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Abstract
Training acting agents for the goal of controlling complex live systems on the system itself is often an
unfeasible task, either due to the high cost or the potential dangers that might arise. In this paper, we
take a step towards identifying ways to evaluate the transferability of models for the class of constrained
Reinforcement Learning problems. Furthermore, we present an approach based on free-energy advantage
functions to improve adaptability and in turn transferability for constrained Reinforcement Learning
problems and subsequently manage to increase the performance of a baseline algorithm, CPO, with
regard to safety constraints in noisy environments.
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1. Introduction

AI systems can have significant real-world impact, and if not designed and deployed with safety
in mind, they can cause harm to individuals, organizations, or society as a whole. Ensuring
safety is crucial to prevent accidents, unintended consequences, or malicious uses of AI. When
deploying trained models to large-scale industrial applications, unstable live systems can cause
damage of economic or other nature. Because of the high complexity, cost, and potential danger
of training live systems from scratch, usually, these models are trained on historical or simulation
data, which may or may not accurately reflect the actual use case environment. Specifically,
in some instances, knowledge of the actual environment dynamics is only partially available,
and algorithms need to be able to handle situations where there is a degree of uncertainty.
Classically, in control environments, robustness can be achieved with Model Predictive Control
approaches ([1]) when plant dynamics are known.
Reinforcement Learning (RL) is a machine learning paradigm that includes a variety of

algorithmic approaches, foremost in sequential decision-making environments. Recently, RL
has become a promising way to solve sequential decision-making tasks such as in marketing,
gaming, and control tasks, such as robotics and autonomous cars, where the aspect of safety
and trustworthiness in the agent is an important factor.
We argue that in real-world applications that require safety guarantees, RL methods that

transfer well could improve upon satisfying certain thresholds.
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Transfer learning is an established concept in areas such as image classification and natural
language processing ([2]), with the goal of reducing training time for Machine Learning models
and improving their performance. In this paper, we first give an overview of how Transfer
Learning is interpreted in Reinforcement Learning and discuss the benefit of transferability in
constrained Reinforcement Learning. Our contribution in this paper can be stated as such:

• We propose criteria to evaluate policy transfer in constrained RL.
• We present a method for improving performance regarding safety after transferring
pre-trained policies to a noisy environment through the use of free-energy advantage
functions.

2. Background and Related Work

In this section, we will introduce the mathematical framework for the problem setting.

2.1. Reinforcement Learning

Reinforcement Learning problems can typically be modeled with the help of a Markov Decision
Process (MDP)𝑀 = (𝑆, 𝐴, 𝑇 , 𝛾 , 𝑅)with a state space 𝑆, an action space 𝐴, a transition probability
function 𝑇 ∶ 𝑆 ×𝐴 × 𝑆 → [0, 1], a discount factor 𝛾 ∈ [0, 1] and a reward function 𝑅 ∶ 𝑆 ×𝐴 → ℝ.
To extend this to safety critical problems, one possibility is to introduce a constraint cost

function 𝐶 ∶ 𝑆 × 𝐴 → ℝ analogue to the reward function and a safety threshold 𝑐 ∈ ℝ. We
define a Constrained Markov Decision Process (from now on referred to as CMDP) 𝑀𝐶 =
(𝑆, 𝐴, 𝑇 , 𝛾 , 𝑅, 𝐶, 𝑐). We can calculate a weighted return value for constrained problems with
𝐽𝐶(𝜋) = 𝔼

𝜏∼𝜋
[∑∞

𝑡=0 𝛾 𝑡𝐶(𝑠𝑡, 𝑎𝑡)] of a policy 𝜋 ∶ 𝑆 → 𝐴 with 𝜋 ∈ Π for the set of all policies Π and a
trajectory 𝜏 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, … ).
Let Π𝐶 = {𝜋 ∈ Π ∶ 𝐽𝐶(𝜋) ≤ 𝑐} be the set of policies that satisfy the constraint 𝑐. Then we can
calculate the optimal policy 𝜋∗ = argmax

𝜋∈Π𝐶
𝐽 (𝜋).

In real-life applications of Reinforcement Learning, environment dynamics, especially state
transitions, can be unknown. Therefore, we introduce a generalization of the MDP model by
assuming transition probabilities 𝑇 ⋆𝑠,𝑎 ∈ Δ𝑆 for finite states and actions and probability simplex
Δ𝑆 ⊂ ℝ𝑆+. A common way to learn the objective under the assumption of unknown transition
probabilities is to maximize a lower bound on the return.

2.2. Transfer Learning in the Reinforcement Learning Context

In a mathematical sense, given a source domain 𝑀S and a target domain 𝑀T, Transfer Learning
(TL) is used to learn an optimal policy 𝜋∗ for 𝑀T by incorporating both external information
from the source ℐS and internal information ℐT gathered from 𝑀T. The optimal policy can
be written as 𝜋∗ = arg𝑚𝑎𝑥

𝜋
𝔼

𝑥∼𝜇𝑡,𝑎∼𝜋
[𝑄𝜋

𝑀(𝑥, 𝑎)] for initial set of states 𝜇. Taylor and Stone [3]

highlight the benefits of using transfer methods in RL tasks and categorize measurements as
such:



• Performance improvement of the initial policy by transferring an agent from a source
task to a target task.

• Performance improvement of the final learned policy of an agent on a target task by
transferring.

• The gained total cumulative reward from a transfer strategy compared to a non-transfer
strategy.

• The ratio of the total reward accumulated by the transfer learner and the total reward
accumulated by the non-transfer learner.

• The reduction of learning time needed by the agent to achieve a pre-specified performance
level via knowledge transfer.

In literature ([4]) a variety of TL approaches that fall under this category, are mentioned:
In Imitation learning, the agent is trained to mimic a policy of a source policy, called the
expert. This is a way of training without having access to feedback from the environment. A
framework for Imitation Learning in partially-observable settings based on the Free-Energy
Principle has been proposed in [5]. In cases where the reward signal is available, Learning from
Demonstrations (LfD) is a possible way of training an agent. The way agents combine their
knowledge (inter-agent or intra-agent) in Cooperative Multi-Agent RL can also be described as
a form of TL.

In TL, domains can be described by MDPs, and any parts of it can have differences between
the source and target domain. Consider state spaces 𝑆S and 𝑆T. Any of these relations might be
true, depending on the problem: 𝑆S ⊂ 𝑆T, 𝑆S ≡ 𝑆T or 𝑆S ⊂ 𝑆T. Differences for the action spaces
𝐴S and 𝐴T are analogs. Since both state and action spaces can differ, reward functions can also
be defined differently for both domains. Ultimately, trajectories can differ for problems where
reaching a goal can be achieved differently (e.g., path-finding tasks).

This can be further extended to safety critical applications. Differing state spaces can be the
result of failed sensors, differing action spaces are the result of hard constraints implemented by
the system. Additionally, reward functions might yield different values in cases where sensors
supply noisy data. In the case of CMDPs, for similar reasons, differences can be found in both
constrained cost function and safety threshold.

On the topic of which kind of knowledge is transferable, we can define multiple forms. The
transfer of trajectories is the main subject of LfD. Furthermore, the transfer of model dynamics
is possible when an approximation by offline learning algorithms trained on historical data,
and before getting transferred to an online system, is feasible. Offline RL algorithms usually
mitigate the impact of the gap between real and estimated values by adding a pessimism factor
to these learned values ([6]) or learned dynamic models ([7]).
The transfer of policies has been discussed by [8]. They propose to extend the exploration-

exploitation choice with the option to reuse an older policy and consequently test the transfer
performance. Reward Shaping (as presented in [9]) speeds up the RL training process by guiding
the exploration process by transforming the reward function into a potential-based reward
function.
Transfer by starting from prior distributions has been explored by [10]. Instead of finding

trajectories that maximize expected rewards, inference formulations start from a prior distri-
bution over trajectories, condition the desired outcome, such as achieving a goal state, and



then estimate the posterior distribution over trajectories consistent with this outcome. Since
imitation learning provides a teacher policy to learn from, it interprets the teacher policy as a
prior policy distribution.

3. Using Free-Energy Priors to improve Robustness after Policy
Transfer

In real-world applications, such as robotics, it can be hard to separate signals from noise,
especially at the early stages after deploying a learned strategy. We consider a scenario where
there is a cost to receiving state data from an actor, e.g., sensor data from a robot’s joints. Since
we are considering the case of a SimToReal-transfer, we assume the existence of priors learned
from simulation interactions. In this section, we propose the use of an advantage function over
the simulation priors based on the free-energy principle to improve the agent’s robustness.

3.1. Free-Energy Functions

Free-energy functions are fundamental concepts in thermodynamics and statistical mechanics
that describe the energy available to do work in a system while accounting for both its internal
energy and its entropy.

3.2. Quanitifying the cost of Control

Rubin et al. [11] borrow the term to define free-energy functions in the RL context to derive
optimal policies and explore the tradeoff between value and control information. The idea
is that optimal policies reflect a balance between maximizing expected rewards (value) and
minimizing the information cost that comes with control.

With the help of information theory, we can quantify the expected cost of executing a policy

𝜋 in state 𝑠 ∈ 𝑆 as Δ𝐼 (𝑠) = ∑𝑎 𝜋T𝑠 (𝑎) log(
𝜋T𝑠 (𝑎)
𝜋S𝑠 (𝑎)

) with Δ𝐼 (𝑠𝑇) = 0 for a terminal state 𝑠𝑇. With this,

we are able to measure the relative entropy between the source policy 𝜋S and target policy
𝜋T. The source policy is used by the agent in the absence of information from its new noisy
environment. For any state 𝑠, Δ𝐼 (𝑠) describes the minimal number of bits required to describe
the outcome, or action sampled, of the random variable 𝑎 ∼ 𝜋T. In our case, it serves as a
measure for the cost of control. Similar to the value function 𝑉𝜋(𝑠0), we can define the total
control information involved in executing policy 𝜋 starting from the initial state 𝑠0:

𝐼𝜋(𝑠0) = lim
𝑇→∞

𝔼[Δ𝐼 (𝑠𝑡)]

= lim
𝑇→∞

𝔼[
𝑇−1
∑
𝑡=0

log
𝜋T𝑠𝑡 (𝑎𝑡)

𝜋S𝑠𝑡 (𝑎𝑡)
]

= lim
𝑇→∞

𝔼[ log
𝑃𝑟(𝑎0, 𝑎1, … , 𝑎𝑇−1|𝑠0, 𝜋T)
𝑃𝑟(𝑎0, 𝑎1, … , 𝑎𝑇−1|𝑠0, 𝜋S)

]

(1)

Here, the optimal target policy 𝜋∗,T should minimize the control information cost and at the
same time maximize the reward while respecting environmental constraints.



3.3. Optimization with constrained Policies

In safety-critical domains, RL optimization problems are typically subject to constraints. For a
distance measure 𝑑 ∶ Π × Π → ℝ and step size 𝛿, trust-region policy optimization algorithms
makes sure that the new policy is within a so-called trust region of the previous one: 𝜋𝑡+1 =
argmax

𝜋∈Π𝜃
𝐽 (𝜋) s.t. 𝐽𝐶(𝜋) ≤ 𝑐 and 𝑑(𝜋, 𝜋𝑡) ≤ 𝛿. Here, Π𝜃 ⊂ Π denotes a 𝜃-parameterized policy

subset that filters for relevant parameters. Trust region algorithms for reinforcement learning
([12, 13], such as CPO, have policy updates of the form

𝜋𝑘+1 = argmax
𝜋∈Π𝜃

𝔼𝑠∼𝑑𝜋𝑘 ,𝑎∼𝜋[𝐴𝜋𝑘(𝑠, 𝑎)],

s.t. 𝐷𝐾𝐿(𝜋‖𝜋𝑘) ≤ 𝛿
(2)

where 𝐷𝐾𝐿(𝜋||𝜋𝑘) = 𝔼𝑠∼𝑑𝜋𝑘[𝐷𝐾𝐿(𝜋‖𝜋𝑘)[𝑠]), and 𝛿 > 0 is the step size.
The advantage functions calculates the expected reward gain along a trajectory and is given

by:

𝐴𝜋(𝑠, 𝑎) = 𝑄𝜋(𝑠, 𝑎) − 𝑉 𝜋(𝑠)
= 𝔼𝜏∼𝜋[𝑅(𝜏)|𝑠0 = 𝑠, 𝑎0 = 𝑎] − 𝔼𝜏∼𝜋[𝑅(𝜏)|𝑠0 = 𝑠]

(3)

The trust region is then defined by the set {𝜋𝜃 ∈ Π𝜃 ∶ 𝐷𝐾𝐿(𝜋‖𝜋𝑘)}.
CPO solves the CMDP problem approximately by calculating the update

𝜋𝑘+1 = argmax
𝜋∈Π𝜃

𝔼𝑠∼𝑑𝜋𝑘 ,𝑎∼𝜋[𝐴𝜋𝑘(𝑠, 𝑎)]

s.t. 𝐽𝐶𝑖(𝜋𝑘) + 𝔼𝑠∼𝑑𝜋𝑘 ,𝑎∼𝜋 [
𝐴𝜋𝑘
𝐶𝑖 (𝑠, 𝑎)

1 − 𝛾
] ≤ 𝑐𝑖

𝐷𝐾𝐿(𝜋‖𝜋𝑘) ≤ 𝛿

(4)

3.4. Using Free-Energy Functions to improve Transferability

We aim to use a free-energy function to derive optimal policies while balancing the tradeoff
between value and information during exploring.
Early works ([14]) propose using advantage functions in noisy environments to mitigate

undesired approximation effects by reducing the action gap ([15]). We assume a stochastic prior
policy 𝜋S(𝑎|𝑠) from the source task. Fox et al ([16]) propose that we can measure the information

cost of a policy 𝜋T(𝑎|𝑠) with 𝑔𝜋
T
(𝑠, 𝑎) = log 𝜋T(𝑎|𝑠)

𝜋S(𝑎|𝑠) . The expected information cost of the target

policy 𝜋T can be written as 𝔼[𝑔𝜋
T
(𝑠𝑡, 𝑎𝑡|𝑠)] = 𝐷𝐾𝐿(𝜋T𝑠 ‖𝜋S𝑠 ). Considering the dynamics induced

by the transition probabilities 𝑇 (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) of the underlying MDP, we can now consider the
total discounted expected information cost for the target policy:

𝐼 𝜋
T
(𝑠) =

∞
∑
𝑡=0

𝛾 𝑡𝐷𝐾𝐿(𝜋T𝑠𝑡,𝑎𝑡‖𝜋
S
𝑠𝑡,𝑎𝑡). (5)

We define
𝐹𝜋

T
(𝑠, 𝑎) = 𝑉 𝜋T(𝑠) + 1

𝛽
𝐼 𝜋

T
(𝑠) (6)



as a 𝛽-weighted free-energy function with 𝛽 controlling the tradeoff between value and infor-
mation. From this we get a state-action free-energy function

𝐺𝜋T(𝑠, 𝑎) = 𝔼𝜃[𝑅|𝑠, 𝑎] + 𝛾𝔼𝑇[𝐹𝜋
T
(𝑠′)|𝑠, 𝑎]. (7)

Now, we define the free-energy advantage function as:

𝐵𝜋
T
(𝑠, 𝑎) = 𝐺𝜋T(𝑠, 𝑎) − 𝑉 𝜋T(𝑠)

= 𝔼𝜏∼𝜋T[𝐶(𝜏) +
𝛾
𝛽
𝑔𝜋

T
(𝑠𝑡+1, 𝑎𝑡+1)|𝑠0 = 𝑠, 𝑎0 = 𝑎] − 𝔼𝜏∼𝜋T[𝐶(𝜏)|𝑠0 = 𝑠]

(8)

Here, 𝐶(𝜏) represents the cumulative sum of constraint costs along the trajectory 𝜏.
Finally, we can calculate the free-energy advantage transfer policy update:

𝜋𝑘+1 = argmax
𝜋∈Π𝜃

𝔼𝑠∼𝑑𝜋𝑘 ,𝑎∼𝜋[𝐵𝜋𝑘(𝑠, 𝑎)]

s.t. 𝐽𝐶𝑖(𝜋𝑘) + 𝔼𝑠∼𝑑𝜋𝑘 ,𝑎∼𝜋 [
𝐵𝜋𝑘𝐶𝑖 (𝑠, 𝑎)

1 − 𝛾
] ≤ 𝑐𝑖

𝐷𝐾𝐿(𝜋‖𝜋𝑘) ≤ 𝛿

(9)

4. Results

In this section, we will present the evaluation framework, metrics and results.

4.1. Experiments

In this section we will first evaluate the performance of the Constrained Policy Optimization
algorithm [17] for constrained RL problems. CPO yields better performance on constrained
tasks than methods such as Trust Region Policy Optimization or Primal-Dual Optimization
([12, 18]). We conduct the experiments on an exemplary robotics learning task, specifically the
HalfCheetah environment within the MuJoCo1 physics engine embedded in OpenAI Gym2. The
HalfCheetah is a two-dimensional simulated robot with six controllable joints, as depicted in
figure 1. We use a continuous action space with 𝐴 = [−1, 1]6, where each entry of the action
vector represents the torque [Nm] applied to the respective motorized joint. The constraint is
placed on an angle, in which the HalfCheetah is considered to be fallen over and would not be
able to recover to a standing position without external help.

4.2. Evaluating Transferability for Safety-Critical Applications

For safety-critical applications at any scale, the best direct improvement of TL would generally
be starting from accurate prior distributions, because we can expect a reduced exploratory
period. While this is expected to reduce training time, prevention of constraint violations is

1https://github.com/openai/mujoco-py
2https://github.com/openai/gym



Figure 1: A rendering of the MuJoCo HalfCheetah environment in its initial state. Its controllable joints
are highlighted in red.

not necessarily guaranteed. Having reliable algorithms should also make it possible to train
an agent in a simulation and then transfer the model to safety-critical applications in the real
world without violating constraints imposed by the task. We, therefore, extend the list by the
following measurements:

• The ratio of total constraint cost accumulated by the transfer learner and total constraint
cost accumulated by the non-transfer learner or between different transfer learners.

• The sum of constraint violations committed by the transfer learner compared to the
non-transfer learner (or between multiple transfer learners) above a specified threshold.

Note that we hypothesize that measuring the robustness gained by simultaneously learning
system dynamics ([19]) could a valid metric, which we intend to examine in the future.

4.3. Evaluation

We hence compare the CPO algorithm with and without free-energy advantage policy transfer
(FEAT) on noisy environments with a noise factor 𝑈𝑗 ∼ 𝒩 (1, 𝜎) for every state variable index
𝑗 ∈ {1, … , |𝑠|} by evaluation the post-transfer performance according to the formerly proposed
criteria. In all experiments, we first pre-train an agent with an implementation of the CPO



algorithm in a simulated environment without noise for 2500 iterations. After the final iteration,
the agent is able to control the HalfCheetah at a satisfactory level.

4.3.1. Comparison of ratios of total constraint costs

Figure 2 shows the mean constraint costs over a post-transfer training process of 𝑇 = 1000
iterations. Our approach, CPO+FEAT (orange), manages to stay below the curve of the baseline
approach, CPO (green).

Figure 2: A comparison of mean constraint costs over 𝑇 = 1000 iterations between CPO (green) and
CPO with FEAT (orange) in a noisy environment with 𝜎 = 0.1.

4.3.2. Comparison of the sum of constraint violations

For the criterion of constraint violations, we define a constraint threshold 𝑐. Like above, we
train the agents for a total of 𝑇 = 1000 iterations. In a noisy environment with 𝜎 = 0.1, we
evaluate both agents with a strict safety threshold of 𝑐 = 0.02. Here, the value for 𝑐 means that
the HalfCheetah is not allowed to show signs of falling over. While CPO without FEAT violates
the threshold 7.2% of the time, CPO with added FEAT evaluates at only 3.5%.
For 𝜎 = 0.2, we chose a higher threshold of 𝑐 = 0.15 (the agent is allowed to appear unstable,
but is not allowed to fall over). CPO without FEAT violates the threshold in 86.7% of iterations,
while CPO with FEAT is significantly lower, with only 32.3% violations. Unfortunately, both
algorithms still lack the necessary robustness to guarantee safety for environments with higher
noise levels.

5. Conclusion and Future Work

In this paper, we highlighted how Transfer Learning can be interpreted in the context of con-
strained Reinforcement Learning and proposed a way that transferability can be evaluated. The
experiments indicate that our approach improves the transferability of policies for constrained
problems in the specific case of the Constrained Policy Optimization algorithm.



In the future, we aim to research further how this approach is applicable for similar policy
based RL algorithms and extended this to a more general case. Furthermore, to reflect real-world
problems more accurately, we plan to add further restrictions to the actor’s perception of the
environment, such as partial observability.
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