of German Informatics Society e.V. (GI) in conjunction with the 7th GI Conference “Mod-
ellierung 2004”, 25 March 2004 Marburg, Germany (2004) 

14.Stevens, P.: Small-scale XMI programming: a revolution in UML tool use? Automated 
Software Engineering, 10(1) (2003) 7-21 

15.Damm, C.E., Hansen, K.M., Thomsen, M. and Tyrsted, M.: Tool Integration: Experiences 
and Issues in Using XMI and Component Technology. In: Proceedings 33rd International 
Conference on Technology of Object-Oriented Languages and Systems TOOLS 33. IEEE 
Computer Society, Los Alamitos (2000) 94-107 

16.Süß, J.G., Leicher, A., Weber, H. and Kutsche, R.-D.: Model-Centric Engineering with the 
Evolution and Validation Environment. In: Proceedings of UML 2003 – The Unified Mod-
elling Language: Modelling Languages and Applications (Stevens, P., Whittle, J. and 
Booch, G. Eds.). Springer-Verlag, Berlin. (2003) 31-43 

17.Fitzgerald, B and Kenny, T.: Open Source Software in the Trenches: Lessons from a Large-
Scale OSS Implementation. In: 2003 – Twenty-Fourth International Conference on Infor-
mation Systems (March, S.T., Massey, A. and DeGross, J.I. Eds.). Seattle, Washington 
(2003) 316-326 

18.Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling Language. 3rd 
edition. Addison-Wesley, Boston (2003) 

19.Mattsson, A.: Modellbaserad utveckling ger stora fördelar, men kräver mycket mer än bara 
verktyg. On Time, April, Available via: http://www.ontime.nu (in Swedish) (2002) 

20.Douglass, B.P.: Model Driven Architecture and Rhapsody, i-Logix Inc. 
http://www.omg.org/mda/mda_files/MDAandRhapsody.pdf (accessed 15 October 2004) 
(2003) 

21.i-Logix (2004). XMI TOOLKIT VERSION 1.7.0 README FILE. 26 April 2004, i-Logix 
Inc 

22.Robbins, J.E. and Redmiles, D.F.: Cognitive support, UML adherence, and XMI inter-
change in Argo/UML. Information and Software Technology, 42(2) (2000) 79-89 

23.Nickel, U., Niere, J. and Zundorf, A.: The FUJABA environment. In: Proceedings of the 
2000 International Conference on Software Engineering: ICSE 2000 the New Millennium. 
ACM Press, ACM, New York (2000) 742-745 

24.Ortenburger, R.: Software modeling with UML and the KDE Umbrello tool: One step at a 
time. Linux Magazine, August (2003) 40-42 

25.Zhao, L. and Elbaum, S.: Quality assurance under the open source development model. 
Journal of Systems and Software, 66(1) (2003) 65-75 

26.Gentleware: Gentleware Product Description: Community Edition 2.6. 
http://www.gentleware.com/products/descriptions/ce.php4 (accessed 21 October 2004) 
(2004) 

27.OMG News: OMG News: The Architecture for a connected world. April 2002, Available 
via: http://www.omg.org (2002) 

 


