
Exploiting Foundation Models for Spoken Language
Identification
Benedikt Augenstein1, Darjan Salaj2

1Hochschule Aalen
2inovex GmbH

Abstract
Spoken Language Identification (SLID) is the task of identifying the language from speech
audio recordings, which poses challenges due to the variability of speech recordings and the
diverse properties of languages. Traditional SLID methods rely on labor-intensive feature
engineering and classical machine learning algorithms. The emergence of deep learning has
allowed for more efficient and automated SLID, but come at a much higher compute cost and
data volume requirements. Despite the advancements, automated SLID remains limited in
many applications, such as voice assistants, dictation software, and customer-facing services,
especially for the underrepresented languages. To address the issue of improving SLID for the
underrepresented languages with limited data availability we propose a fine-tuning ensemble
approach that achieves higher SLID performance then the individually fine-tuned models. We
further identify the core issue in training SLID models, and show through meta-analysis the
critical flaw in evaluations and datasets of previous works. This insight suggests possible
improvements to the quality and availability of datasets and benchmarks.
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1. Introduction

The task of identifying the language from speech audio recordings is known as Spoken
Language Identification (SLID [12, 26], also abbreviated S-LID [2], LID [11, 27] or
LI [1] which can be confused with the textual language identification in NLP). SLID
has remained a challenge in speech signal processing research due to the difficulty of
discerning relevant from irrelevant features in extremely varied speech audio recordings.
The extreme variability of speech recordings is a consequence of variation in speakers’
anatomy, age, sex, mood, and dialect, spoken contents and acoustic conditions [11, 12, 5].
In addition, the distinguishing properties of languages are highly varied. For example,
some languages, despite using common phonetic sounds, can be classified as distinct
due to a unique set of phonological rules. Earlier versions of SLID relied heavily on
hand-crafted and domain knowledge informed feature extraction and selection. These
include noise suppression, tuning and selection of acoustic, prosodic and phonotactic
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features [2, 8]. The end classification is then realized with classical machine learning
algorithms, such as Gaussian Mixed Model, Support Vector Machine, Hidden Markov
Model, Vector Quantization, and Total Variation Warping [11]. To circumvent this
labor-intensive feature engineering, novel SLID methods started to rely on deep learning,
which subsumed all the feature engineering work [1, 3, 4, 6, 9, 12]. Recently, the advent
of large foundation models has brought even more advantages and innovations to deep
learning models in the language domain [10]. Such deep learning based solutions are part
of the ever-growing number of use cases.

While the past decade has seen a growing number and growing quality of voice
assistants and dictation software, the language setting has remained mostly manual. The
simultaneous use of several languages is still only possible to a very limited extent. For
example, a second language can be added manually to the Google Assistant1, but the
addition of more than three languages is not possible.2 Amazon Alexa and Apple Siri
can also process multiple languages to a very limited extent [4].3 In the case of language
assistants for private use, this automatic language identification might not be necessary,
since the languages spoken usually do not change. However, for applications that are
shared by many users (e.g. deployed in public spaces), reliable language identification
would be essential. An example of this would be voice assistants at train stations or
airports with the purpose of answering questions from a wide variety of people in different
languages. SLID systems also save resources and improve quality in call centers when
used to match and route international calls with the language compatible operators [7].
Extending this to emergency call systems, such as those in aviation, crisis management
and law enforcement, could potentially have a direct impact on human lives [11].

Furthermore, a reliable implementation of an SLID system could be used for large
video or streaming platforms, enabling the creation of automatically generated subtitles
without a need for a prior determination of the spoken language by a user or support
staff. Therefore, this software could help to decrease costs by automating this task
as well as increase customer satisfaction by making subtitles possible, regardless of
whether the content creator set the language for the video. It is thus evident that a
solution for automatic language identification could be highly beneficial for improving user
experience for many platforms or services that collect, store and process large amounts
of unstructured, human-generated audio data.

Deep learning based SLID approaches, although offering better accuracy and lower
engineering cost, need high volumes of data and associated compute cost for training
[11]. More importantly, the data volumes required for high performance are often not
available for languages spoken by smaller communities [32]. Also, researchers belonging
to those less represented communities often lack the compute resources required to train
large models, even if data would be available. We propose an ensemble approach that
generalizes to previously unseen languages, circumvents the need for large data volumes

1Tested on Android version 13 Kernel version 5.10.149-android13-4-00002
2see Google Assistant Help [35] and Google Nest Help [34]
3Amazon Alexa supports two languages [36], while Apple Siri supports only one language. Due to the
extensive use of English words in Indian languages, the English words are also recognized when an
Indian language is configured in Apple Siri [37].



of underrepresented languages, and is developed under constrained compute resources.
We hypothesize the core issue in training SLID models and perform a meta-analysis

of previous SLID works. We show that many of the datasets suffer from a critical flaw
making them uninformative about the generalization on the unseen data.

2. Related work

Traditional algorithms and feature engineering. Early SLID works were based on the
handcrafted features combined with classical machine learning algorithms for classification.
Examples of such methods are: detection of events of stability and rapid change in audio
spectrum [16], Markov modelling over formant and prosodic features [17], polynomial
classifier over Linear Predictive Coding (LPC) features [19], Vector Quantization over
LPC features [21], hidden Markov models over Mel-scale cepstrum vectors [20]. In a more
recent feature engineering attempt, authors developed the MFCC-2 [23] features to better
support the multilingual speech processing. Another work in this category developed a
novel feature selection method based on Harmony Search and Naked Mole-Rat algorithm
[2].

Deep learning methods. Moving beyond the handcrafted feature engineering and
classical machine learning algorithms, novel approaches make used of deep learning
methods and general feature preprocessing. Convolutional Neural Networks (CNN) [3],
Residual Networks (ResNet) [9] and Long Short-Term Memory (LSTM) networks [25] were
used to classify languages from Mel spectrograms. The combination of previous methods
dubbed Convolutional Recurrent Neural Network (CRNN) were also applied to SLID [4].
Conditional Generative Neural Networks (cGAN) were used to improve regularization
and accuracy of jointly optimized classifiers [6]. Later the attention mechanism was
combined with both CNNs and RNNs [1]. Capsule Networks (CapsNet) [27] were also
applied to SLID and consistently outperformed other architectures with CNNs, RNNs,
and attention. Under the low-resource setting, the 1D time-channel separable CNNs with
Self-Attentive Pooling [33] achieved the state-of-the-art SLID results.

The original Time-Delay Neural Networks (TDNN) [30] approach was improved upon
and applied to speaker recognition task [29]. X-vectors [28], a TDNN based approach to
map variable-length audio to fixed-dimensional embeddings, made further advances in
data augmentation. Authors of [26] further extend the TDNN approach to SLID task
with unsupervised domain adaptation using optimal transport.

Ensemble methods. An ensemble method named FuzzyGCP [12] achieved a high
SLID accuracy by combining Deep Dumb Multi Layer Perceptron (DDMLP), Deep
Convolutional Neural Network (DCNN) and Semi-supervised Generative Adversarial
Network (SSGAN).

Large foundation models. The latest trend of scaling up the models and training them
on large datasets eventually arrived to the speech processing domain and resulted in



foundation models like Wav2Vec 2.0 [24], XLSR [13] and Whisper [14]. Wav2Vec 2.0
[24] introduced a novel way of applying self-supervised learning of representations to raw
audio data. It also beat all previous methods in speech recognition accuracy without
using a language models while being more data efficient. XLSR [13] is the extension of
Wav2Vec 2.0 and it set the new state-of-the-art in speech recognition on 53 languages.
Whisper [14] is a transformer based model with which the authors scaled up the weakly
supervised-pretraining on multilingual multi-task data and set the new state-of-the-art
in speech recognition.

3. Ensemble of foundation models for SLID

In this paper we develop a model that achieves a high accuracy across many languages,
most importantly those that are underrepresented in datasets, while working under a
minimal compute budget (a single GPU node). To avoid the need for high data volumes
and compute costs associated with training the large deep learning models [11], we propose
exploiting the foundation models already pretrained on available large datasets. This way
we are able to make use of the high quality of multilingual embeddings provided by the
foundation models. Further, we propose combining the embeddings (latent representation
in penultimate layers) of multiple foundation models with the goal of having an even
richer representation of the input from different perspectives. Finally, we propose training
a readout model that classifies the combined embeddings to the target languages. Here
we implicitly rely on multilingual foundation models to be able to give an informative
embedding even when applied to previously unseen languages.

The general idea behind this approach is that the different, pre-trained models most
likely extract the relevant information from the audio files in different ways as they
use different architectures and have been trained on different datasets. Using this
approach, the differing ways of extracting information from audio of the two models
can be reused, resulting in mixed embeddings containing more relevant information for
the final classification than the embeddings of the individual models. This increases the
amount of information that can be used to improve classification performance.

In the experiments section, we combine the Whisper [14] and the TDNN [30] model
by taking the output vectors of the penultimate layers of the models, concatenating
them, and using these combined vectors from each audio file as input vectors for the
new classifier model. The classifier model is then trained on a smaller dataset containing
languages previously unseen by the Whisper and the TDNN models. Instead of the
output layers of each original foundation model, the newly trained model acts as an
output layer which can classify combined embeddings from both foundation models.

The model contains 102 output neurons, matching the number of languages in the
target FLEURS dataset [15]. As the extraction of relevant information already takes place
in the layers of the foundation models, we choose a simple architecture for the classifier
model. The architecture consists of only two dense layers using a rectified linear unit
activation function and two dropout layers (preceding the dense layers) with a dropout
rate of 40%. The first dense layers has 1000 neurons, while the second output layer has



102 neurons matching the number of languages, totally 615𝑘 trainable parameters. The
model is trained using the Adam optimizer on the categorical cross entropy loss function,
a batch size of 4096, and early stopping with up to 50 epochs.

4. FLEURS Dataset

In this paper we use the FLEURS (Few-shot Learning Evaluation of Universal Repre-
sentations of Speech) dataset. It is a benchmark designed to enable development and
evalution of speech processing methods in low-resource settings. FLEURS is derived from
the FLoRes dev and devtest sets, containing 2009 n-way parallel sentences across 102
languages. The speakers in the training and evaluation sets are different. The dataset is
grouped into seven geographical areas, allowing for analysis and comparison of results.
With approximately 12 hours of speech supervision per language, FLEURS can be used
for various speech tasks such as Automatic Speech Recognition, SLID, Translation, and
Retrieval. The 102 languages are grouped into seven geographical areas:

• Western Europe: Asturian, Bosnian, Catalan, Croatian, Danish, Dutch, English,
Finnish, French, Galician, German, Greek, Hungarian, Icelandic, Irish, Italian,
Kabuverdianu, Luxembourgish, Maltese, Norwegian, Occitan, Portuguese, Spanish,
Swedish, Welsh

• Eastern Europe: Armenian, Belarusian, Bulgarian, Czech, Estonian, Georgian,
Latvian, Lithuanian, Macedonian, Polish, Romanian, Russian, Serbian, Slovak,
Slovenian, Ukrainian

• Central-Asia/Middle-East/North-Africa: Arabic, Azerbaijani, Hebrew, Kazakh,
Kyrgyz, Mongolian, Pashto, Persian, Sorani-Kurdish, Tajik, Turkish, Uzbek

• Sub-Saharan Africa: Afrikaans, Amharic, Fula, Ganda, Hausa, Igbo, Kamba,
Lingala, Luo, Northern-Sotho, Nyanja, Oromo, Shona, Somali, Swahili, Umbundu,
Wolof, Xhosa, Yoruba, Zulu

• South-Asia: Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi,
Nepali, Oriya, Punjabi, Sindhi, Tamil, Telugu, Urdu

• South-East Asia: Burmese, Cebuano, Filipino, Indonesian, Javanese, Khmer, Lao,
Malay, Maori, Thai, Vietnamese

• CJK languages: Cantonese and Mandarin Chinese, Japanese, Korean

5. Results

Unsuitability of datasets for evaluating generalization. The greatest challenge in
training new models for SLID is effectively preventing models from learning the wrong
objectives. More precisely, the model tends to learn the voices or specific audio charac-
teristics of the audio files rather than the difference between the languages themselves.
The gravity of this problem increases with a smaller dataset as a model can easily
learn to differentiate between a small number of voices or other audio features like the
characteristics of the specific microphones used.



Table 1
Test accuracy of past approaches from 2020-2023, with last column indicating if the training and test
sets had disjoint speakers. Details about the datasets used in each of the approaches is listed in table 4.

Model Languages Acc Disjoint speaker set
FRESH + ANN [41] 6 99.94% No
PLDA logistic regression [31] 3 96% No
Self-attentive pooling decoder [33] 6 92.5% No
CNN [39] 11 97.35% No
CapsNet [27] 11 98.2% No
CRNN ResNet50 DenseNet121 [38] 6 89% No
CRNN ResNet50 DenseNet121 [38] 6 45% Yes
CNN ResNet50 RNN [32] 16 53% Yes
Whisper [14] 102 (99) 64.5% Yes
mSLAM [42] 102 77.7% Yes

This effect is evident when analyzing the performance of models in related works,
shown in table 1. The table shows previous approaches to the SLID task, including the
used model architecture, the number of the analyzed languages, and the accuracy on
the test set. Most importantly, the table shows if there is a speaker overlap between the
training and test sets of the given datasets, i.e. if the training and test speaker sets are
disjoint. It can be seen that, whenever this has been the case, the evaluation accuracy
has been significantly lower. Our hypothesis is that the models, in the cases where the
training and test speaker sets are not disjoint, learn to recognize the voices and map
them to the languages, instead of learning to recognize the languages themselves. This
explains the misleading high test accuracy of such setups, in contrast to the approaches
where they did have a disjoint speaker set between the training and test sets.

We have also observed this effect during training and testing of our models. When
using a part of a training dataset as a validation dataset, the training and validation
accuracy were constantly very high. However, when testing the model on a different
dataset which did not include the same voices but the same languages, the accuracy
regularly dropped to an accuracy only marginally higher than an accuracy which would
be expected for a random classifier. This indicates that the models are overfitting on the
training data and that the language-specific features have not or only to a very limited
extent been learned.

To facilitate a truthful evaluation, we recommend using the FLEURS [15] or similar
datasets which include strictly different speakers in training, development and test sets.
Additionally, the FLEURS dataset consists of 102 languages across different language
families, allowing for a more comprehensive evaluation and development of more general
SLID models.4

Evaluation on FLEURS dataset. We trained the model described in section 3 on the
FLEURS dataset and present the results in table 2 and 3. First we evaluated the two
models individually and combined on six European (German, English, Spanish, French,
4Available at Hugging Face https://huggingface.co/datasets/google/fleurs

https://huggingface.co/datasets/google/fleurs


Russian and Italian) and six South Asian languages (Hindi, Urdu, Marathi, Malayalam,
Bengali and Gujarati) to compare the performance within different language groups, and
to test if the combination of the models is beneficial even on smaller and more constrained
datasets, see table 2.

The results of this approach show that by combining two models and training a new
output layer, a higher accuracy than the ones of the individual models can be achieved
for certain language groups. This can, for example, be seen by looking at the results
for the South Asian languages. The combination of the existing models with the newly
trained readout significantly outperforms the classification accuracy of the models when
they are being used individually for the task of language identification.

Furthermore, the results show that the accuracy does not decrease if the individual
models already achieve a very high accuracy. For the European languages, the existing
models achieved an accuracy of 100%. As the method of combining the existing models
with a new model did not deteriorate those results but rather kept the accuracy at the
same level, the method can be considered to be stable across a wide variety of languages.
Therefore, we suggest that this method can be potentially generalized to the identification
of all languages, as it improves the results regardless of the performance already achieved
by existing models.

These results can be confirmed by the evaluation of this method on all of the 102
languages of the FLEURS dataset. Table 3 shows that our ensemble approach beats
the reference models, including the two models serving as a basis for the ensemble, by a
significant margin.

Another advantage of this approach is that, as the models have previously been trained
on larger datasets, the final output layer can be trained on a relatively small amount of
data and still achieve better results. This is due to the fact that the used foundation
models have already achieved the ability to extract the relevant information from audio
into useful embeddings for speech processing. This is especially useful in situations where
available data or hardware resources are limited.

However, it must be noted that when using the approach in production, the time
for each classification increases due to combined inference time of the foundation and
classifier models. This is because for each input audio file, the forward propagation for
each of the two models must be executed in order to retrieve both output vectors of the
penultimate layers, which can then be used as an input for the new model.

Ablation study. To investigate if the accuracy gains are a result of the combination of
the foundation models or if they solely stem from the training of the classifier model, we
performed an ablation study. Instead of the combined foundation models, we trained
the classifier model separately on top of each of the foundation models, see rows with
"Retrained readout" in table 3. The results on the Whisper model indicate that the
largest increase in the classification accuracy comes from the training of the readout
model on the new languages, as is expected. Nonetheless, the factor of combining the
embedding from multiple foundation models made another significant increase in the
SLID accuracy.



Table 2
Comparison of the language identification accuracy of the different SLID methods for different language
groups consisting of 6 languages. European languages subset consists of German, English, Spanish,
French, Russian and Italian. South Asian languages subset consists of Hindi, Urdu, Marathi, Malayalam,
Bengali and Gujarati.

Model Retrained readout European languages acc. South Asian languages acc.
Whisper 100.00% 76.67%
TDNN 100.0% 85.33%
Whisper + TDNN ! 100.0% 88.00%

Table 3
Comparison of the ”Combination with training”-method with existingmodels, evaluated on the complete
FLEURS-test-dataset, partially derived from A. Radford et al. (2022, p. 8).

Model Retrained readout Accuracy
w2v-bert-51 71.4%
mSLAM-CTC 77.7%
Zero-shot TDNN 77.62%
TDNN ! 76.6%
Zero-shot Whisper 64.5%
Whisper ! 87.53%
Whisper + TDNN ! 90.9%

6. Discussion

In this paper, we tackled the issue of training SLID models on many languages under the
constrained data and compute resources. This scenario is relevant for the underrepresented
languages for which the large data volumes are not available and for the researchers
belonging to less represented communities, which often lack the compute resources for
training large models from scratch. With our experimental results, we made two main
contributions.

First, in the analysis of previous works, we show that many of the datasets used in SLID
suffer from a critical flaw of having the same speakers included in both the training and
test sets. Table 1 illustrates this issue and shows a large discrepancy between approaches
that are evaluated on those datasets which suffer, and those that do not. This insight is
critical for designing new datasets and benchmarks for SLID, and suggests which of the
datasets gives test accuracies that are meaningful and representative of the generalization
on the unseen data.

Second, we show that a simple ensemble method of combining penultimate layers
of large pre-trained models and training the readout can lead to better accuracy on
new languages with minimal compute costs. This relies on two assumptions: the large
pre-trained models are producing somewhat language-independent embeddings of input
audio, different pre-trained models have a different and complementary perspective
(embeddings) of the input audio signals.

We hypothesize that this ensemble method of combining penultimate layers can be



scaled up with more pre-trained models to achieve a higher accuracy. Also, we believe
that it can be extended to other domains, such as vision or graphs, where large pre-trained
embedding generators could be easily reused for more constrained tasks.

Limitations. Due to the reuse of the large pre-trained models, the ensemble method
requires the execution of the forward pass of all pre-trained models for every audio input.
This limits the deployment of the ensemble model to cloud platforms of relatively powerful
single nodes. Ideally, a high-precision universal SLID model should be deployable to
embedded Edge AI devices due to the privacy concerns. Unfortunately, this is still not
possible because the number of supported languages in SLID model directly correlates
with the model size and consequently the memory and compute requirements.

Is is worth mentioning that if data and compute resources are not a limiting factor, the
best accuracy can be achieved by training a network from scratch. For example, a recently
published model called Massively Multilingual Speech (MMS) by Meta can perform SLID
on 4017 languages [40]. We recommend applying knowledge distillation or other model
compression techniques on the MMS model, for fine tuning on the underrepresented
languages, while reducing the model size and enabling deployment on the edge.
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