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Abstract
The task of cover song identification (CSI) deals with the automatic matching of audio recordings by

modeling musical similarity. CSI is of high relevance in the context of applications such as copyright

infringement detection on online video platforms. Since online videos include metadata (eg. video titles,

descriptions), one could leverage it for more effective CSI in practice. In this work, we experiment with

state-of-the-art models of CSI and entity matching in a Co-Training ensemble. Our results outline slight

improvements of the entity matching model. We further outline some suggestions for improvements of

our approach to overcome the issue of overfitting CSI models which we observed.
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1. Introduction

Cover song identification (CSI) aims at matching audio recordings to their respective musical

cliques based on musical similarity. One typical application of CSI is copyright infringement

detection on online video platforms or social networks.

Recent state-of-the-art CSI models have shown great success [1, 2, 3, 4, 5, 6, 7]. However,

these models are solely audio-based. Prior approaches have also demonstrated the effectiveness

of metadata for the task [8, 9].

In this work, we model the task of CSI as a multimodal problem incorporating music similarity

and entity matching. We design a Co-Training algorithm that leverages the natural split of two

views: a text view and an audio view. We utilize the two models to iteratively generate pseudo

labels for each other for an unlabeled dataset of YouTube videos. We evaluate the performance

of both models on publicly available CSI datasets. In the following, we first introduce into

Co-Training and outline some related work. We then propose our Co-Training algorithm,

and document details about our dataset and implementation in Section 3 to Section 5. In our

experiments in Section 6 we show results before closing this paper with Section 7 outlining

some ideas to improve our approach.
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Figure 1: Own illustration of Co-Training with two views and models.

2. Preliminaries and Related Work

Co-Training was initially proposed by Blum and Mitchell [10] and refers to the idea to leverage

automatically generated pseudo labels to improve the performance of models in the ensemble.

This enables training models in cases where only a small subset of the available data is labeled,

which applies to many real world scenarios. Co-Training relies on the availability of multiple

views which are required to fulfill the following assumptions:

1. Sufficiency: Each view is sufficient to address the task at hand.

2. Independence: The views are conditionally independent.

As illustrated in Figure 1, the models within the ensemble iteratively provide pseudo labels

for each other. One key component is the selection of a fraction of predictions as pseudo labels,

based on a constraint such as confidence thresholds [11, 12], limiting to a fraction of most

confident samples by ranking [13, 14] or other methods [15, 16, 17, 18].

Recently, various applications of Co-Training with deep learning models have been proposed

for the modalities text [13, 16], images [14, 19, 11, 12, 20, 21] and on multiple modalities [22, 15].

Lang et al. [13] improve prompt based learning by using GPT-3 output probabilities and

frozen representations of openly available large language models to improve prompt-based

learning. Both of their proposed methods for pseudo label selection are based on the ranking

of samples. An approach by Wu et al. [16] applies Q-learning to improve the selection policy

for the partition of unlabeled data to be pseudo-labeled. They demonstrate the effectiveness of

reinforced Co-Training on text classification tasks. Peng et al. [14] use adversarial examples in

an ensemble of multiple models for model diversity to improve the ensemble performance for

image segmentation on medical images. To select pseudo labels, a fraction parameter is used

that increases over iterations. In contrast, Yang et al. [11] apply a Co-Training framework with

a fixed threshold to the task of domain adaption task. Xian and Hu [12] use a fixed threshold

parameter for pseudo-labeling in the task of person re-identification.

Some approaches successfully make use of views arising from modalities. A multimodal

approach of Hinami et al. [15] leverages multiple views of the modalities text, audio and video



found in web videos to improve concept classification. Pseudo labels are selected based on a

voting approach within the ensemble. Another multimodal approach with text and images

from web articles of Bhattacharjee et al. [22] improves the task of fake news detection. Their

pipeline includes an attention-aware step to fuse two views. The models then co-train based

on sampling of hard positive samples. In the following, we present our Co-Training algorithm

which is based on fixed-thresholds.

3. Multimodal Co-Training Algorithm

We have access to an entity matching model 𝑇𝑀 based on a language model and a cover song

identification model 𝐴𝑀 based on metric learning. Both models are pretrained and achieve

state-of-the-art performance for the task at hand. However, we aim to improve their performance

by training these models on a labeled dataset 𝐷𝐿 and an unlabeled dataset 𝐷𝑈 . Each item 𝑣
within either of the datasets is a YouTube video representation 𝑣 which is represented by a text

view (YouTube metadata) and an audio view based on audio features (cf. Section 5).

Accordingly, 𝑇𝑀(𝑣𝑖, 𝑣𝑗) computes the entity matching confidence 0 < 𝑡𝑚 < 1 for a

pair 𝑣𝑖, 𝑣𝑗 ∈ 𝐷𝑈 ∪ 𝐷𝐿 and 𝐴𝑀(𝑣𝑖, 𝑣𝑗) the musical similarity modeled as cosine similarity

−1 < 𝑎𝑚 < 1. A labeled item 𝑣 ∈ 𝐷𝐿 has a known clique or musical work where it belongs

to represented by 𝑤(𝑣) ∈𝑊 . Unlabeled items 𝑣 ∈ 𝐷𝑈 have a candidate clique 𝑤̂(𝑣) ∈𝑊 . It

is unknown whether 𝑣 belongs to this clique. However, among all possible cliques this is the

most likely one, because 𝑣 was found with queries formulated to find items for this clique as

explained in Section 4.

We argue that we can address the problem of multimodal CSI by Co-Training. Since both

models are pretrained, we expect the first Co-Training assumption (cf. Section 2) to hold. We

further argue that both views are conditionally independent, due to the natural split given by

modalities.

In Algorithm 1, we show the Co-Training loop. We randomly sample three labeled (𝑙 = 3)

and three unlabeled videos (𝑢 = 3) for two randomly selected cliques (𝑠 = 2) per iteration.

We make use of hard threshold parameters. The output of 𝑇𝑀 is based on softmax layers on

top of a language model. We therefore simply denote 𝛾 as the outer boundary for confidence,

indicating that a pseudo label is either positive if 𝑡𝑚 > 1− 𝛾 or negative if 𝑡𝑚 < 𝛾. For the

audio model we impose two thresholds. We observed that the CSI model we use does not output

equally distributed similarity values spreading to the boundaries of the cosine similarity. Hence,

we use a lower threshold to set negative pseudo labels if 𝑎𝑚 < 𝜏lower and an upper threshold

to set positive pseudo labels if 𝑎𝑚 < 𝜏upper.

In Algorithm 2, we show one iteration of Co-Training where MAX(𝑀, 0) denotes the element-

wise maximum operator applied to the matrix 𝑀 and 0 and MAX(𝑀) and denotes the respective

row-wise maximum operation applied to 𝑀 .

We first predict the entity matching confidences and musical similarities for each pair of items

within all the pairs in the batch and assign those to matrices 𝑌 text and 𝑌
audio

. Subsequently,

the similarity square matrices are masked to retain only pairwise relationships with a known

ground truth label from 𝐷𝐿 or with a sufficiently confident pseudo label. As masking values,

we select 1 to represent a indicating a positive relationship among the items (both are from the



Algorithm 1 Multimodal Cover Song Co-Training Loop

1: Initialize
2: Maximum number of iterations 𝐼𝑚𝑎𝑥, Number of cliques per batch 𝑠, set of clique identifiers

𝑊 , number of labeled items per batch 𝑙, number of unlabeled items per batch 𝑢, outer

boundary for text model 𝛾, lower threshold for audio model 𝜏lower, upper threshold for

audio model 𝜏upper, labeled dataset 𝐷𝐿, unlabeled dataset 𝐷𝑈 , learning rate 𝜂, audio model

𝐴𝑀 , text model 𝑇𝑀
3:

4: for 𝑖←− to 𝐼𝑚𝑎𝑥 do
5:

6: Sample 𝑊𝐵 = {𝑤1, . . . , 𝑤𝑠} from 𝑊 ´
7:

8: for 𝑤 ∈𝑊𝐵 do:

9: Sample 𝐿𝑤 = {𝑣1, . . . , 𝑣𝑞} from 𝐷𝐿 where 𝑤(𝑣) ∈𝑊𝐵

10: Sample 𝑈𝑤 = {𝑣1, . . . , 𝑣𝑐} from 𝐷𝑈 where 𝑤̂(𝑣) ∈𝑊𝐵

11: end for
12:

13: 𝐿𝐵 =
⋃︀

𝑤∈𝑊𝐵
𝐿𝑤

14: 𝑈𝐵 =
⋃︀

𝑤∈𝑊𝐵
𝑈𝑤

15:

16: CoTrainIter(𝐿𝐵, 𝑈𝐵, 𝜏lower, 𝜏upper, 𝛾, 𝜂, 𝐴𝑀, 𝑇𝑀)
17:

18: end for

same clique) and -1 to indicate the contrary. Additionally, we select 0 to mask out uncertain

relationships for pairs without a ground truth label and insufficient confidence of the model

generating the pseudo label. The pseudo label masks 𝑀text and 𝑀
audio

are used to sample the

similarity values to use for training updates with hard triplet mining as proposed by Xuan et

al. [23] and applied to train prior CSI models [24, 25]. The lowest distances of the positive

relationships in DIST
+
𝑎𝑢𝑑𝑖𝑜 and DIST

+
𝑡𝑒𝑥𝑡 and the highest distances for the pairwise negative

relationships DIST
−
𝑎𝑢𝑑𝑖𝑜 and DIST

−
𝑡𝑒𝑥𝑡 represent the components of the hard triplets that are

used for the training updates.

We train the metric learning model 𝐴𝑀 with triplet loss which is defined as:

𝐿tri

𝑖 = max(𝐷(𝑣𝑖, 𝑣+)−𝐷(𝑣𝑖, 𝑣−) +𝑚, 0), (1)

where 𝑚 = 1 is the margin parameter, 𝑣+ and 𝑣− are the positive and negative to anchor 𝑣𝑖
which are used to compute the distances 𝐷(𝑣𝑖, 𝑣+) and 𝐷(𝑣𝑖, 𝑣−) as found in DIST

+
𝑎𝑢𝑑𝑖𝑜 and

DIST
−
𝑎𝑢𝑑𝑖𝑜 respectively.

Our entity matching model 𝑇𝑀 is based on a large language model which we train with

binary cross entropy loss:



Algorithm 2 Co-Training Iteration for One Batch (Triplet Loss with Hard Triplet Mining).

1: Initialize
2: Set of labeled items per batch 𝐿𝐵 , set of unlabeled items per batch 𝑈𝐵 , outer boundary

for text model 𝛾, lower threshold for audio model 𝜏lower, upper threshold for audio model

𝜏upper, learning rate 𝜂, audio model 𝐴𝑀 , text model 𝑇𝑀
3:

4: Set 𝑛 = |𝐿𝐵 ∪ 𝑈𝐵|
5:

6: Predict
7: Init. empty matrix 𝑌 𝑎𝑢𝑑𝑖𝑜 ∈ R𝑛×𝑛

8: 𝑌 𝑎𝑢𝑑𝑖𝑜[𝑖, 𝑗] = 𝐴𝑀(𝑣𝑖, 𝑣𝑗) where 𝑣𝑖, 𝑣𝑗 ∈ 𝐿𝐵 ∪ 𝑈𝐵

9: Init. empty matrix 𝑌 𝑡𝑒𝑥𝑡 ∈ R𝑛×𝑛

10: 𝑌 𝑡𝑒𝑥𝑡[𝑖, 𝑗] = TM(𝑣𝑖, 𝑣𝑗) where 𝑣𝑖, 𝑣𝑗 ∈ 𝐿𝐵 ∪ 𝑈𝐵

11:

12: Ground Truth Square Mask
13: Init. empty matrix 𝑀𝑙𝑎𝑏𝑒𝑙 ∈ R𝑛×𝑛

14: 𝑀𝑙𝑎𝑏𝑒𝑙[𝑖, 𝑗] =

⎧⎪⎨⎪⎩
1 if 𝑤(𝑣𝑖) = 𝑤(𝑣𝑗)

−1 if 𝑤(𝑣𝑖) ̸= 𝑤(𝑣𝑗)

0 if undefined ∈ {𝑤(𝑣𝑖), 𝑤(𝑣𝑗)}
15:

16: Pseudo Label Masks
17: Init. empty matrices 𝑀𝑎𝑢𝑑𝑖𝑜 ∈ R𝑛×𝑛

and 𝑀𝑡𝑒𝑥𝑡 ∈ R𝑛×𝑛

18: 𝑀𝑎𝑢𝑑𝑖𝑜[𝑖, 𝑗] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑀𝑙𝑎𝑏𝑒𝑙[𝑖, 𝑗] if 𝑀𝑙𝑎𝑏𝑒𝑙[𝑖, 𝑗] ̸= 0

1 if 𝑌 𝑎𝑢𝑑𝑖𝑜[𝑖, 𝑗] > 𝜏𝑢𝑝𝑝𝑒𝑟

−1 if 𝑌 𝑎𝑢𝑑𝑖𝑜[𝑖, 𝑗] < 𝜏𝑙𝑜𝑤𝑒𝑟

0, otherwise

19: 𝑀𝑡𝑒𝑥𝑡[𝑖, 𝑗] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑀𝑙𝑎𝑏𝑒𝑙[𝑖, 𝑗] if 𝑀𝑙𝑎𝑏𝑒𝑙[𝑖, 𝑗] ̸= 0

1 if 𝑌 𝑡𝑒𝑥𝑡[𝑖, 𝑗] > 1− 𝛾

−1 if 𝑌 𝑡𝑒𝑥𝑡[𝑖, 𝑗] < 𝛾

0, otherwise

20:

21: Hard Triplet Mining
22: DIST

+
𝑎𝑢𝑑𝑖𝑜 = 1− min(max(𝑀𝑡𝑒𝑥𝑡, 0) * 𝑌 𝑎𝑢𝑑𝑖𝑜) ∈ R𝑛×1

23: DIST
−
𝑎𝑢𝑑𝑖𝑜 = 1− max(max(−1 *𝑀𝑡𝑒𝑥𝑡, 0) * 𝑌 𝑎𝑢𝑑𝑖𝑜) ∈ R𝑛×1

24: DIST
+
𝑡𝑒𝑥𝑡 = 1− min(max(𝑀𝑎𝑢𝑑𝑖𝑜, 0) * 𝑌 𝑡𝑒𝑥𝑡) ∈ R𝑛×1

25: DIST
−
𝑡𝑒𝑥𝑡 = 1− max(max(−1 *𝑀𝑎𝑢𝑑𝑖𝑜, 0) * 𝑌 𝑡𝑒𝑥𝑡) ∈ R𝑛×1

26:

27: Loss Computation
28: LOSS𝑎𝑢𝑑𝑖𝑜 = 𝐿tri(DIST+

𝑎𝑢𝑑𝑖𝑜,DIST
−
𝑎𝑢𝑑𝑖𝑜)

29: LOSS𝑡𝑒𝑥𝑡 = 𝐿ce(DIST+
𝑡𝑒𝑥𝑡,DIST

−
𝑡𝑒𝑥𝑡)

30:

31: Update
32: 𝜃𝐴𝑀 ← 𝜃𝐴𝑀 − 𝜂∆LOSS𝑎𝑢𝑑𝑖𝑜(𝜃𝐴𝑀 )
33: 𝜃𝑇𝑀 ← 𝜃𝑇𝑀 − 𝜂∆LOSS𝑡𝑒𝑥𝑡(𝜃𝑇𝑀 )



Table 1
Datasets with numbers of cliques and songs/videos used in our implementation for training, validation,
and testing.

Subset Dataset Cliques Items

Training Train-YT 50 50,395
Training Train-SHS 50 1,121

Validation Val-SHS 882 3,172

Test Da-Tacos 2,797 13,707
Test Test-SHS 50 1,259
Test Test-YT 50 628

𝐿ce

𝑖 =
𝑀∑︁
𝑐=1

𝑦𝑖,𝑐 log(𝑦𝑖), (2)

where 𝑦𝑖 is one prediction as found in in either DIST
−
𝑡𝑒𝑥𝑡 or DIST

+
𝑡𝑒𝑥𝑡 and hence 𝑦𝑖,𝑐 ∈ {0, 1}. In

the following, we outline details about our dataset, preprocessing and training implementation.

4. Dataset

We provide an overview of the datasets used in Table 1 and CSV files containing cliques

identifiers and YouTube identifiers
1
. The cliques used for implementation rely on two datasets

from prior research in CSI: SHS100K2
for training, validation and testing and Da-Tacos [26] for

testing.

Based on the test subset of SHS100K we formulated around 44 text queries per clique to crawl

YouTube
3

to find additional songs for these cliques, similarly to our prior work [27]. We split

this crawl into two parts with 50 cliques each. One for training composed of Train-SHS (labeled

dataset 𝐷𝐿) and Train-YT (unlabeled dataset 𝐷𝑈 ) and one for testing which is composed of

Test-SHS and Test-YT. Test-SHS is a subset of songs that are represented by YouTube videos in

the initial SHS100K test subset and Test-YT contains other YouTube videos found by the query

procedure. We annotated these 628 crawled videos with the help of two students and up to five

workers on Mechanical Turk. We only considered labels with full agreement among students

and aggregated the worker labels by majority vote.
4

For validation we use the validation subset of SHS100K which we denote by Val-SHS.
5

We

additionally use the larger Da-Tacos dataset for testing.
6

1

https://github.com/progsi/datasets_shs_yt_cotraining

2

cf. https://github.com/NovaFrost/SHS100K provided by Yu et al. [1]

3

cf. https://pypi.org/project/youtube-search-python/

4

We report an agreement in Krippendorff’s 𝛼 of 0.43 (workers) and a Cohen’s 𝜅 of 0.83 (students). While the worker

agreement is quite low, measuring the agreement between students and aggregated labels by majority vote for a

subset of 210 songs yields a Cohen’s 𝜅 of 0.81.

5

81% were retrievable from YouTube.

6

The authors of Da-Tacos provide CREMA features publicly. However, we needed to extract CQT spectograms of

https://github.com/progsi/datasets_shs_yt_cotraining
https://github.com/NovaFrost/SHS100K
https://pypi.org/project/youtube-search-python/


For each video, we downloaded the MP3 files with a sampling rate of 22,050 Hertz
7

to extract

audio features. We extract CREMA
8

features and constant-Q transform features
9

(CQT) with 84

frequency bins.

Furthermore, we retrieved the metadata for each video. To ensure that semantics are preserved

independently of the Unicode font, we mapped various Unicode fonts to basic Latin characters

using Unicodedata10
.

5. Implementation Details

We use the BERT -based entity matching model Ditto [28] as our text model which is publicly

available on Github.
11 Ditto requires fine-tuning specifically to the structure of attributes in

the entities, in our case YouTube videos. We use the SHS100K-Train subset as Ditto pretraining

dataset, which does not overlap with dataset any of our other datasets shown in Table 1.

Following the splits applied by Li et al. [28] we created a training, validation, and test set with a

ratio of 3:1:1 with each containing positive and negative pairs of YouTube videos in a 1:4 ratio.

We gathered the negative pairs by randomly sampling videos from another randomly selected

work. We use only the video titles and channel names as YouTube metadata representations. We

additionally experimented with YouTube descriptions but preliminary results showed inferior

results (F1 score of 27% against 95%) to the ones achieved by using only video titles and channels.

We used all of the proposed data augmentation techniques and the best performing language

model (RoBerta) as described in [28]. We applied the best model checkpoint evaluated on the

test set after 50 epochs for our matching task.

We use two different state-of-the-art CSI models which are publicly available
12

: CQTNet
[1] and Re-MOVE [3]. In both cases, we initialize the pretrained models from the best model

checkpoints provided by the authors.

Re-MOVE processes CREMA features which are a variant of pitch class profiles and mainly

represent harmonic information. CQTNet processes constant-Q transform features (CQT), which

are spectograms with a logarithmically spaced frequency axis.

Following the Co-Training approach by Yang et al. [11], we use stochastic gradient descent

as optimizer with learning rate 0.01 and momentum ∈ {0, 0.9}. We validate the used audio

model and Ditto every 100 iterations. Since the prediction of a square matrix is expensive with

Ditto, we initialize a random subset of the validation set at the beginning of each training and

use it throughout the training.

MP3s for CQTNet. Hence, we only include the subset of videos which were available on YouTube which makes up

around 92% of full Da-Tacos.
7

cf. https://github.com/yt-dlp/yt-dlp

8

cf. https://github.com/bmcfee/crema

9

cf. https://librosa.org/doc/latest/index.html

10

cf. https://docs.python.org/3/library/unicodedata.html

11

cf. https://github.com/megagonlabs/ditto

12

We experimented with the ByteCover implementation by Orfium: https://github.com/Orfium/bytecover However,

the implementation was not provided by the authors of the paper and achieves lower performance than both

models we use.

https://github.com/yt-dlp/yt-dlp
https://github.com/bmcfee/crema
https://librosa.org/doc/latest/index.html
https://docs.python.org/3/library/unicodedata.html
https://github.com/megagonlabs/ditto
https://github.com/Orfium/bytecover
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Figure 2: Comparison of Audio Models for first 1,000 iterations and momentum of 0.

6. Experiments

We evaluate our proposed Co-Training algorithm on ensembles with Ditto [28] as 𝑇𝑀 paired

with one of the pretrained audio models CQTNet [1] and Re-MOVE [3] as 𝐴𝑀 . Our provided

baselines are the pretrained models before Co-Training. We further compare to a simple baseline:

the Levensthein-based function token set ratio
13

. We report the mean average precision (mAP)

which is the main evaluation metric used in cover song identification [1, 2, 3, 4, 5, 6, 7]. Results

are shown in Table 2 for the two best ensembles we found per pair of 𝑇𝑀 and 𝐴𝑀 :

• Co-CQT : with CQTNet and 𝛾 = 0.1, 𝜏upper = 0.7, 𝜏lower = 0.2.

• Co-ReM: with Re-MOVE and 𝛾 = 0.2, 𝜏upper = 0.5, 𝜏lower = 0.3.

6.1. Experiment 1: CQTNet Versus Re-MOVE

We compare the two audio models with 𝜏upper ∈ {0.5, 0.6}, 𝛾 = 0.2 and 𝜏lower = 0.3. In

Figure 2 we show the triplet loss over 1,000 iterations as well as the validation mAP. The strong

observable drop in mAP and loss for Re-MOVE strongly reflects an overfit. As we show in

Table 2, Re-MOVE generally performs worse than CQTNet. We therefore focus on experimenting

with various different thresholds for CQTNet. We further observe that the convergence of the

loss of CQTNet is rather slow. Thus, we impose a momentum of 0.9 in the next experiments.

6.2. Experiment 2: CQTNet Threshold Tuning

We experimented with different hyperparameter configurations: 𝛾 ∈ {0.1, 0.2, 0.49}, 𝜏upper ∈
{0.5, 0.6, 0.7}, 𝜏lower ∈ {0.2, 0.3, 0.4}.

In Figure 3 we show the loss and validation mAP of Co-CQT. We observe that CQTNet overfits,

shown by the jointly decreasing loss and mAP. The triplet loss converges rather close to the

margin for the triplet loss 𝑚 = 1. We observed this result consistently across configurations.

13
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Figure 3: Losses and validation mAPs Co-CQT.

However, we as well observe an increase in loss but a constant validation mAP for Ditto14
.

As shown in Table 2, Ditto is the only model which actually improves with the Co-Training

procedure. Given these two key observations, we hypothesize that balancing the two very

different models is a key challenge. In the closing section, we therefore outline some of the

potential issues with our approach and ideas to address these.

7. Conclusion and Outlook

In this paper, we applied a Co-Training algorithm for multimodal CSI using an audio-based

CSI model along with an entity matching model. We slightly improved the entity matching

model Ditto for our task. This might suggest that further training iterations can improve Ditto.

However, both audio-based models seem to overfit quite rapidly.

In the following, we outline some ideas which might have an impact on this problem.

14

Please note that sampling of a subset of 100 items of the full Val-SHS as mentioned in Section 5, can have a major

impact on the validation mAP.



Table 2
mAP of the ensembles Co-CQT (Ditto & CQTNet) and Co-ReM (Ditto & Re-MOVE). We report for the best
ensembles achieved with our tested hyperparameter configurations. *The computation of predictions in
the case of Ditto is more time complex than for the CSI models. We therefore report the performance on
Da-Tacos for a random subset of 1,259 items (size of the Test-SHS dataset).

Ensemble Model Val-SHS Test-SHS Test-YT Da-Tacos

- Levensthein 0.30 0.50 0.26 0.12
- Ditto* 0.62 0.80 0.40 0.24
Co-CQT Ditto (best) - 0.84 0.44 0.28
- Re-MOVE 0.57 0.69 0.43 0.23
Co-ReM Re-MOVE (best) 0.57 0.70 0.44 0.23
Co-ReM Re-MOVE (last) 0.35 0.46 0.29 0.11
- CQTNet 0.76 0.83 0.57 0.73
Co-CQT CQTNet (best) 0.75 0.83 0.56 0.74
Co-CQT CQTNet (last) 0.51 0.55 0.32 0.35

Learning Rates. In comparison, Ditto seems to learn rather slow while the audio-based

models overfit. We believe that different learning rates for both models could help to prevent this

imbalance of model convergence. One potential improvement can be a grid search over different

learning rates across the models as proposed by Likhosherstov et al. [29]. Alternatively, one

could apply different learning rate schedulers like Yang et al. [11]. Our observations also suggest

the potential continuation of the pretraining of Ditto, possibly with pseudo labels generated by

the audio model. Eventually, Co-Training with both models could be done afterwards to avoid

the apparent different starting condition of both models.

Hard Triplet Mining. We sample triplets during training based on the hard triplet mining

strategy found in metric learning. In the context of Co-Training, adversarial examples can be

used as an alternative [14, 19, 20, 21] which encourage view difference. In contrast, hard triplet

mining solely ensures that the most difficult triplets are in the batch are utilized for training.

Losses. Some state-of-the-art CSI models rely on multiloss approaches [5, 6, 7] which combine

triplet loss with a softmax loss. While triplet loss encourages intra-class compactness, the

latter encourages inter-class discrimination [30]. Thus, our approach might neglect inter-class

discrimination. Another alternative to the triplet loss is the utilization of the prototypical triplet

loss [31] which considers distances between centroids of positive and negative classes instead

of distances to individual samples.

Batch Size. We tested different configurations of thresholds. However, the batch size for

labeled and unlabeled items per batch was fixed for all experiments and the number of items

for both input datasets was equal. We believe that the increase of unlabeled items per batch in

contrast to labeled items could enforce that more interesting items are used during training.

That is, due to their containment in our crawl rather than the widely used academic dataset

SHS100K, which is based on the platform Secondhandsongs. The platform itself relies on manual



labour by volunteers subject to policies to determine the boundaries between cover songs

whereas our crawl is solely subject to the creative spectrum on YouTube.

Label Confidence Estimation. As outlined in Section 2, other label confidence estimation

methods can be applied to Co-Training. In this study, we solely experimented with a

threshold-based method. Ranking-based methods or possibly more sophisticated methods could

further improve our proposed algorithm.

In future experiments, we plan to test the impact of the factors discussed. We hope that we

can find configurations of ensembles which can effectively leverage both views to improve the

task of multimodal CSI.
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