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Abstract
Complex data – like hyperspectral image data – requires adequate preprocessing methods for tackling the
issue of data quality, as a prerequisite for further machine learning approaches like deep learning. This
paper addresses preprocessing in the context of ground-based hyperspectral image data: It presents novel
preprocessing methods, and proposes a comprehensive preprocessing pipeline for handling complex
hyperspectral image samples. Multiple preprocessing pipelines are applied on a set of hyperspectral
images in the context of image classification, analyzing which preprocessing algorithms perform best, in
order to draw further conclusions about methods and their combinations in our application context. Our
results show trends on the application of specific methods, and indicate that the application of shorter
pipelines tends to achieve better results. We also provide empirical evidence suggesting that too intensive
dimensionality reduction can have detrimental effects on classifiability, regardless of contamination levels.
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1. Introduction

In recent years, deep learning-based techniques have advanced significantly, in particular, in the
area of computer vision, e. g., [1, 2, 3, 4]. However, one important prerequisite for their successful
application is sufficient data quality [5, 6], requiring appropriate preprocessing: in particular,
preprocessing needs to be applied e. g., when working with complex data like hyperspectral
images [7, 8, 9] or performing advanced sampling approaches for quality estimation, cf. [10, 11].

In this paper, we target preprocessing methods in the context of analyzing hyperspectral
image data: We investigate several preprocessing algorithms based on a literature review, provide
efficient Python implementations (detached from data acquisition), and combine them according
to the recommendations of Vidal et al. [11] into comprehensive preprocessing pipelines. These
are applied to artificially contaminated hyperspectral images of potatoes. A hyperspectral image
is a data cube consisting of many two-dimensional spatial bands stacked along the spectral
dimension. Subsequently, the cleaned datasets are classified using an artificial neural network to
assess and identify promising combinations of preprocessing methods [12, 13, 14].
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In particular, our application context is given by an agricultural application for visual-based
automated quality determination of potatoes [14], which is being developed in the Agri-Gaia
research project by Osnabrück University of Applied Sciences in cooperation with Wernsing
Feinkost GmbH. It addresses both the use of RGB as well as hyperspectral data described in this
paper. Real-time capable RGB cameras are only suitable for determining defects visible on a
potato’s surface. Therefore, the quality of dirty potatoes cannot be assessed using this approach.

Due to the different penetration depths of different wavelengths of the non-visible electro-
magnetic spectrum, it is suspected that hyperspectral cameras can detect defects beneath a thin
layer of soil [10]. Hence, hyperspectral data can be a valuable provider of nontrivial features,
which may be extracted using convolutional neural networks (CNNs). However, due to multiple
contamination hazards typically encountered during data collection, hyperspectral preprocessing
is often necessary for assuring data quality. Our core contributions are summarized as follows:

1. We discuss preprocessing, and propose two novel methods, i. e., spectral binning using
self-reference deviation (SRD) and spatial binning via a SID-SAM sliding window (SSSW).

2. In our experimentation, we construct different preprocessing pipelines and estimate their
performance on a reference dataset in the described real-world context.

3. We provide an open-source implementation for creating preprocessing pipelines in Python
using the proposed methods: https://github.com/andreas-schliebitz/hipp

The rest of the paper is structured as follows: Section 2 discusses related work. After that,
Section 3 describes our proposed approach in detail. Next, Section 4 presents and discusses our
results. Finally, Section 5 concludes with a summary and interesting directions for future work.

2. Related Work

Vidal et al. [11] discuss preprocessing steps for hyperspectral data, as well as individual algorithms
within the preprocessing pipeline shown in Figure 1:

• Dead pixels can be detected using thresholding techniques relying on median spectra or
more robust methods like genetic or evolutionary algorithms [11, p. 143]. In addition to
more sophisticated methods like Minimum Volume Ellipsoid (MVE), defect pixels can also
be localized by their abnormal intensity values [11, p. 143].

• Spectral spike points may be removed using median-modified Wiener filters (MMWF),
wavelet transforms (Wt), signal derivatives or statistical methods detecting unlikely devia-
tions from the signal’s mean [11, p. 144].

• Background removal can often be performed using manual or automatic thresholding
techniques [11, p. 142]. Outlier detection should only be attempted if a normal distribution
of data points can be assumed [11, p. 145]. If so, methods like Resampling by Half Means
(RHM), Smallest Half Volume (SHV) or more robust estimators like MVE or Minimum
Covariance Determinant (MCD) can be used [11, p. 145].

• Following the paper of Vidal et al. [11], spectral preprocessing can be split into noise
reduction, scatter correction and the reduction of additive baseline shifts. Noise reduction
can be performed using 3D or Daubechies wavelets [11, pp. 140-141]. Both spectral
denoising and the rectification of additive baseline shifts can be attempted using the
Savitzky-Golay filter [11, p. 145]. For scatter correction the use of the Standard Normal
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Variate (SNV) is advisable if no reference spectrum is available. Otherwise, if a reference
spectrum can be recorded a priori, then Multiplicative Scatter Correction (MSC) should be
considered instead [11, p. 145] [15].

• Dimensionality reduction of a hyperspectral datacube can be achieved using variable
selection techniques based on genetic algorithms or partial least squares regression (e. g.
iPLS) [11, p. 140]. Other methods include spatial and spectral binning as well as factor
model approaches such as Principal Component Analysis (PCA) or Multivariate Curve
Resolution (MCR) [11, p. 140].

A classification of hyperspectral data cleaned with a selection of these methods is performed
by Amigo et al. [16], co-author of [11]. The authors aim at distinguishing flame retardants
contained in six different types of plastics using partial least squares regression. In contrast
to this paper, the authors do not attempt a classification via artificial neural networks. In the
context of hyperspectral image classification, neural networks, especially convolutional types,
can be considered as successors of kernel-based methods like PCA and Support Vector Machines
(SVM) [17]. Yu et al. [18] demonstrate the superior classification ability of convolutional neural
networks (CNN) in a comparative study involving 𝑘-nearest neighbor (KNN) and SVM varia-
tions. The results show that the CNN-based classifier performs best on all three hyperspectral
datasets, being Indian Pines, PaviaU and Salinas. The literature today includes a number of
CNN architectures specifically designed for hyperspectral image classification. Ausdebert et al.
implement ten of these CNN-based classifiers in their DeepHyperX toolbox [19, 20], of which
the S-CNN architecture [21] performs best in our experiments (see Table 4).

3. Methods

A preprocessing pipeline can be considered as a composition of functions which takes a hyper-
spectral data cube (hypercube) as input and applies a set of transformations to it. Each prepro-
cessing step can affect the spatial and spectral dimensions of the resulting hypercube, which
will serve as input of the subsequent step. Therefore, algorithms in a preprocessing pipeline

Figure 1: Structure of a hyperspectral
preprocessing pipeline, cf. [11]

must be able to adapt to changes in input dimension-
ality. Experiments have shown that careless composi-
tion of algorithms within preprocessing pipelines can
have a negative impact on their effectiveness. Figure 1
(adapted from Vidal et al. [11]) depicts a reasonable
sequence of individual preprocessing steps also used
by the pipelines compiled in this paper. Below, the
findings of a literature review are used to instantiate
several such preprocessing pipelines with selected al-
gorithms. The task of these pipelines is to remove
unwanted noise from hyperspectral images, for three
contamination levels (low, medium and high). After
this preprocessing phase, the cleansed hyperspectral
images are used for training a neural classifier in or-
der to draw conclusions about effective combinations
of different preprocessing algorithms. The selected
preprocessing algorithms are summarized in Table 1.
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Table 1
Overview of algorithms used for creating preprocessing pipelines.

Preprocessing step Algorithm Abbr. Ref.
Dead pixel detection Standard Deviation Threshold SDT [11, sec. 6]
Spike detection Standard Deviation Factor SDF [11, sec. 7]

Outlier detection
Stochastic Outlier Selection SOS [22]
Copula Based Outlier Selection COPOD [23]
Reed-Xiaoli Detector RXD [24]

Noise reduction
Savitzky-Golay Filter SGF [25]
Daubechies Wavelet Filter Wt [26]
Minimum Noise Fraction MNF [27]

Scatter correction Standard Normal Variate SNV [28]
Multiplicative Scatter Correction MSC [29]

Dimensionality reduction
Principal Component Analysis PCA [30]
Spectral Binning SRD —
Spatial Binning SSSW —

3.1. Methods for Dimensionality Reduction

3.1.1. Spectral Binning using Self-Reference Deviation (SRD)

For hyperspectral data, spectral binning is a dimensionality reduction technique, which merges
similar bands along the spectral dimension 𝑧 of the hypercube H ∈ R𝑦×𝑥×𝑧 where 𝑦 and 𝑥
denote the spatio-temporal and spatial dimensions respectively. More generally, 𝑦 represents
the height and 𝑥 the width of each spectral band in pixels. Binning can be done manually for
obvious groups of similar bands by specifying static bins. Since this approach is rarely practical
for all samples in a dataset, a new automatic spectral binning procedure is presented below.

The SRD method is based on the average distance 𝑑 ∈ R>0 of the intensity values inside the
averaged spectrum I* ∈ R𝑧 (self-reference) of the hypercube. For dynamic creation of bins, SRD
expects a user defined maximum deviation 𝜀 ∈ (0, 1] from this average distance 𝑑. In summary,
the SRD algorithm works as follows:

1. Calculate the reference spectrum I* of H, where the 𝑖-th entry of I* is the mean 𝑏𝑖 of the
𝑖-th spectral band of H.

2. Calculate the mean distance 𝑑 of all neighboring intensity values in I*, adding the maxi-
mum allowed percentage deviation: 𝑑 := 𝑑 · (1 + 𝜀)

3. Obtain the averages 𝑏𝑖 from the reference spectrum I* with 1 ≤ 𝑖 ≤ 𝑧 and identify the
bins using the following case distinction:

a) If 𝑖 = 1 or the distance from the current mean 𝑏𝑖 to the mean of the bands within
the current bin is less than 𝑑: Add the 𝑖-th band from H to the current bin. A small
deviation from the current bin’s mean indicates a high degree of similarity.

b) Otherwise: Close the current bin and start with a new one.
4. Create a reduced hypercube H′ ∈ R𝑦×𝑥×𝑧′ by averaging the spectral bands of each bin.

This operation reduces the hypercube’s depth by merging multiple similar bands into one.
The storage gain 𝐺SRD achieved by spectral binning is calculated from the product of the depth
difference 𝑧 − 𝑧′, the unchanged spatial resolution 𝑦 × 𝑥 and the constant storage size 𝑘 of an
intensity value in bits: 𝐺SRD = (𝑧 − 𝑧′) · 𝑦 · 𝑥 · 𝑘 where 0 < 𝑧′ ≤ 𝑧. Here, the storage gain is
large if the difference 𝑧 − 𝑧′ is large, that is, the number of bins generated is small.
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3.1.2. Spatial Binning using a SID-SAM Sliding Window (SSSW)

Spatial binning, in contrast to spectral binning, achieves dimensionality reduction by merging
similar point spectra located in the 𝑥𝑦 plane of the hypercube H ∈ R𝑦×𝑥×𝑧 . The spatial binning
method presented in this section compares multiple point spectra in a 𝑠× 𝑡 pixel wide window,
which is moved over the 𝑥𝑦-plane of the hypercube with a horizontal step size of 𝑠 pixels.
After reaching the right image boundary, the window is moved 𝑡 pixels down and repositioned
at the left edge of the image. For each point spectrum within a window region, a similarity
score is calculated by comparing it to the hypercube’s averaged spectrum I* using the SID-
SAM similarity measure [31]. In doing so, only those spectra are merged that exhibit a high
similarity to I* and thus contribute comparatively little to the hypercube’s entropy. SSSW can
be used with all types of hyperspectral data cubes regardless of the window size, since the
median spectrum I* does always exist. The similarity matrix R𝑦×𝑥 stores the SID-SAM score
for each point spectrum. An entry of R is small if the associated point spectrum is similar to
I*. Afterwards, the matrix R is subdivided into the original 𝑠× 𝑡 wide window regions. The
SID-SAM values inside these smaller matrices are averaged to obtain a single similarity measure
tied to a specific image area. Subsequently, all averaged SID-SAM values are associated with
their corresponding point spectra in the 𝑥𝑦-plane of the hypercube. In doing so, a maximum of
𝑢 = (⌊𝑦/𝑠⌋+1) · (⌊𝑥/𝑡⌋+1) non-overlapping image regions are considered for spatial binning.
After sorting the averaged SID-SAM values in ascending order, the point spectra eligible for
merging are determined through the use of a user defined percentile 𝜃 ∈ [0, 1]. In this case, it is
sufficient to associate the smallest ⌊𝜃 · 𝑢⌋ SID-SAM values with their corresponding window
regions and merge the contained spectra by spectral averaging. The storage gain 𝐺SSSW achieved
by the SSSW algorithm increases with the window size 𝑠 × 𝑡 and the percentile 𝜃 used for
binning: 𝐺SSSW ≈ ⌊𝜃 · 𝑢⌋ · (𝑠 · 𝑡 − 1) · 𝑧 · 𝑘 bits. The value 𝑘 represents the constant storage
size of an intensity value in bits. Strictly speaking, this storage gain calculation is rather an
approximation, since the sliding window procedure will generate irregular window sizes if either
the image width or height is not a multiple of 𝑠 or 𝑡 respectively. Finally, since merging multiple
point spectra creates gaps in the original data cube, a compression is performed by densely
rearranging the binned point spectra resulting in different output dimensions. This procedure
has the disadvantage of separating spatial features in the 𝑥𝑦-plane of the hypercube.

3.2. Preprocessing Pipelines

The combinatorial complexity associated with instantiating various alternative preprocessing
pipelines is significantly reduced by using the fixed order of the individual preprocessing steps
depicted in Figure 1. The number of eligible pipeline combinations is further limited by purposely
leaving out MSC, since the linearly related SNV [32] is faster to compute. Furthermore, due to
the absence of a reference spectrum, there are no advantages justifying the use of MSC in this
paper. Additional pipeline combinations are eliminated by always applying SDT and SDF at the
beginning of each preprocessing pipeline. This results in the generated pipelines differing only
in their preprocessing algorithms for outlier detection, noise reduction, and dimension reduction
(see Figure 2). The input and output degrees of all inner nodes of this graph are initially identical
by definition, since each node produces an output and passes it as input to all descendant nodes.
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SDT

SDF

SOS RXD

MNF Wt

SNV

SRD PCA SSSW

SGF

COPOD

Figure 2: Preprocessing pipelines with
algorithms from Table 1.

For reasons of clarity, the three outgoing edges of each
noise reduction node (MNF, Wt, SGF) in Figure 2 are
merged into a single edge. The same applies to the out-
going edges of the SNV node. The number of pipelines
constructed in this way can be determined by counting
all possible paths from the root (SDT) to the leaf nodes
(SRD, PCA, SSSW) of the graph. Since preprocessing
steps with only one algorithm do not create additional
pipelines, only three of the six preprocessing steps have
to be considered with three alternatives each. Therefore,
the graph shown in Figure 2 produces a total of 33 = 27
different pipeline combinations.

3.3. Reference Dataset

The raw dataset used in this paper consists of hyperspectral images depicting a total of 728 clean
potatoes, which were manually acquired using a Helios Core 0.9-1.7 XF-PA100 240×320/CII/H330
line scan camera. Table 2 includes 18 more potatoes for a grand total of 746 since some potatoes
are annotated with multiple classes. During dataset creation, samples annotated with multiple
classes are duplicated to each assigned quality class. To avoid methodological errors in training
and evaluation, potatoes with multiple defect classes are not included in the contiguous reference
dataset. Additionally, the raw dataset is restricted to the four largest defect classes from Table 2
to ensure the availability of sufficient test spectra during evaluation. These measures reduce the
size of the raw dataset from 728 to initially 622 and after deduplication to finally 606 potatoes
with an average of approximately 13 700 point spectra each.

Table 2
Quality classes of the hyperspectral potato dataset.

# Quality class Quantity Σ # Quality class Quantity Σ
1 green 264

622

7 growth deformity 17

1242 dry rot 171 8 blue spots 17
3 no defect 117 9 withered 14
4 growth crack 70 10 wet rot 9
5 mechanical damage 43 Total 7466 scab 24

3.4. Dataset Contamination

The spectra of the reference dataset are artificially contaminated with varying amounts of noise
to investigate the effectiveness of different preprocessing pipelines. This procedure became
necessary due to an unknown amount of in-camera preprocessing that was applied to the raw
sensor data at acquisition time. Contamination is performed in three stages using additive and
multiplicative scattering effects, Gaussian noise, spike points and dead pixels. Table 3 quantifies
the degree of artificial contamination for all three contamination levels using statistical indicators
applied to the whole set of intensity values contained within each dataset.
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Table 3: Statistical characteristics of the
three contamination levels.

Contam. Avg. SD (𝜎) Var. (𝜎2)
low 0.374 0.241 0.058
medium 0.353 0.246 0.061
high 0.333 0.256 0.066

The strength of additive and multiplicative scat-
tering effects is dynamically calculated as a func-
tion of contamination level and applied to random
spectra of a fixed user-defined percentile (24 %). As
with the other types of contamination, the spectra
are increasingly influenced by additive and mul-
tiplicative scattering effects at higher contamination levels. Additive scattering effects can
manifest themselves not only in a positive but also negative shift of intensity values. In contrast
to additive influences, multiplicative scattering affects the slopes within a spectrum’s wavelength
profile. In this paper, this phenomenon is simulated by multiplying a spectrum with by factor
between 0.5 and 0.9. This ensures that the intensity values of the spectrum are not shifted out of
their normalized range of values [0,1]. Since multiplying a spectrum by a number close to one
has little effect on its slopes, the highest scaling factor is used at the lowest contamination level.
Gaussian noise is applied to every sample with increasing variance at higher contamination
levels (0.0004, 0.0012, 0.0020). Simulation of both spike points (max. 1.5 %) and defect pixels
(max. 2.4 %) is implemented by randomly setting maximum (1) or minimum (0) intensity values.
The influence of defect pixels is simulated within the 𝑖-th band B𝜆𝑖

∈ R𝑦×𝑥 by randomly
replacing columns, such that they consist either of the minimum or maximum value 0,1 ∈ R𝑦 ,
respectively.

3.5. Classification of Preprocessed Datasets

3.5.1. Dataset Sampling

Sampling of both the reference dataset and the three contaminated datasets is performed using a
special sampling method that guarantees the spatial disjointness of training, test, and validation
spectra. The purpose of this sampling procedure is to separate the point spectra of a spatially
contiguous dataset in such a way that no two spectra of the same potato appear in more than
one of the three dataset splits. The developed sampling strategy achieves this by dividing the
ground truth mask of the reference dataset into three overlap-free regions (see Figure 3). This
trisection is performed along the horizontal axis of the contiguous hypercube, since a vertical
decomposition could result in a class imbalance within the partial datasets. The reason for this
is that the potatoes inside the contiguous hypercube are sorted according to their size in order
to save space by reducing the amount of empty background voxels. However, in our dataset,
green potatoes were on average significantly smaller than potatoes of other quality classes and
therefore located in the lower third of the ground truth mask. Performing vertical partitioning
along the horizontal axis showed an improvement in the distribution of potato sizes and classes
in each dataset split.

Figure 3: Sampling of training, testing, and validation data from three non-overlapping regions.
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3.5.2. Network Architecture Selection

Classification of the contaminated datasets as well as those cleaned by the preprocessing pipelines
is performed using the DeepHyperX toolbox [19, 20]. For the selection of a suitable classifier, the
reference dataset consisting of 8.3 million point spectra is limited to a training and test dataset
of 200 000 spectra each. The training is monitored with a validation split of 20 000 spectra. The
goal of these initial training runs is to determine a neural network architecture that has a low
training duration with comparatively high accuracy. Excessively long training durations are
unacceptable from a practical point of view, since up to 45 training and testing iterations must be
performed with the pipelines constructed in Section 3.2. The seven neural network architectures
evaluated in advance to this paper are part of the DeepHyperX toolbox and trained in six epochs
with a batch size of 100. Other settings and hyperparameters like learning rate, its scheduler,
optimizer and loss function are left at their defaults. All training runs are performed on two Tesla
V100 graphics cards of an NVIDIA DGX Station. The comparatively low amount of training
spectra is due to the long training duration (4 h 20 min) of the best performing CNN architecture
developed by Sharma et al. (see Table 4).

Table 4
Classification accuracies and training durations of a hyperspectral CNN (sharma) and multilayer per-
ceptron (nn) on spectra of the reference dataset.

Arch. Train loss Val. acc. Test acc. Train 𝑡 Test 𝑡
sharma [21] 0.228 59.7 % 64.7 % 4:20:08 0:14:57

nn [19] 0.999 49.4 % 52.8 % 0:02:26 0:06:51

Due to the long training duration of the sharma architecture, the second ranked nn archi-
tecture is chosen as the classifier to evaluate the performance of the different preprocessing
pipelines, serving as a prototypical instance towards more advanced architectures. The nn
architecture is not a convolutional neural network, but rather a simple multilayer perceptron
(MLP) consisting of only four fully connected layers, each with 2048 neurons.

4. Results

4.1. Experimental Setup

The nn architecture is trained on approximately 4.5 million spectra from each of the contaminated
datasets in 12 epochs with a batch size of 100. Training is monitored at each epoch with
approximately 225 000 validation spectra while the learning rate is dynamically adjusted by
the ReduceLROnPlateau scheduler. Cross entropy is used as the loss function in conjunction
with the Adam optimizer. As a regularization mechanism, Dropout is applied with a dropout
probability of 𝑝 = 0.5. The evaluation of a trained model is performed on approximately 900 000
test spectra. Since the training, test, and validation datasets are created using the spatially
disjoint sampling method from Section 3.5.1, no spectra from the same potato can appear in both
the training and test datasets. The computed performance metric is the classification accuracy
of each model on its respective test dataset.
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4.2. Reference Dataset

The nn classifier trained on the reference dataset achieves an accuracy of 53.61 % on the first
four defect classes (cf. Table 2), which is used as a baseline for performance comparison below.

4.3. Contaminated Datasets

As expected, the classification accuracy of the nn architecture decreases monotonically but
not uniformly as the contamination level of the dataset increases. A test accuracy of 40.77 %
was reported for low, 37.53 % for medium and 36.36 % for high contamination. The observed
degradation spans 4.41 %, with a gap of 3.24 % from second to first place. This difference is
almost three times larger than from third to second rank (1.17 %). Compared to the classification
results obtained from the reference dataset, the nn architecture exhibits a drop in test accuracy
of 12.84 % at low contamination. Hence, the generalization ability of the nn architecture is found
to be significantly weaker on the contaminated datasets.

4.4. Preprocessed Datasets

The classification results listed in Tables 5 and 7 correspond to the pipeline combinations implied
by Figure 2. Also, the 36 rows of the first table together with the 9 rows of the second table
constitute the 45 preprocessing runs mentioned in section 3.5.2. Before analyzing the reported
classification accuracies, it is important to note that the tables presented in this section do not
explicitly list the first two preprocessing algorithms dealing with dead pixel (SDT) and spike
detection (SDF). As mentioned in Section 3.2, these procedures are always applied in this order
at the beginning of each preprocessing pipeline, such that they are omitted for better readability
of the tabular listings. Table 6 quantifies the performance differential between the various
dimensionality reduction techniques observed in Table 7. The left half of this listing includes
the mean classification accuracies of the first 19 pipeline combinations using spectral binning,
which are grouped by their respective contamination level and sorted by test accuracy. This
ordering also applies to the right half of Table 6, which summarizes the same metrics for the last
17 pipelines using PCA for dimensionality reduction. Table 7 reports the classification results of
those preprocessing pipelines that discard the spatial features of their inputs. This is because,
unlike in Table 5, outliers are detected using the COPOD algorithm and dimensionality reduction
is performed through spatial (SSSW) rather than spectral binning (SRD). This leads to a new
peak classification accuracy of 44.52 %, i. e., 1.81 % higher than reported in Table 5.

4.5. Discussion

The classification results listed in Table 5 show a clear dichotomy in their final processing step.
The first 19 pipelines largely perform spectral binning as their dimensionality reduction, whereas
the last 17 pipelines apply PCA. All pipeline combinations in the upper half of Table 5 (rows 1 to
19) were able to improve the classifiability of datasets with medium and high contamination
levels. None of the last 17 pipelines succeeded in achieving the same objective. The pipelines
which showed the largest improvement in classifiability of their cleaned datasets are located in
the first two rows of Table 5 (+6.35 %, +5.03 %).

9



Andreas Schliebitz et al. CEUR Workshop Proceedings 1–15

Table 5
Classification results of preprocessed datasets with retained spatial features.

# Contam. SOS RXD SGF Wt MNF SNV PCA SRD Test acc.
1 high – � – – � � – � 42.71 %
2 medium � – – – � � – � 42.56 %
3 high � – – – � � – � 40.74 %
4 medium – � – – � � – � 40.68 %
5 low � – – – � � – � 39.71 %
6 low � – � – – � – � 39.64 %
7 low – � – – � � – � 39.56 %
8 medium – � � – – � – � 39.53 %
9 low – � � – – � – � 39.39 %
10 low – � – � – � – � 38.79 %
11 high � – � – – � – � 38.71 %
12 low � – – � – � – � 38.62 %
13 medium – � – – � � � – 38.49 %
14 high – � – � – � – � 38.43 %
15 medium � – � – – � – � 38.32 %
16 high � – – � – � – � 38.13 %
17 medium – � – � – � – � 38.10 %
18 medium � – – � – � – � 37.88 %
19 high – � � – – � – � 37.64 %
20 low – � – – � � � – 35.59 %
21 low � – – – � � � – 35.45 %
22 medium � – – – � � � – 35.24 %
23 high � – – � – � � – 35.08 %
24 medium � – – � – � � – 34.25 %
25 high – � – � – � � – 33.71 %
26 low � – – � – � � – 33.20 %
27 low – � – � – � � – 32.91 %
28 high � – – – � � � – 32.41 %
29 high � – � – – � � – 32.32 %
30 medium – � – � – � � – 32.11 %
31 high – � – – � � � – 31.92 %
32 low � – � – – � � – 30.91 %
33 high – � � – – � � – 30.67 %
34 low – � � – – � � – 30.30 %
35 medium � – � – – � � – 30.25 %
36 medium – � � – – � � – 29.10 %

Table 6
Mean test accuracies and their changes related to the first 19 and last 17 pipelines from Table 5.

# Contam. ∅ Test acc. Δ Acc. (Sec. 4.3) # Contam. ∅ Test acc. Δ Acc. (Sec. 4.3)
1 high 39.39 % +3.03 % 1 low 33.06 % -7.71 %
2 medium 39.37 % +1.48 % 2 high 32.69 % -3.67 %
3 low 39.29 % -1.48 % 3 medium 32.19 % -5.34 %

By examining the actual dimensionality reductions performed in Table 5, we observe that the
highest ranked pipeline (42.71 % acc.) uses spectral binning to perform an average dimensionality
reduction of 81 bands per sample. After replacing the spectral binning with PCA, the test accuracy
drops by 10.79 % to 31.92 % (rank 31). The dimensionality reduction carried out by the PCA
decreases the average depth of the respective dataset from 252 to only 3 bands. Based on
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Table 7
Classification results of preprocessed datasets with discarded spatial features.

# Contam. COPOD SGF Wt MNF SNV SSSW Test acc.
1 low � � – – � � 44.52 %
2 high � – – � � � 42.40 %
3 medium � � – – � � 42.35 %
4 medium � – – � � � 41.39 %
5 high � � – – � � 40.89 %
6 low � – � – � � 38.62 %
7 high � – � – � � 35.78 %
8 medium � – � – � � 35.41 %
9 low � – – � � � 34.64 %

this observation, it can be concluded that a drastic dimensionality reduction using PCA can
have detrimental effects on the classifiability of hyperspectral datasets. This claim is further
substantiated by rows 20 to 36 of Table 5. For reference, the PCA carried out in this paper was
set to obtain 99.8 % of a sample’s variance.

In Table 6, we observe that the contamination levels are reversed in comparison to the classifi-
cation results of the contaminated datasets (see Section 4.3). On average the best improvements
in test accuracy can be obtained on the most contaminated datasets (+3.03 %). Our experiments
indicate, that preprocessing datasets with low contamination levels may even lead to a deteriora-
tion of their classifiability (∅ -1.48 %). In our tests, this observation holds true for each individual
pipeline applied to a dataset with low contamination. The best classification result of a lightly
contaminated dataset is 39.71 % (rank 5) behind two more contaminated datasets. The second
half of the table shows the negative impact of PCA on the classification results. The greatest
losses occur for datasets of the lowest contamination level, whose test accuracy decreases by
7.71 % on average. In second place are the most contaminated datasets, whose mean classification
accuracy is least affected by PCA (-3.67 %). Regarding noise reduction, the first five rows of
Table 5 indicate that the MNF algorithm is superior to SGF and Wt. This coincides with both
the visual appearance of the denoised samples and the fact that MNF was specifically designed
for hyperspectral noise reduction. Even the popular Savitzky-Golay filter, which seems to work
well with the Reed-Xiaoli detector, cannot outperform MNF. In terms of outlier detection, the
combinations of SOS and MNF (3) and RXD and MNF (2) occur almost equally often in the Top-6
results of Table 5. However, the highest ranked preprocessing pipeline uses RXD rather than SOS
for outlier detection. The importance of RXD increases after the rankings are extending to the
first eleven results, where RXD is used by six pipelines and SOS only by five. In the lower half of
Table 5 we observe that SGF performs poorly in conjunction with PCA, whereas the wavelet
transform appears to be more robust. Similar advantages emerge in the midfield, where wavelet
filtering is on par with SGF and even outperforms on datasets with higher contamination levels.

Overall, the best classification accuracy is achieved by a pipeline which discards features in the
spatial-temporal domain (see Table 7). This pipeline preprocesses a dataset of low contamination
– classified with an accuracy of 44.52 %. This result is 1.81 % higher than the previous peak of
42.71 % (see Table 5). The second best accuracy was previously obtained by a combination of RXD,
MNF and spectral binning. For the results shown in Table 7, there is no superior method for noise
reduction in the context of COPOD and spatial binning. Both MNF and SGF show promising
results in spectral and spatial smoothing, while wavelet transform clearly underperforms.
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5. Conclusions

This paper considered classification methods on hyperspectral image data, specially present-
ing novel preprocessing methods, which were integrated into a comprehensive preprocessing
pipeline. We performed an analysis of multiple preprocessing pipelines in the context of image
classification, in order to analyze which preprocessing algorithms perform best.

Our results indicate that dimensionality reduction using principal component analysis can
potentially have negative effects on the classifiability of hyperspectral data. Furthermore, both
the Reed-Xiaoli detector and the MNF transform are preferable as dedicated hyperspectral
preprocessing algorithms to general-purpose methods such as SOS or wavelet filtering. The
Savitzky-Golay filter, widely used in signal processing, can also be used successfully for smooth-
ing noisy spectra. The results obtained with this method can be considered satisfactory as long
as no dimensional reduction is performed with PCA. For this reason, it is recommended that
dimensionality reduction should be removed from a preprocessing pipeline and not applied
across the board to all samples. If data reduction is still required, then the less invasive but
also less effective methods of spatial and spectral binning can be used as an alternative to PCA.
Furthermore, a step-by-step calculation of the results listed in the Table 5 and 7 showed that
shorter pipelines correlate with better classification results. Therefore, preprocessing pipelines
should contain as few algorithms as possible, focusing on those that are tailored to the type of
contamination at hand. In order to determine which preprocessing steps are really useful, an
examination of the contaminated dataset is recommended.

In our experimentation, advantages in favoring preprocessing pipelines that preserve spatial
features were not observed in terms of classification accuracy using a multilayer perceptron.
However, it can be conjectured that convolutional neural networks can extract generalizable
features from coherent spatio-temporal regions, which is supported by the results shown in
Table 4.
In summary, for classifying hyperspectral image data we recommend the following strategies:

1. The preprocessing algorithms should be as domain-specific as possible.
2. A minimal number of pre-processing algorithms should be used.
3. The preprocessing algorithms should address the specific impurities of the dataset.
4. The algorithms should be carefully parameterized and arranged according to Figure 1.
5. For further classification, a CNN designed for hyperspectral data should be used.

For future work, we aim to extend the analysis of the applied neural network architectures. Also,
for explainability and interpretability of the applied method [33, 34, 35, 36] both specialized
preprocessing approaches as well as respective feature generation, e. g., using declarative or
neuro-symbolic techniques [37, 38, 39] provide interesting directions for future research.

Acknowledgments

This work was partly funded by the German Federal Ministry of Economics and Climate Protec-
tion as part of the research project Agri-Gaia under grant number 01MK21004G.

12



Andreas Schliebitz et al. CEUR Workshop Proceedings 1–15

References

[1] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J. Cai,
et al., Recent advances in convolutional neural networks, Pattern recognition 77 (2018)
354–377. doi:10.1016/j.patcog.2017.10.013.

[2] A. Khan, A. Sohail, U. Zahoora, A. S. Qureshi, A survey of the recent architectures of
deep convolutional neural networks, Artificial Intelligence Review 53 (2020) 5455–5516.
doi:10.1007/s10462-020-09825-6.

[3] D. Hemanth, V. Estrela, Deep Learning for Image Processing Applications, Advances in
Parallel Computing, IOS Press, 2017.

[4] L. Jiao, J. Zhao, A Survey on the New Generation of Deep Learning in Image Processing,
IEEE Access 7 (2019) 172231–172263. doi:10.1109/ACCESS.2019.2956508.

[5] S. E. Whang, J.-G. Lee, Data collection and quality challenges for deep learning, Proceedings
of the VLDB Endowment 13 (2020) 3429–3432. doi:10.14778/3415478.3415562.

[6] S. E. Whang, Y. Roh, H. Song, J.-G. Lee, Data collection and quality challenges in deep
learning: A data-centric ai perspective, The VLDB Journal 32 (2023) 791–813. doi:10.1007/
s00778-022-00775-9.

[7] A. Plaza, J. A. Benediktsson, J. W. Boardman, J. Brazile, L. Bruzzone, G. Camps-Valls,
J. Chanussot, M. Fauvel, P. Gamba, A. Gualtieri, et al., Recent advances in techniques for
hyperspectral image processing, Remote sensing of environment 113 (2009) S110–S122.
doi:10.1016/j.rse.2007.07.028.

[8] M. Manley, Near-infrared spectroscopy and hyperspectral imaging: non-destructive analy-
sis of biological materials, Chemical Society Reviews 43 (2014) 8200–8214. doi:10.1039/
c4cs00062e.

[9] J. M. Amigo, I. Martí, A. Gowen, Hyperspectral Imaging and Chemometrics: A Perfect
Combination for the Analysis of Food Structure, Composition and Quality, in: Data
handling in science and technology, volume 28, Elsevier, 2013, pp. 343–370. doi:10.1016/
B978-0-444-59528-7.00009-0.

[10] B. Boldrini, W. Kessler, K. Rebner, R. Kessler, Hyperspectral Imaging: A Review of Best
Practice, Performance and Pitfalls for in-line and on-line Applications, Journal of Near
Infrared Spectroscopy 20 (2012) 438–508. doi:10.1255/jnirs.1003.

[11] M. Vidal, J. M. Amigo, Pre-processing of hyperspectral images. essential steps before
image analysis, Chemometrics and Intelligent Laboratory Systems 117 (2012) 138–148.
doi:10.1016/j.chemolab.2012.05.009.

[12] L. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, J. Fernández Pierna, Hyper-
spectral Imaging Applications in Agriculture and Agro-Food Product Quality and Safety
Control: A Review, Applied Spectroscopy Reviews 48 (2013) 142. doi:10.1080/05704928.
2012.705800.

[13] C. Wang, B. Liu, L. Liu, Y. Zhu, J. Hou, P. Liu, X. Li, A review of deep learning used in
the hyperspectral image analysis for agriculture, Artificial Intelligence Review 54 (2021)
5205–5253. doi:10.1007/s10462-021-10018-y.

[14] A. Schliebitz, H. Graf, T. Wamhof, H. Tapken, A. Gertzen, KI-basiertes Computer-Vision-
System zur Qualitäts- und Größenbestimmung von Kartoffeln, 43. GIL-Jahrestagung,
Resiliente Agri-Food-Systeme (2023).

13

http://dx.doi.org/10.1016/j.patcog.2017.10.013
http://dx.doi.org/10.1007/s10462-020-09825-6
http://dx.doi.org/10.1109/ACCESS.2019.2956508
http://dx.doi.org/10.14778/3415478.3415562
http://dx.doi.org/10.1007/s00778-022-00775-9
http://dx.doi.org/10.1007/s00778-022-00775-9
http://dx.doi.org/10.1016/j.rse.2007.07.028
http://dx.doi.org/10.1039/c4cs00062e
http://dx.doi.org/10.1039/c4cs00062e
http://dx.doi.org/10.1016/B978-0-444-59528-7.00009-0
http://dx.doi.org/10.1016/B978-0-444-59528-7.00009-0
http://dx.doi.org/10.1255/jnirs.1003
http://dx.doi.org/10.1016/j.chemolab.2012.05.009
http://dx.doi.org/10.1080/05704928.2012.705800
http://dx.doi.org/10.1080/05704928.2012.705800
http://dx.doi.org/10.1007/s10462-021-10018-y


Andreas Schliebitz et al. CEUR Workshop Proceedings 1–15

[15] D. Pelliccia, Two scatter correction techniques for NIR spec-
troscopy in Python, Online, 2018. URL: https://nirpyresearch.com/
two-scatter-correction-techniques-nir-spectroscopy-python/, retrieved: 2023-07-15.

[16] J. M. Amigo, H. Babamoradi, S. Elcoroaristizabal, Hyperspectral image analysis. A tutorial,
Analytica Chimica Acta 896 (2015) 34–51. doi:10.1016/j.aca.2015.09.030.

[17] G. Camps-Valls, L. Bruzzone, Kernel-based methods for hyperspectral image classification,
IEEE Transactions on Geoscience and Remote Sensing 43 (2005) 1351–1362. doi:10.1109/
TGRS.2005.846154.

[18] S. Yu, S. Jia, C. Xu, Convolutional neural networks for hyperspectral image classification,
Neurocomputing 219 (2017) 88–98. doi:10.1016/j.neucom.2016.09.010.

[19] N. Audebert, DeepHyperX, Online, 2018. URL: https://github.com/nshaud/DeepHyperX,
retrieved: 2023-07-15.

[20] N. Audebert, B. Le Saux, S. Lefèvre, Deep Learning for Classification of Hyperspectral Data:
A Comparative Review, IEEE Geoscience and Remote Sensing Magazine 7 (2019) 159–173.
doi:10.1109/MGRS.2019.2912563.

[21] V. Sharma, A. Diba, T. Tuytelaars, L. Van Gool, Hyperspectral CNN for Image Clas-
sification & Band Selection, with Application to Face Recognition, Technical report
KUL/ESAT/PSI/1604, KU Leuven, ESAT, Leuven, Belgium (2016).

[22] J. Janssens, Outlier Selection and One-Class Classification, Ph.D. thesis, 2013. Series: TiCC
Ph.D. Series Volume: 27.

[23] Z. Li, Y. Zhao, N. Botta, C. Ionescu, X. Hu, COPOD: Copula-Based Outlier Detection,
in: 2020 IEEE International Conference on Data Mining (ICDM), 2020, pp. 1118–1123.
doi:10.1109/ICDM50108.2020.00135.

[24] I. Reed, X. Yu, Adaptive multiple-band CFAR detection of an optical pattern with unknown
spectral distribution, IEEE Transactions on Acoustics, Speech, and Signal Processing 38
(1990) 1760–1770. doi:10.1109/29.60107.

[25] A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of Data by Simplified
Least Squares Procedures., Analytical Chemistry 36 (1964) 1627–1639. doi:10.1021/
ac60214a047.

[26] I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992. doi:10.1137/1.9781611970104.
[27] A. A. Green, M. Berman, P. Switzer, M. D. Craig, A Transformation for Ordering Mul-

tispectral Data in Terms of Image Quality with Implications for Noise Removal, IEEE
Transactions on geoscience and remote sensing 26 (1988) 65–74. doi:10.1109/36.3001.

[28] R. J. Barnes, M. S. Dhanoa, S. J. Lister, Correction to the Description of Standard Normal
Variate (SNV) and De-Trend (DT) Transformations, NIR news 5 (1994) 6–6. doi:10.1255/
jnirs.21.

[29] T. Isaksson, T. Næs, The Effect of Multiplicative Scatter Correction (MSC) and Linearity
Improvement in NIR Spectroscopy, Applied Spectroscopy 42 (1988) 1273–1284. doi:10.
1366/0003702884429869.

[30] K. Pearson, LIII. On lines and planes of closest fit to systems of points in space, The London,
Edinburgh, and Dublin philosophical magazine and journal of science 2 (1901) 559–572.
doi:10.1080/14786440109462720.

[31] Y. Du, C.-I. Chang, et al., New hyperspectral discrimination measure for spectral character-
ization, Optical engineering 43 (2004) 1777–1786. doi:10.1117/1.1766301.

14

https://nirpyresearch.com/two-scatter-correction-techniques-nir-spectroscopy-python/
https://nirpyresearch.com/two-scatter-correction-techniques-nir-spectroscopy-python/
http://dx.doi.org/10.1016/j.aca.2015.09.030
http://dx.doi.org/10.1109/TGRS.2005.846154
http://dx.doi.org/10.1109/TGRS.2005.846154
http://dx.doi.org/10.1016/j.neucom.2016.09.010
https://github.com/nshaud/DeepHyperX
http://dx.doi.org/10.1109/MGRS.2019.2912563
http://dx.doi.org/10.1109/ICDM50108.2020.00135
http://dx.doi.org/10.1109/29.60107
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1137/1.9781611970104
http://dx.doi.org/10.1109/36.3001
http://dx.doi.org/10.1255/jnirs.21
http://dx.doi.org/10.1255/jnirs.21
http://dx.doi.org/10.1366/0003702884429869
http://dx.doi.org/10.1366/0003702884429869
http://dx.doi.org/10.1080/14786440109462720
http://dx.doi.org/10.1117/1.1766301


Andreas Schliebitz et al. CEUR Workshop Proceedings 1–15

[32] M. S. Dhanoa, S. J. Lister, R. Sanderson, R. J. Barnes, The Link between Multiplicative
Scatter Correction (MSC) and Standard Normal Variate (SNV) Transformations of NIR
Spectra, J. Near Infrared Spectrosc. 2 (1994) 43–47. doi:10.1255/jnirs.30.

[33] O. Biran, C. Cotton, Explanation and Justification in Machine Learning: A Survey, in:
IJCAI-17 Workshop on Explainable AI, 2017.

[34] A. Barredo Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado,
S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins, R. Chatila, F. Herrera, Explainable Artificial
Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible
AI, Information Fusion 58 (2020) 82 – 115. doi:10.1016/j.inffus.2019.12.012.

[35] L. Bertossi, F. Geerts, Data quality and explainable AI, Journal of Data and Information
Quality (JDIQ) 12 (2020) 1–9. doi:10.1145/3386687.

[36] S. Vollert, M. Atzmueller, A. Theissler, Interpretable Machine Learning: A Brief Survey
From the Predictive Maintenance Perspective, in: Proc. IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA 2021), IEEE, 2021. doi:10.1109/
ETFA45728.2021.9613467.

[37] M. Atzmueller, Declarative Aspects in Explicative Data Mining for Computational
Sensemaking, in: D. Seipel, M. Hanus, S. Abreu (Eds.), Proc. International Confer-
ence on Declarative Programming, Springer, Heidelberg, Germany, 2018, pp. 97–114.
doi:10.1007/978-3-030-00801-7_7.

[38] A. Holzinger, From machine learning to explainable AI, in: 2018 world symposium on
digital intelligence for systems and machines (DISA), IEEE, 2018, pp. 55–66. doi:10.1109/
DISA.2018.8490530.

[39] T. Wu, M. Tjandrasuwita, Z. Wu, X. Yang, K. Liu, R. Sosic, J. Leskovec, ZeroC: A Neuro-
Symbolic Model for Zero-shot Concept Recognition and Acquisition at Inference Time,
Advances in Neural Information Processing Systems 35 (2022) 9828–9840. doi:10.48550/
arXiv.2206.15049.

15

http://dx.doi.org/10.1255/jnirs.30
http://dx.doi.org/10.1016/j.inffus.2019.12.012
http://dx.doi.org/10.1145/3386687
http://dx.doi.org/10.1109/ETFA45728.2021.9613467
http://dx.doi.org/10.1109/ETFA45728.2021.9613467
http://dx.doi.org/10.1007/978-3-030-00801-7_7
http://dx.doi.org/10.1109/DISA.2018.8490530
http://dx.doi.org/10.1109/DISA.2018.8490530
http://dx.doi.org/10.48550/arXiv.2206.15049
http://dx.doi.org/10.48550/arXiv.2206.15049

	1 Introduction
	2 Related Work
	3 Methods
	3.1 Methods for Dimensionality Reduction
	3.1.1 Spectral Binning using Self-Reference Deviation (SRD)
	3.1.2 Spatial Binning using a SID-SAM Sliding Window (SSSW)

	3.2 Preprocessing Pipelines
	3.3 Reference Dataset
	3.4 Dataset Contamination
	3.5 Classification of Preprocessed Datasets
	3.5.1 Dataset Sampling
	3.5.2 Network Architecture Selection


	4 Results
	4.1 Experimental Setup
	4.2 Reference Dataset
	4.3 Contaminated Datasets
	4.4 Preprocessed Datasets
	4.5 Discussion

	5 Conclusions

