
Bridging the Gap: Examining the trust dimensions of 
smart contracts using supply chain applications 

Wieland Müller1, Michael Leyer2,3  

1 Rostock University, Ulmenstraße 69, 18057 Rostock, Germany 
2 Marburg University, Universitätsstraße 25, 35037 Marburg, Germany 
3 Queensland University of Technology, 4101 Brisbane, Australia 

Abstract 
This paper examines trust towards distributed ledger-based smart contracts in supply chain 
management, aiming to develop a multidimensional model of trust and provide practical insights. A 
quantitative survey was conducted among supply chain employees in the United States. Confirmatory 
factor analysis validated the proposed model, revealing five trust dimensions: dispositional trust, 
situational social trust, information-technology trust, interaction-informed trust, and learned data trust. 
These dimensions capture the complexity of trust towards smart contract-enabled supply chains, 
considering the interplay between social and technical factors. The findings contribute to theoretical 
understanding and offer practical guidance for enhancing collaboration, minimizing risks, and 
maximizing the benefits of trustless supply chain networks. Future research should incorporate 
additional influencing factors to develop a more holistic trust model for smart contracts. 
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1. Introduction 

Trust plays a pivotal role in the conventional management of supply chains, ensuring the 
seamless flow of goods and services among various stakeholders. Suppliers, manufacturers, 
distributors, and customers rely on mutual trust to fulfil their obligations, as any breach can result 
in delays, disputes, and financial setbacks. However, the emergence of smart contracts and 
distributed ledger technology holds the potential to revolutionize supply chain operations. By 
eliminating the need for intermediaries or third-party authorities, these technologies encode 
transaction rules and conditions into self-executing smart contracts. This not only mitigates the 
risk of fraud and human error but also streamlines the entire process while enhancing 
transparency. In the context of supply chains, trust manifest itself through various aspects. 

Distributed ledger based smart contracts have emerged as a promising technology that aims 
to enable trustless network and transaction processes within various domains. The concept of a 
trustless network suggests that smart contracts have the potential to eliminate the reliance on 
trust towards traditional network architectures (Christidis and Devetsikiotis 2016). However, 
contrary to the belief that technology can entirely eradicate the need for trust, it actually presents 
a novel approach to substitute information from alternative sources to establish trust and 
subsequently act upon it (Lemieux et al. 2019). Consequently, a trustless system does not imply 
a system devoid of trust, but rather a system where trust is redefined and placed upon verifiable 
and automated mechanisms. Therefore, it is crucial to develop an understanding of trust and its 
various facets in order to facilitate the development and successful deployment of efficient 
trustless systems within supply chains. 
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To explain the dimensions of trust in organisations, different studies have explored trust from 
various organisational perspectives (Yamagishi and Yamagishi 1994; Mayer, Davis, and 
Schoorman 1995; Rousseau et al. 1998), including the trust in technologies (McKnight et al. 2011; 
Pavlou 2003).  Nonetheless, none of these models consider smart contracts or fully account for 
the unique characteristics of this technology. Therefore, there is a research gap that needs to be 
addressed by developing a multidimensional model of trust and empirically investigating its 
implications in the field of supply chain management.   

To close this gap, we want to answer following research question: How should a model be 
designed to represent the dimensions of trust towards distributed ledger based smart contracts? 
By comprehensively studying and addressing trust dimensions, we can enhance the design, 
implementation, and governance of smart contract-enabled supply chains. This, in turn, fosters 
greater trust among participants, boosts collaboration, minimizes transactional risks, and 
unlocks the full potential of trustless supply chain networks to enhance global trade and 
commerce. 

The theoretical foundation of the proposed multidimensional model of trust are the three trust 
layers according to Hoff and Bashir (2014) and the three layers of distributed ledger technology 
according to Lemieux et al. (2019). A quantitative survey for the empirical analysis was conducted 
in the United States of America and allowed employees from companies involved in a supply 
chain. To analyse our research model, we initially applied the procedure outlined by Cenfetelli 
and Bassellier (2009) to interpret the established formative measurement model. Subsequently, 
we conducted a factor analysis, utilizing the maximum likelihood method. This method was 
chosen for factor analysis due to its robustness and suitability for capturing the complex 
relationships among the observed variables and latent constructs in our research model. 

The paper is organised as follows: The following section presents the fundamental background 
and previous research about trust towards supply chain networks and distributed ledger based 
smart contracts. In the third section, a multidimensional model of trust towards smart contracts 
is established based on theoretical literature. Section four explains the method of the study, 
conducting a quantitative survey, and performing statistical analyses of the empirical data. 
Furthermore, information about the sample and results of statistical tests are given. Section five 
describes the development of the model and the hypotheses for the statistical analysis. The 
results of these analyses are presented in the following section, followed by a critical discussion. 
In the conclusion, we draw the theoretical and practical implications of the study as well as its 
limitations and directions for future research. 
 

2. Fundamental Background 

2.1. Trust in supply chain networks 

Trust is a fundamental element in the realm of supply chains due to the intricate nature of 
relationships among the various actors involved. The presence of trust significantly impacts 
the willingness of these actors to share information, mitigate risks, and pursue innovation 
opportunities, all of which contribute to enhancing the efficiency and effectiveness of the 
supply chain (Gligor and Holcomb 2013). Notably, the establishment of trust is crucial for 
fostering robust relationships among participants within the supply chain network, as 
emphasized by Halldorsson et al. (2007). 

In the context of client-contractor relationships, Treiblmaier (2018) posits that complete 
transparency of information flow has the potential to eliminate the necessity of trust, 
underscoring the pivotal role of transparency in cultivating trust within supply chains. 
Furthermore, Treiblmaier (2018) asserts that transparency and non-repudiation of data could 
render personal relationships obsolete in the trust-building process. Lastly, Treiblmaier 
(2018) highlights the potential of technology in mitigating trust-related challenges in supply 
chains. 



2.2. Trust towards smart contracts 

Smart contracts are automated executing digital contracts that can be written by an "if-this-
then-that" code of a distributed ledger network structure. Distributed ledgers utilize 
encryption technology to securely store and transmit information. Besides of immutability of 
data, a complete traceability and transparency of data are two other common characteristics 
of distributed ledger technologies (El Ioini and Pahl 2018). Once established, smart contracts 
do not require any further management (Vo, Nguyen-Thi, and Nguyen-Hoang 2021).  

The automatic execution and assurance of smart contracts including automatic penalties 
for non-fulfilment of contracts lead to no or less need for trust for transactions in networks 
(Treiblmaier 2018; Grosse, Guerpinar, and Henke 2021). In addition, mutual trust is 
nevertheless increased due to the complete transparency of the information flow for both the 
client and the contractor (Wang et al. 2019). Looking at automation technologies, different 
levels of trust have been identified by Hoff and Bashir (2014), dispositional, situational and 
learned trust. 

Trust towards a specific information technology plays a key role in the development of IT-
related beliefs and behaviour. It is defined by the ability to perform the required functions for 
a given task, to provide effective assistance when needed, and to work reliably or consistently 
without failure (McKnight et al. 2011). Different studies highlight the potential of smart 
contracts to enable automation of various business processes (Zheng et al. 2020; Eggers et al. 
2021; Li and Kassem 2021). Trust towards automation depends mostly on the performance, 
process or purpose of an automated system (Hoff and Bashir 2014).  

While some works argues that the underlying distributed ledger technology enables 
coordination without interpersonal trust, other recognises that trust plays a crucial role in 
distributed ledger networks (Becker and Bodo 2020). Despite the notion that technology 
eliminates the requirement for trust, in reality, it provides a new approach to substituting 
information from other sources to establish trust towards something or someone, and to act 
on that trust (Lemieux et al. 2019). According to Lemieux et al. (2019) distributed ledger 
systems rely on three interdependent trust layers, the social, data and technical layer. 
 

3. Models of trust dimensions and hypotheses 

3.1. Model conceptualisation 

In the literature, there are different models of trust that represent the construct with 
influencing factors. The Model of Trust by Yamagishi and Yamagishi (1994) suggests that trust 
is influenced by both structural and cognitive factors. Another fundamental model is the 
integrative model of trust by Mayer, Davis, and Schoorman (1995) which identifies ability, 
benevolence, and integrity as the basis of trust, along with the influence of the trustor's 
propensity and perceived risks. The model of trust from Rousseau et al. (1998) proposes that 
trust in organizations is comprised of cognitive trust and affective trust. The game-theoretic 
model  according to Das and Teng (2001) suggests that trust in organizations is determined 
by rational decision-making, with individuals considering the potential benefits and risks of 
trusting others. Pavlou's (2003) model of trust towards technology adoption includes 
cognitive and affective trust and incorporates integrity as a factor representing the reliability 
and honesty of the technology. However, in all these models, trust is seen as a one-dimensional 
construct that is not subdivided into different levels. We want to close this gap by developing 
a model that takes into account both the automation characteristics and the characteristics of 
the underlying distributed ledger technology and thus reflects different dimensions of trust. 

To incorporate the specific attributes of distributed ledger technology as the underlying 
infrastructure for smart contracts, the model has been designed to encompass various levels 
of this technology. According to Lemieux et al. (2019), the social trust layer of the distributed 
ledger technology deals with how actors interact and determine the types and sources of 



information needed to establish trust and take action. The data layer provides the information 
that actors have deemed necessary to obtain from the distributed ledger system to give them 
confidence to act. 

Finally, the technical layer pertains to the means by which actors create, store, and retrieve 
tamper-resistant and non-repudiable proof of facts about their interactions (Lemieux et al. 
2019). Since dispositional trust refers to a person's general attitude and is not related to the 
application of a specific technology, this type of trust must be considered on its own. 
Situational trust and learned trust can be considered from the different perspectives of the 
three distributed ledger layers (social, data and technical). As can be seen in Figure 1, this 
results in a total of seven different dimensions of trust regarding smart contract use. 

Since smart contracts are essentially automation processes, we have considered different 
levels of trust towards automation technologies in the model. Hoff and Bashir (2014) were 
able to empirically establish three different layers for trust towards automation: The first is 
dispositional trust, which refers to a person's general inclination to trust automation, 
regardless of the situation or the specific system. It is used to describe long-term tendencies. 
The second layer is situational trust, which takes into account both the external factors and 
the operator's own context-dependent characteristics. The third layer is learned trust, which 
reflects an operator's assessments of a system based on prior experience or current 
interaction. Since smart contracts are characterised by the automation of contracts, this 
differentiated dimensions are also suitable for our model (Hoff and Bashir 2014).  

Based on the different layers, we created a multidimensional model of trust with seven 
dimensions, visualized in Figure 1. 
 

 
Figure 1: Dimensions of trust towards smart contracts based on Hoff and Bashir (2014) and 
Lemieux et al. (2019). 
 

The seven dimensions can be defined following according Hoff and Bashir (2014) and 
Lemieux et al. (2019): Dispositional trust refers to an individual's general tendency to trust 
others over the long-term, irrespective of the context or a particular system. Situational trust 
in social layer relates to how social actors interact based on their trust in the external 
environment and the operator's internal context, such as required information amount and 
form. Situational trust on the data layer refers to the trust social actors have in the distributed 
ledger technology system's information for them to confidently act, based on the operator's 
internal and external context. 

Situational trust on the technical layer refers to social actors' trust towards the distributed 
platform's internal and external characteristics for creating, storing, and exchanging 
information. Learned trust on the social layer is social actors' developed trust based on past 
experiences or current interactions, regarding how they interact with each other and required 
information amount or form. Learned trust on the data layer is social actors' developed trust 



based on past experiences or current interactions with the information provided by the 
system, crucial for them to confidently act. Finally, learned trust on the technical layer is the 
social actors' developed trust based on past experiences or current interactions at a technical 
level with the platform used for creating, storing, and exchanging information. This leads to 
the following hypotheses:  

 
H1: Dispositional trust is an independent dimension of trust. 
H2: Situational trust on the social layer is an independent dimension of trust. 
H3: Situational trust on the data layer is an independent dimension of trust. 
H4: Situational trust on the technical layer is an independent dimension of trust. 
H5: Learned trust on the social layer is an independent dimension of trust. 
H6: Learned trust on the data layer is an independent dimension of trust. 
H7: Learned trust on the technical layer is an independent dimension of trust. 

 

3.2. Model operationalisation 

To test hypotheses, the model first needs to be conceptualised. For this, the following 
constructs are necessary: Dispositional Trust, situational trust on the three layers, learned 
trust on the three layers. To measure dispositional trust we use the five item scale by 
MacCarthy (1983). For measuring situational trust, the six item scale of Holthausen et al. 
(2020) was adapted and applied to each of the three distributed ledger trust layers 
characteristics according to Lemieux et al. (2019). Since the original scale referred partly to 
decision-making by automated systems, we removed two unsuitable items, resulting in a four-
item scale.  

For the measurement of learned trust, there is no scale in current literature that could be 
adopted. However, the literature shows that learned trust is based on previous experiences, 
similar to the trustor’s propensity (Hoff and Bashir 2014). If no direct experience has been 
made, there is a recourse to similar situations (Gonzalez, Lerch, and Lebiere 2003).  However, 
the propensity refers to general tendencies, the learned trust is based on learned experiences 
regarding an specific context (Mayer and Davis 1999). Therefore, we have adopted the 
propensity scale from general Mayer and Davis (1999) in a revised form. The items no longer 
refer to trust tendencies of general, but refer to previous experienced situations with 
automation technologies. In addition, we have assigned the items of the scale to the matching 
layers of trust towards distributed ledger technologies to differentiate between them. 

4. Research Method 

4.1. Questionnaire and sample 

The questionnaire (found in the appendix) incorporated several measures to ensure high data 
quality. Initially, an attention test was administered to participants. Following that, the survey 
included questions on dispositional trust, which assessed general trust tendencies according 
to MacCarthy (1983). The subsequent section focused on the specific context of utilizing smart 
contracts in supply chains. Within this section, participants were queried about situational 
trust and adopted the scale from Holthausen et al. (2020) to the tree layer of trust towards 
distributed ledgers: social trust, data trust, and technical trust Lemieux et al. (2019). 
Moreover, learned trust was examined by an adoption from Mayer and Davis (1999) trustor’s 
propensity items and also related to the tree layer of trust towards distributed ledgers. 

The questionnaire was administered to participants via the online platform Clickworker to 
supply chain employees in the United States of America. The US is a suitable location for a 
survey on technologies in supply chain management due to the presence of many companies 



with key supplier relationships and the diversity of industries and supply chains in the 
country. 

The questionnaire was answered completely by 193 persons. The minimum sample size 
according to (Tinsley and Kass 1979) of 5-10 cases per item is thus achieved, as is the total 
minimum of 100 cases for factor analysis according to Gorsuch (1990). 34.2% were women, 
65.2% were men, and 0.6% were diverse. On average, participants were 36.6 years old. 

4.2. Statistical analysis 

By conducting a detailed assessment of the measurement model as a first part of our analysis, 
we can ensure that the requirements for a confirmatory factor analysis are met and that the 
results of the analysis are reliable and interpretable. We followed a five-step process for 
validating a formative measurement construct in structural equation models according to 
Cenfetelli and Bassellier (2009). In our study, however, we have only conducted the first four 
steps, as the fifth step concerns the creation of a structural equation model, which is not the 
focus of this study. In the first step, we looked at a possible multicollinearity among the items 
using the variance inflation factor (VIF), aiming for values below 5 (Henseler, Ringle, and 
Sinkovics 2009). Our analysis showed that none of the VIF value exceeded the limit. We also 
tested for a bivariate correlation between indicators and construct. Since none of the 
indicators exceeded the value of 0.9, it was not necessary to make adjustments here (Cenfetelli 
and Bassellier 2009). 

The second step was to reduce the number of indicators if their weights were found not to 
be significant. Our results showed that all items have significant bivariate correlations with 
the parent construct. In the third step, we examined the presence of suppression effects. These 
occur when an indicator shares more variance with another indicator than with the 
formatively measured construct. We found that suppression effects were present for the items 
DT4, SS2, SD2 and ST2. These four items were eliminated. The fourth step entailed assessing 
the importance of individual questions for the construct to ensure that their impact was not 
negligible. Since all bivariate correlations between the questions and the construct were high 
and significant, all items could be retained for further analysis. 

As a second part of the analysis, we conducted a Confirmatory factor analysis (CFA). This is 
used when the researcher has a pre-specified hypothesis about the underlying factor structure 
of the data. CFA is used to test whether the data fit the hypothesized factor structure (Graf, 
Nagler, and Jacobs 2005). Confirmatory factor analysis (CFA) is a statistical technique 
employed to assess the fit between observed data and a theoretical model. When conducting 
a CFA, there are several methods available, including maximum likelihood (ML), principal 
component analysis (PCA), and principal factor analysis (PFA). Among these methods, 
maximum likelihood is the most widely utilized for CFA due to its flexibility and robustness in 
handling various data types and model specifications. Conversely, PCA and PFA are 
exploratory factor analysis techniques primarily employed for uncovering the underlying 
structure of a dataset and are generally not employed for CFA purposes (Wood 2008). In 
confirmatory factor analysis (CFA), orthogonal rotation methods such as Varimax are usually 
used to simplify the factor structure and make it easier to interpret (Flora and Curran 2004).  

The evaluation of the factor analysis reveals a very good adequacy of the sample for 
conducting the factor analysis, as indicated by a Kaiser-Meyer-Olkin measure of sample 
adequacy of 0.869 (Kaiser 1974). Furthermore, the significance value of the Bartlett's test of 
sphericity, which is < 0.001, indicates that the sample data are suitable for factor analysis 
(Bartlett 1954). The rotated sum of squared loadings shows that factor 1 accounts for the 
highest share of the total variance with 20.39%. The other factors shares are distributed 
between 3.33% and 8.38%. 

 
 



5. Results 

5.1. Descriptive results  

Table 1 below shows the descriptive results of the items examined in the factor analysis. 
 
Table 1 
Descriptive results 

Item Minimum Maximum Mean Standard deviation Variance 

DT1 1 7 3,66 1,52 2,30 

DT2 1 7 4,04 1,41 1,98 

DT3 1 7 4,24 1,35 1,83 

DT5 1 7 3,90 1,45 2,11 

SS1 1 7 4,32 1,47 2,17 

SS3 1 7 4,10 1,49 2,23 

SS4 1 7 4,17 1,42 2,03 

SD1 1 7 4,62 1,47 2,15 

SD3 1 7 4,56 1,61 2,58 

SD4 1 7 4,64 1,35 1,82 

ST1 1 7 4,74 1,31 1,71 

ST3 1 7 4,40 1,55 2,39 

ST4 1 7 4,91 1,31 1,72 

LS1 1 7 4,10 1,60 2,55 

LS2 1 7 4,69 1,29 1,67 

LD1 1 7 4,53 1,41 2,00 

LD2 1 7 4,58 1,42 2,03 

LT1 2 7 5,24 1,40 1,97 

LT2 1 7 4,90 1,21 1,45 

DT 1 7 3,96 1,00 1,00 

SS 1 7 4,20 1,19 1,43 

SD 1 7 4,60 1,27 1,61 

ST 1 7 4,68 1,19 1,41 

LS 2 7 4,40 0,88 0,78 

LD 1 7 4,55 1,19 1,42 
LT 2 7 5,07 0,89 0,78 

5.2. Hypotheses results 

The following table 2 shows the rotated factor loadings, which indicate the strength and 
direction of the correlation between the variables and the factors. All values show a positive 
direction of the correlation. We followed the Budaev (2010) procedure for rather small 
sample sizes and set the minimum for interpretable loadings to higher than 0.4. 
 
 
 
 
 
 
 
 



Table 2 
Rotated factor matrix: Confirmatory factor analysis using maximum likelihood (loadings below 
0.4 hidden if higher available). 

 1 2 3 4 5 6 7 
DT1  .740      
DT2  .693      

DT3  .342  .357    

DT5  .385      

SS1    .432    

SS3 .439   .471    

SS4    .772    

SD1 .770       

SD3 .699       

SD4 .772       

ST1 .697       

ST3 .689      .688 

ST4 .672       

LS1     .929   

LS2      .442  

LD1   .418     

LD2   .881     

LT1     .381   

LT2      .564  

 
DT3 was excluded due to its cross-loadings on factors 2 and 4, according to the criteria of 

(Hair, 2009). Although LT1 and DT5 fell just below the threshold of 0.4, we decided to retain 
them. This decision was based on our assessment that the content validity of the scale was not 
violated (Fornell and Larcker 1981) and on the consistently positive results of all previous 
statistical tests. ST3 also refers to cross-loadings, but since factor 7 would represent a single 
dimension with a single factor, the item was retained and assigned to factor 1. Furthermore, 
we also refer here to the content validity of the scale according to Fornell and Larcker (1981) 

H1 stated, that dispositional trust is an independent dimension of trust. This hypothesis 
could be confirmed, whereby only the items DT1 and DT2 can be assigned to this dimension. 
H2 stated, that situational trust on the social layer is an independent dimension of trust. This 
hypothesis could also be confirmed. All three items could be assigned to the dimension. H3 
and H4 stated, that situational trust on the data layer and situational trust on the technical 
layer are independent dimensions of trust. This hypothesis could not be confirmed. Contrary 
to the assumption, however, the items of the two layers form a mutual dimension. H5 stated, 
that learned trust on the social layer is an independent dimension of trust. This hypothesis 
could not be confirmed either. However, it could be found that learned trust on social layer 
together with learned trust on the technical layer represent a common dimension. H7 
(Learned trust on the technical layer is an independent dimension of trust.) could therefore 
not be confirmed either. H6 stated, that learned trust on the data layer is an independent 
dimension of trust. This hypothesis could be confirmed, with both of the selected items 
together forming the fifth trust dimension.  

As can be seen in table 3, the results reveal the following dimensions with associated items 
regarding trust towards smart contracts: 
 
 
 
 



Table 3 
Dimensions of trust towards smart contracts 

Dimension Items 
Dispositional trust DT1, DT2, DT5 
Situation social trust SS1, SS2, SS4 

Situational data and situational technical trust SD1, SD3, SD4, ST1, ST3, ST4 

Learned social and learned technical trust LS1, LS2, LT1, LT2 

Learned data trust LD1, LD2 
 
 
 

 
The new dimensions result from the assignment of the items to the factors. If the items 

correlated to different factors, the factor with the highest loading was selected. Since LT1 did 
not have a value above the 0.4 limit, we checked for the next highest, which is 0.381. Since the 
item proves to be conceptually important that it represents only one of the two items of 
learned trust and it is only slightly below the limit, it may be justified to keep it (Mayer 2018). 
Since the LD and LT load on a mutual factor with one item each, we have combined them into 
one common dimension. This is possible due to the similarity in content of the items and 
scales (Hair 2009), which all refer to learned trust, and thus facilitates interpretation of the 
dimensions. The factor analysis results to an updated model of trust dimensions, seen in 
Figure 2: 

 
Figure 2: Dimensions of trust towards smart contracts. 

 

6. Discussion 

The findings of this study provide valuable insights into the dimensions of trust towards 
distributed ledger-based smart contracts within supply chain management. The theoretical 
foundation of the multidimensional model was based on previous literature from Lemieux et al. 
(2019) and Hoff and Bashir (2014). While previous models focused on one-dimensional trust 
constructs (Yamagishi and Yamagishi 1994; Mayer, Davis, and Schoorman 1995; Rousseau et al. 
1998; Pavlou 2003; McKnight et al. 2011), this study aimed to develop a more comprehensive 
model that considers the specific characteristics of smart contracts and distributed ledger 
technology. The results of the confirmatory factor analysis (CFA) support the existence of 
multiple dimensions of trust towards smart contracts. The analysis revealed the presence of five 
distinct dimensions: dispositional trust, situational social trust, situational data and technical 
trust, learned social and technical trust, and learned data trust. These dimensions capture 
different aspects of trust in the context of smart contracts, demonstrating the complexity and 
multidimensionality of trust in this technology-enabled setting. 

One interesting finding from the factor analysis is the mixing of theoretical dimensions in 
practice. Specifically, the original hypothesis that situational trust on the data layer and 



situational trust on the technical layer would be independent dimensions of trust was not 
supported. Instead, the items from these two layers formed a mutual dimension. Similarly, the 
hypothesis that learned trust on the social layer and learned trust on the technical layer would 
be independent dimensions was also not supported. These two dimensions have been merged 
into a single dimension. The three trust layers of Hoff and Bashir (2014) could be confirmed, 
while the three layers of Lemieux et al. (2019) were recognized in mixed forms. 

The mixing of theoretical dimensions in practice can be attributed to the interconnectedness 
and interdependence of trust factors in smart contract-enabled supply chains. While theoretical 
models often attempt to separate trust into distinct dimensions, the practical reality is that trust 
is a complex construct influenced by various factors that interact and influence each other. In the 
context of smart contracts, the distributed ledger technology and the social interactions among 
actors create a dynamic environment where trust dimensions overlap and intertwine. 
Considering the merging of theoretical dimensions in the empirical analysis, it is essential to 
propose appropriate names for the new mixed dimensions based on their underlying 
characteristics. 

The dimension combining situational trust on the data layer and situational trust on the 
technical layer reflects the intertwined trust towards the information provided by the distributed 
ledger system and the characteristics of the distributed ledger platform. This dimension can be 
labelled as "Information-Technology Trust" to capture the intertwined nature of trust towards 
the technical aspects of the system and the reliability and accuracy of the data. The dimension 
merging learned trust on the social layer and learned trust on the technical layer indicates the 
importance of past experiences and interactions in shaping trust perceptions. This dimension can 
be named "Interaction-Informed Trust" to highlight the role of previous interactions and learning 
in establishing trust towards both the social dynamics and the technical aspects of smart contract-
enabled supply chains.  

Understanding the influence of different dimensions on the variance provides insights into the 
relative importance of each dimension in explaining trust towards smart contracts. By examining 
the rotated sum of squared loadings, we can identify the dimensions that contribute the most to 
the model.  

Based on the results, it can be observed that the "Information-Technology Trust" dimension 
(with situational trust on the data layer and situational trust on the technical layer) accounts for 
the highest share of the total variance, contributing 20.39%. This suggests that trust in the 
information provided by the distributed ledger system and the reliability of the blockchain 
platform plays a significant role in shaping overall trust perceptions in smart contracts. The 
combined "Interaction-Informed Trust" dimension (merging learned trust on the social layer and 
learned trust on the technical layer) also contributes a substantial amount to the variance, 
accounting for 11.55%. This indicates that past experiences and interactions, both social and 
technical, have a significant impact on establishing trust towards smart contracts. The remaining 
dimensions, contribute to the variance to a lesser extent. However, they still play important roles 
in shaping trust perceptions in specific contexts within smart contract-enabled supply chains 
with between 6.1% and 8.4% variance. 

The transferability of the results of this study regarding trust dimensions to other industries 
beyond supply chain management is an important consideration. While the specific context of 
supply chains was examined in this research, the identified trust dimensions and their underlying 
concepts have the potential to be applicable to various industries. 

The multidimensional model of trust developed in this study provides a framework that can 
be adapted and applied to other sectors. The dimensions of trust, such as dispositional trust, 
situational trust, and learned trust, capture fundamental aspects of trust that are relevant across 
different industries. The models' flexibility allows for customization and adaptation to specific 
industry contexts, making it transferable to diverse sectors. Also, the technological advancements 
and the concept of smart contracts explored in this study are not exclusive to supply chain 
management. Many industries are adopting distributed ledger technology and exploring the 
potential of smart contracts to streamline processes, enhance transparency, and reduce 
transactional risks. The dimensions of trust identified in this study, which encompass both 



technological and social aspects, can be relevant for understanding and managing trust in these 
industries as well. 

For example, in the financial sector, where blockchain technology is being explored for 
applications such as digital currencies and smart contracts, the dimensions of trust identified in 
this study can help financial institutions build trust with customers and counterparties. By 
addressing the different aspects of trust, financial institutions can enhance security, reliability, 
and transparency, which are critical for building trust in financial transactions. Similarly, in 
healthcare, the use of smart contracts and distributed ledger technology has the potential to 
transform patient care, medical record management, and supply chain processes. Applying the 
trust dimensions identified in this study can help healthcare organizations establish trust in the 
security, accuracy, and privacy of medical data and transactions, leading to improved patient 
outcomes and efficiency. 

7. Conclusion 

7.1. Theoretical contribution 

This study contributes to the theoretical understanding of trust towards distributed ledger-
based smart contracts within supply chain management in several ways. Firstly, it goes beyond 
existing one-dimensional models by developing a multidimensional model of trust that 
considers the unique characteristics of smart contracts and distributed ledger technology. 
This multidimensional model captures the complexity and multidimensionality of trust in the 
context of smart contracts, highlighting the interplay between social and technical factors. 

Secondly, the findings of the confirmatory factor analysis support the existence of five 
distinct dimensions of trust: dispositional trust, situational social trust, information-
technology trust, experience-based trust, and learned data trust. This expands the 
understanding of trust dimensions in smart contracts and underscores the intertwined 
relationships among trust factors. The model and the identified dimensions contribute to the 
advancement of smart contract-enabled supply chains. 

Furthermore, the observation of mixed theoretical dimensions in the empirical analysis 
suggests that trust towards smart contracts cannot be easily separated into discrete 
dimensions. The interplay between social dynamics, technical characteristics, and past 
experiences plays a crucial role in shaping trust perceptions in smart contract-enabled supply 
chains. This highlights the need for a holistic approach that considers not only the trust 
construct but also other influencing factors when examining trust towards smart contracts. 

7.2. Practical contribution 

The practical implications of this study have significant relevance for supply chain 
practitioners and decision-makers. The identified trust dimensions and their implications 
offer actionable insights that can be applied to enhance supply chain operations and foster 
trust towards smart contract-enabled networks. 

Firstly, understanding the different dimensions of trust and their relative importance 
enables organizations to improve collaboration and mitigate transactional risks in supply 
chain networks. By assessing the strengths and weaknesses of each dimension, supply chain 
managers can identify areas that require attention and implement strategies to strengthen 
trust. For instance, if the dimension of learned trust on the technical layer exhibits a low level 
of trust among participants, efforts can be made to enhance technological literacy, provide 
training programs, and improve user experience. 

Secondly, the findings emphasize the importance of adopting a holistic approach to trust-
building in supply chains. While ensuring the reliability and security of smart contracts is 
crucial, attention should also be given to fostering social aspects of trust. Supply chain 
managers can cultivate a trust-oriented culture by promoting open communication, 



transparency, and collaboration among participants. Establishing strong relationships and 
maintaining effective communication channels can significantly contribute to building trust 
and facilitating the successful implementation of smart contracts. 

Furthermore, the results highlight the influence of both technological and social factors on 
trust towards smart contracts. This implies that supply chain managers should consider not 
only the technical aspects of implementing smart contracts but also the social dynamics and 
human factors involved. Effective change management strategies, comprehensive training 
programs, and targeted communication initiatives can help address potential resistance to 
adopting smart contracts and build trust among supply chain participants. 

7.3. Limitations and future research 

This study has certain limitations that should be acknowledged. The sample used in the 
empirical analysis was limited to supply chain employees in the United States, which may 
restrict the generalizability of the findings to other industries and geographical regions. The 
data collected in this study relied on self-report measures, which are subject to potential 
biases such as social desirability and respondent interpretation. 

Trust is a dynamic construct that can fluctuate over time due to changing circumstances 
and experiences. This study captured trust perceptions at a specific point in time, but it is 
essential to recognize that trust can evolve and be influenced by ongoing interactions, system 
performance, and external events. Future research should consider longitudinal studies to 
examine the temporal dynamics of trust towards smart contract-enabled supply chains. 

To enhance the generalizability of the findings, future research should expand the study to 
include participants from diverse industries beyond supply chain management. Different 
industries may have unique characteristics and trust dynamics in the context of smart 
contracts. Examining trust dimensions and their relative importance across various sectors 
such as finance, healthcare, energy, and manufacturing would provide valuable insights and 
enable the development of industry-specific frameworks for trust towards smart contract-
enabled environments. 

Future research could explore the design and implementation of interventions aimed at 
fostering trust towards smart contract-enabled supply chains. These interventions could 
include strategies to improve transparency, establish reputation mechanisms, enhance 
contractual governance, and address potential trust breaches. Evaluating the effectiveness of 
such interventions in building and maintaining trust would provide practical guidance for 
supply chain practitioners and policymakers. 

While this study provides valuable insights into the multidimensional nature of trust 
towards smart contracts, there is a need for a more holistic model that incorporates not only 
the trust construct but also other influencing factors. Future research should explore 
additional factors such as risk perception, transparency, reputation, contractual governance 
mechanisms, and technological characteristics (e.g., scalability, interoperability) that can 
influence trust towards smart contract-enabled supply chains. Developing a more 
comprehensive model that considers these factors would provide a deeper understanding of 
the complex dynamics of trust in this context. 
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Appendix 

The questionnaire, collected data, statistical tests and study results can be found online in an 
open-access data repository: 
https://osf.io/ns2yc/?view_only=f8816609bdcb4efd924ed78e441bc8f7 
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