
Remote Clipboard Data In-Memory Attacks and Detection
Khaled Fawzy Mohamed, Nashwa AbdelBaki and Ahmed Shosha

Nile University, Cairo, Egypt

Abstract
The exchange of data using the clipboard feature between different applications and computers is a fundamental capability
provided by modern operating systems and remote access tools. However, it can be abused by cybercriminals and attackers to
obtain or manipulate sensitive data, such as passwords, secrets, and credential tokens. This research paper explores the various
types of attacks that can be executed on the clipboard, with particular emphasis on new attacks on shared clipboard data. The
investigation entails an in-depth examination of the interplay between the system clipboard and remote computers, including
those accessed through Virtualization applications and Remote Desktop Protocol (RDP) sessions. The study also proposes a
detection technique for identifying such attacks, which can be employed to distinguish between normal clipboard-sharing
actions and malicious clipboard data sniffing and manipulation. Our findings demonstrate that clipboard hijacking can be
accomplished remotely without the need to install malware on the victim’s device. These findings underscore the significance
of heightened awareness and security measures to thwart such attacks on shared clipboards. The attack can be successfully
executed on all versions of Windows operating systems.

Keywords
attack, clipboard, data manipulation, detection, malware, RDP, remote access, virtualization

1. Introduction
Modern operating systems provide features to facilitate
transferring data between applications, for example, Sys-
tem Clipboard [1]. However, cybercriminals and threat
actors continue to develop new techniques to perform
malicious activities, with the clipboard becoming a prime
target for attacks. Malware can monitor and hijack the
clipboard, allowing cybercriminals to steal sensitive data
such as passwords and credit card numbers [2]. Clip-
board hijacking involves taking control of the victim’s
clipboard, and replacing or removing its contents [3].
This attack has been performed on various operating sys-
tems, with Android applications in Google Play found to
perform clipboard hijacking to steal seed phrases from
the mobile’s clipboard storage [4]. Additionally, cryp-
tocurrency addresses have been targeted by cybercrim-
inals using clipboard hijacking, resulting in 2.3 million
addresses being monitored. Previous clipboard hijack-
ing attacks required the installation of malware on the
victim’s device to control and manipulate the system clip-
board [5]. Clipboard hijacking in previously mentioned
attacks requires having the malware installed on the vic-
tim’s device to be able to control the system clipboard
and manipulate it [3].

The evolution of cybercriminals and threat actors has
resulted in the emergence of new attacks, such as Re-
mote Desktop Protocol (RDP) ransomware attacks. RDP
is a popular protocol for remote administration and data
transfer, connecting remote computers and clients on

$ ka.fawzy@nu.edu.eg (K. F. Mohamed); nabdelbaki@nu.edu.eg
(N. AbdelBaki); ashosha@nu.edu.eg (A. Shosha)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

both Windows and non-Windows machines, with clip-
board data being one of the data types that can be trans-
ferred between RDP peers [6]. Virtualization applications
like VMWare share the clipboard using the same tech-
nique as RDP, making it vulnerable to the newly discov-
ered attack technique. Remote access applications like
TeamViewer also share clipboard data using the same
method, making them susceptible to this type of attack.
However, VirtualBox shares clipboard data differently
between guest and host operating systems.

Clipboard monitoring is a commonly used technique
[7] to detect RDP ransomware attacks. Therefore, it is
crucial to detect and prevent clipboard data manipula-
tion attacks remotely through RDP, virtualization appli-
cations, and other remote access applications that allow
clipboard-sharing. This research highlights that clip-
board hijacking can occur remotely without the need
for malware installation on a device. This study focused
on the offensive utilization of this technique and found
that the attack is works on all major versions of Windows
operating system. Thus, any windows-host connecting
to a malicious Windows server infected with malware
using this technique is susceptible to clipboard data ma-
nipulation. Additionally, our research team developed
a real-time detection technique to distinguish between
normal clipboard-sharing operations and malicious clip-
board data manipulation.

2. Background
A clipboard is a set of messages and functions provided
by modern operating systems to transfer various types
of data between executing applications on the system [8].
Copy and Paste operations are used to transfer data from

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:ka.fawzy@nu.edu.eg
mailto:nabdelbaki@nu.edu.eg
mailto:ashosha@nu.edu.eg
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Table 1
Clipboard data formats [9].

Constant Value Description

CF_TEXT 1 Null-terminated text
format.

CF_OEMTEXT 7 Null-terminated text
format containing
characters in the OEM
character set.

CF_UNICODETEXT 13 Null-terminated uni-
code text format.

N/A 49171 Private data formats,
formats that are appli-
cation specific.

the clipboard to different applications [1, 8]. The system
clipboard supports multiple data formats[9], such as Files
and Text within both Unicode and ASCII formats, and
assigns a unique numeric format ID and textual name to
each clipboard format to allow the destination application
to identify and extract the data in the right way without
extracting the data and parsing it later [10]. Essential
clipboard operations include placing extra data from the
clipboard, enumerating the available data formats on the
clipboard, and registering itself to receive notifications
in case of clipboard updates [11]. In the realm of Mi-
crosoft Windows, two primary clipboard mechanisms
exist: The Standard Windows Clipboard API and Ob-
ject Linking and Embedding (OLE) uniform data transfer
(UDT) [11]. While Microsoft recommends the use of the
OLE mechanism for certain use cases, the standard Clip-
board Windows API is still supported and will continue
to be maintained according to Microsoft’s confirmation
[12]. To ensure the synchronization of independent sys-
tem clipboards, monitoring clipboard updates is a tech-
nique that involves either polling the contents of the
clipboard at regular intervals or registering for clipboard
update notifications. Additionally, delayed rendering is
a supportive technique that assists in keeping indepen-
dent system clipboards in sync with minimal cost. This
technique involves transferring only the format ID of the
targeted data to be copied to the clipboard, as opposed to
the actual data, which is then transferred upon request
during the paste operation [13].

This study focused on text clipboard data formats as
shown in Table 1.

3. Clipboard Data Sharing Analysis
The Remote Desktop Protocol (RDP) is a communication
protocol that enables the communication between local
and remote clipboards via the clipboard virtual channel
extension. This extension supports the delayed rendering
of data, which enables efficient synchronization of clip-
boards [1]. The interaction between the local clipboard
and applications for Copy and Paste operations in the
RDP connection is illustrated in Figure 1.

Mstsc.exe
Virtual

Channel
End-point

Rdpclip.exe
Virtual
Channel

End-point

Clipboard
Virtual

Channel

Local

Application

Clipboard

System System

Clipboard

Local

Application

Figure 1: Copy and Paste operations through the clipboard
virtual channel

During the “Copy“ operation, when a local application
on the client system copies data to the system clipboard,
the virtual channel endpoint on the server receives a
notification and updates the server’s clipboard with the
same formats. Once the update is successful, the server
acknowledges it.

During the “Paste“ operation, the virtual channel end-
point on the server can send a clipboard data lock request
to the client machine to prevent any changes to the data
on the client machine’s system clipboard until an un-
lock request is sent. The local application on the server
requests data from its own clipboard, and the server’s
clipboard requests delay-rendered data from the virtual
channel endpoint on the client machine. The virtual chan-
nel endpoint on the server sends a format data request for
the requested data type, and the virtual channel endpoint
on the client machine retrieves the data from the client’s
system clipboard. The data is then returned to the virtual
channel endpoint on the client machine, which sends it to
the virtual channel endpoint on the server machine using
a format data response. The virtual channel endpoint on
the server machine updates the server’s clipboard with
the received data, and the local application on the server
receives the data from the server’s clipboard. Finally, the
virtual channel endpoint on the server machine sends an
optional unlock clipboard data protocol data unit (PDU).

Microsoft Terminal Services Client (Mstsc) is a Win-
dows desktop application used by a client machine to cre-
ate a remote desktop session on another machine [14]. On
RDP Server, rdpclip.exe is responsible for all the related
clipboard operations between the RDP server clipboard



and the RDP service. It is a normal process to interact
with the RDP service via a dedicated virtual channel [6].

Remote access applications like TeamViewer, which
provide users with the ability to remotely access and
control a computer, also offer clipboard-sharing func-
tionality. This feature allows for the seamless sharing
of clipboard data between connected systems, making it
easy to transfer information between remote and local
computers. The process of sharing clipboard data via
TeamViewer is similar to that used in RDP connections,
where clipboard data is exchanged via a dedicated virtual
channel.

In virtualized environments, such as VMware, two
components facilitate the exchange of clipboard data:
vmtoolsd.exe, which is responsible for interactions with
the clipboard on the guest operating system, and vmware-
vmx.exe, which is specific to the targeted Virtual Machine
(VM) and resides on the host operating system. These
components work together to coordinate the exchange
of clipboard data between the guest and host operating
systems. The process is illustrated in Figure 2.

Clipboard sharing

Guest Operating System

VMWare workstation

Host Operating System

Vmware-vmx.exeSystem clipboard

System clipboard Vmtoolsd.exe

Figure 2: System clipboard interaction through virtualization.

In virtualized environments, transmitting changes to
the clipboard to the other connection peer works simi-
larly to the RDP case. Changes to the clipboard are trans-
mitted in real-time, and clipboard data sharing is handled
similarly to the way it is handled between rdpclip.exe
and mstsc.exe in Windows RDP. However, changes made
to the clipboard on either the guest or host are not au-
tomatically transmitted to the other side until the user
moves the control to the other side to activate it.

4. Clipboard Data Attacks

4.1. Local Attacks
Clipboard hijacking and data manipulation attacks are
sophisticated techniques that require in-depth analysis
of the related Windows Application Programming Inter-
face (API) calls. To simulate a clipboard data manipulator
malware, a simple application can be created and run
on a local Windows machine to analyze the interaction
between the system clipboard and the machine. The goal
is to demonstrate how clipboard data can be manipulated
using standard Clipboard Windows APIs. By running
this malware on a victim’s machine, an attacker can use
basic Windows API calls to manipulate the clipboard data.
The process involves allocating memory space to hold the
manipulation string, calling the OpenClipboard func-
tion to open the clipboard for examination and prevent
other applications from modifying the clipboard content,
and using the EmptyClipboard function to clear the
clipboard and free handle to data in the clipboard. The
SetClipboardData function is then used to place data
on the clipboard in a specified clipboard format, which
in this case is CF_TEXT. Finally, the CloseClipboard
function is called to close the clipboard. Previous mal-
ware samples have utilized similar techniques for access-
ing clipboard data.

In their analysis, researchers in [15] identified multi-
ple techniques used by malware authors to access clip-
board data, including registering the malware as a clip-
board viewer or hooking into the SetClipboardData
and GetClipboardData functions to intercept and steal
data from the clipboard. This can result in the theft of sen-
sitive information, such as login credentials, credit card
numbers, or personally identifiable information (PII).

To mitigate the risks associated with these attacks,
it is important to implement appropriate security mea-
sures, such as clipboard data encryption [15], monitoring
clipboard-related activities, and maintaining up-to-date
antivirus software. By being vigilant and taking proactive
steps to safeguard against these attacks, individuals and
organizations can minimize the probability of potential
compromise for their sensitive data.

4.2. Remote Attacks
In section 3, we discussed how different applications in-
teract with the system clipboard and the RDP virtual
channel extension. By monitoring the Windows API
calls of rdpclip.exe, we identified the sequence of API
calls that are invoked during clipboard data exchange
between RDP peers. The primary functionality of clip-
board data sharing is achieved through the use of vari-
ous essential API calls, such as AddClipboardFormatLis-
tener, which registers a given window handler in the
system-maintained clipboard format listener list. This



enables the handler to receive notifications when there is
a change to the clipboard. Additionally, several functions
from the OLE32.dll library, such as OpenClipboard,
EmptyClipboard, and Multiple SetClipboardData,
are responsible for opening the clipboard, emptying its
contents, and setting data on the clipboard in different
formats. Notably, the use of Delayed Rendering, whereby
SetClipboardData with a NULL handler is called, al-
lows for the manipulation of clipboard data by setting
a given format but delaying the actual rendering of the
data until requested by another application.

Based on our analysis, an attacker on a malicious
remote machine, such as an RDP server, or malicious
VM accessed through a VMWare console or a peer in a
TeamViewer connection, can detect changes in clipboard
data and manipulate or wipe the copied data with the
knowledge of the data type on the client machine. The at-
tacker can launch multiple attacks on the client machine
once a connection is established with the malicious server
or remote machine, as described in the previously stated
cases. To avoid detection during memory forensics by
investigators for the victim machine, the attacker could
hook the SetClipboardData function instead of regis-
tering the malware as a clipboard viewer, as described
in [16]. Extracting clipboard data from memory depends
on traversing the Windows Station object, which has
multiple attributes, including spwndClipViewer, which
indicates if there is a registered clipboard viewer. Us-
ing the SetClipboardData function is a more stealthy
approach than registering the malware as a clipboard
viewer.

5. ATTACK IMPLEMENTATIONS
Windows clipboard hijacking, data manipulation, and
sniffing attacks can be performed using the following
approaches:

5.1. Host-based clipboard hijacking via
malicious software

This attack involves the installation of malware on the vic-
tim’s computer by the attacker. The malware is designed
to monitor copying operations and compare clipboard
data with predefined signatures for replacement. When
the malware identifies a match, it proceeds to replace the
identified data. To perform clipboard hijacking and data
manipulation locally, the attacker must install malicious
software on the victim’s machine. This attack may re-
quire other tactics, such as social engineering, to deliver
the malware [3].

Adding new patterns for manipulating targeted data
may require an interactive connection with the attacker,

which increases the chances of detection and can be con-
sidered a limitation of the attack’s success.

5.2. Remote clipboard hijacking via
malicious RDP server

Once the victim connects to the malicious Windows RDP
server, their clipboard is shared with the malicious server,
which allows the attacker to monitor and manipulate any
copy operations performed on the victim’s machine. To
carry out this attack, the attacker injects a malicious
Dynamic Link Library (DLL) into the rdpclip.exe process
running on the RDP server. This DLL is used to hook the
SetClipboardData API function, which enables the
attacker to manipulate the clipboard data in real-time.

DLL injection is a technique that involves injecting
code into a target application’s memory space through a
DLL, which allows for further interaction with the appli-
cation’s functions and memory [16]. Function hooking,
on the other hand, is a method used to modify an appli-
cation’s behavior by forcing it to use a different function
than it was initially intended to use [17].

It is worth noting that all proposed attacks and detec-
tion techniques in this study perform DLL injection in
userspace.

To execute the attack, the attacker sets up a malicious
Windows RDP server, which intercepts any data copied
from the victim’s machine when connected to the server.
Function hooking is then used to manipulate the copied
data on the clipboard, and the modified data is presented
to the victim when he paste it. However, this attack
blindly performs remote clipboard data manipulation,
which can result in the replacement of any shared clip-
board data with a fixed value or complete deletion, lead-
ing to a denial of service for copy-and-paste operations
on the victim’s machine.

The attack flow chart is illustrated in Figure 3.

5.2.1. Attack walkthrough

The primary goal of this attack demonstration is to show-
case the impact of modifying clipboard data during a
remote desktop session. To achieve this objective, the
attack employs the technique of DLL injection, which is
not confined to RDP sessions only but also extends to
other remote access applications such as TeamViewer
and VMWare console.

The initial step of this attack process involves the in-
jection of a malicious DLL into the intended process. De-
pending on the application in question, the target process
may differ; for instance, in the case of a Windows RDP
connection, the target process is rdpclip.exe, whereas, for
TeamViewer, it is teamviewer.exe. Similarly, for VMWare,
the target process is vmtoolsd.exe which provides all vir-
tual machine guest tools. The process injection can occur



Process Injection
With Malicious DLL

Intercept Windows API Calls

Attack Flag to 0

Is SetClipboardData intercepted? Attack Flag to 1

Clipboard Format in [1,7,13]
and HANDLE == NULL?

Delayed Render-
ing Detection

Clipboard Format == 49171
and HANDLE != NULL?

Memory allocation for the
manipulating data with
having HANDLE to it

Process Injection
With Malicious DLL
Erase Clipboard data

Overwrite clipboard data
with manipulating data

Yes

No

Yes

Yes

No

Figure 3: Remote clipboard data manipulation attack Flow
chart.

either before or after the connection is established, and
various techniques can be utilized for DLL injection. For
this purpose, a simple program has been developed, al-
though multiple methods can be employed, including
Microsoft Detours [18].

After injecting the DLL into the targeted process, API
calls to the SetClipboardData, when a copy opera-
tion is performed, SetClipboardData function is in-
tercepted, and one of two conditions is met: retrieving the
Clipboard Format with NULL Handler (Delayed Render-
ing), or retrieving the Clipboard Format with a handler
to the OLE Private Data (Immediate Rendering). In the
latter case, a memory area is reserved for the manipu-
lation string, and the clipboard data is erased by calling
EmptyClipboard. Then, SetClipboardData is called
with CF_TEXT as the Clipboard Format and a handle to
the reserved memory holding the manipulation string.
The function is called again, and this time, it returns a
handle to hold a pointer to the real function, which is
executed successfully.

While the above process manipulates the clipboard
data successfully, it does not differentiate between copy-
ing text or copying a file. Consequently, in the case of
copying a file, the clipboard data is manipulated, and the

held data is the manipulation text. To address this issue,
a flag to detect both delayed rendering and setting data
cases is required.

This attack can remotely manipulate any copied text
on the victim’s machine with pre-hardcoded text, as a
proof of concept. However, it can be modified to target a
specific pattern of copied text, such as a cryptocurrency
wallet ID. This could be achieved by retrieving the origi-
nal copied text, comparing it with the targeted pattern,
and then performing the manipulation if there is a match.

5.3. Remote Clipboard Data Targeted
Manipulation

The objective of this attack is to manipulate specific
shared clipboard data patterns during a remote desktop
session, such as replacing a website URL with a phish-
ing website or replacing a cryptocurrency wallet ID with
the attacker’s ID. While similar to the previous attack,
this one uses a different technique. Instead of hooking
the SetClipboardData function, it detects a specific
sequence of Windows-related API clipboard calls. To
achieve this, all the included API calls are hooked, and
a counter is incremented once a targeted API call is de-
tected in the correct sequence (see Algorithm 1). The
counter is reset to zero once the last API call in the tar-
geted sequence is detected.

Algorithm 1: Targeted API Sequence Detection

Function HookedOpenClipboard():
if 𝐴𝑃𝐼𝐶𝑜𝑢𝑛𝑡𝑒𝑟 == 0 then

𝐴𝑃𝐼𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 𝐴𝑃𝐼𝐶𝑜𝑢𝑛𝑡𝑒𝑟 + 1;
return RealOpenClipboard();

The targeted sequence consists of OpenClipboard,
EmptyClipboard, SetClipboardData, and
CloseClipboard. OpenClipboard is called to
lock other applications from modifying the clipboard
contents, followed by EmptyClipboard to erase the
clipboard data contents, and then SetClipboardData
to set the actual data into the clipboard after the
Delayed Rendering occurs, as discussed earlier.
CloseClipboard is called to commit the clipboard
data changes and release the lock that was cre-
ated when OpenClipboard was called. Finally,
GetClipboardOwner is called to retrieve the current
owner of the clipboard by returning a handle to it.
Remote clipboard data manipulation is performed once
this sequence of API calls is detected during the hooking
of GetClipboardOwner. This is done by retrieving
the clipboard data using OpenClipboard followed by
GetClipboardData with CF_TEXT as an argument to
retrieve the clipboard data in text format. The targeted
data pattern is compared to the retrieved data, and if



Algorithm 2: Remote Clipboard Data Manipulation

Function HookedGetClipboardOwner():
if 𝐴𝑃𝐼𝐶𝑜𝑢𝑛𝑡𝑒𝑟 == 5 then

RealOpenClipboard(NULL); 𝑑𝑎𝑡𝑎𝐻𝑎𝑛𝑑𝑙𝑒← 𝐺𝑒𝑡𝐶𝑙𝑖𝑝𝑏𝑜𝑎𝑟𝑑𝐷𝑎𝑡𝑎(𝐶𝐹_𝑇𝐸𝑋𝑇 );
𝑑𝑎𝑡𝑎← 𝐺𝑒𝑡𝐷𝑎𝑡𝑎𝐹𝑟𝑜𝑚𝐻𝑎𝑛𝑑𝑙𝑒(dataHandle); 𝑚𝑎𝑡𝑐ℎ𝑒𝑑← 𝐹𝑖𝑛𝑑𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑀𝑎𝑡𝑐ℎ(data);
if 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 ̸= 𝐹𝐴𝐿𝑆𝐸 then

RealEmptyClipboard();
𝑚𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐻𝑎𝑛𝑑𝑙𝑒← 𝐺𝑙𝑜𝑏𝑎𝑙𝐴𝑙𝑙𝑜𝑐(𝐺𝑀𝐸𝑀_𝑀𝑂𝑉 𝐸𝐴𝐵𝐿𝐸, 𝑙𝑒𝑛(manipulationText));
RealSetClipboardData(CF_TEXT,𝑚𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐻𝑎𝑛𝑑𝑙𝑒);
RealCloseClipboard();

𝐴𝑃𝐼𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 0;
return RealGetClipboardOwner();

there is a match, EmptyClipboard is called to erase
the clipboard data, followed by SetClipboardData
to set the clipboard data with the malicious content.
CloseClipboard is then called to release the lock after
the manipulation has been performed, as shown in
Algorithm 2.

To prevent recursion between the targeted API calls
used for detecting the targeted API calls and the attack
itself, the real function points are called instead of the
hooked function points, similar to the previous attack.

We have applied this attack successfully to Microsoft
RDP, remote access applications such as TeamViewer,
virtualization software such as VMWare, and other appli-
cations that share the clipboard with the same technique
used by Microsoft RDP.

5.4. Remote Clipboard Data Sniffing
In this variation of the attack, a malicious malware is
designed to intercept and log all text copied on a victim’s
machine through a remote connection, such as RDP or
any other vulnerable application that enables clipboard
sharing. Similar to the previous attack, this one also tar-
gets a specific sequence of Windows API calls related to
the clipboard. However, upon detecting the sequence of
targeted API calls, the data is simply copied and logged
on the malicious remote server, unlike the previous attack
that aimed to manipulate shared clipboard data. The tar-
geted API calls start with OpenClipboard, followed by
EmptyClipboard, SetClipboardData twice for De-
layed Rendering and actual data setting, followed by
CloseClipboard to release the clipboard lock, and
finally GetClipboardOwner is called. Logging the
captured shared clipboard data is performed by call-
ing a traditional sequence of API calls starting with
OpenClipboard, followed by GetClipboardData to
retrieve the victim’s shared clipboard data, and finally re-
leasing the clipboard lock by calling CloseClipboard,
as shown in Algorithm 3.

Additionally, this attack can affect victim machines

with any version of Microsoft Windows operating sys-
tems, as long as they have an active connection with
the malicious server through RDP, Remote Access ap-
plications like TeamViewer, virtual machines hosted by
VMWare and accessed through VMWare console, or any
other application that shares clipboard data using the
same technique as RDP.

6. ATTACK DETECTION
In the context of ensuring computer system security,
distinguishing between benign and malicious clipboard
operations in remote connections is a critical task. This
requires identifying a specific sequence of Windows API
clipboard calls that occur during the copying of text
on a remote Windows server accessed through RDP or
a VMWare console or a remote access application like
TeamViewer.

To detect such sniffing, the first step is to identify
the format of the clipboard data using the GetClip-
boardFormatNameW function, followed by detecting
the OpenClipboard. The next step is to monitor the
GetClipboardData and finally the CloseClipboard
function to indicate the attacker’s completion of ac-
cessing the clipboard data. To detect the sniffing over
TeamViewer, it requires detecting the previous sequence
in addition to detection OpenClipboard followed by
GetClipboardData and finally CloseClipboard.

For blind remote clipboard data manipulation, the re-
quired sequence of API calls is shown in Figure 4.

To detect targeted manipulation of remote clipboard
data via RDP, a sequence of Windows API calls have
to be monitored. The process involves retrieving the
format name of the clipboard data, followed by re-
trieving the clipboard data to compare it with tar-
geted data patterns. Then the clipboard is closed and
two formats, CanIncludeInClipboardHistory and
CanUploadToCloudClipboard, are registered [19].
After reopening the clipboard and emptying it, the clip-
board data is set twice and the clipboard is reclosed. Fi-



Algorithm 3: Remote Clipboard Data Sniffing

Function HookedGetClipboardOwner():
if 𝐴𝑃𝐼𝐶𝑜𝑢𝑛𝑡𝑒𝑟 == 5 then

RealOpenClipboard(NULL); 𝑑𝑎𝑡𝑎𝐻𝑎𝑛𝑑𝑙𝑒← 𝐺𝑒𝑡𝐶𝑙𝑖𝑝𝑏𝑜𝑎𝑟𝑑𝐷𝑎𝑡𝑎(𝐶𝐹_𝑇𝐸𝑋𝑇 );
𝑑𝑎𝑡𝑎← 𝐺𝑒𝑡𝐷𝑎𝑡𝑎𝐹𝑟𝑜𝑚𝐻𝑎𝑛𝑑𝑙𝑒(dataHandle); LogSniffedData(𝑑𝑎𝑡𝑎);
RealCloseClipboard();
𝐴𝑃𝐼𝐶𝑜𝑢𝑛𝑡𝑒𝑟 = 0;

return RealGetClipboardOwner();

GetClipboardFormatName OpenClipboard

EmptyClipboard

SetClipboardData(49171,Obj)

Score = 1

Score = 2

Score = 3

Figure 4: Malicious remote Windows API calls.

nally, the previous sequence of opening and closing the
clipboard is repeated to flush the clipboard data and set
the manipulated data. Attackers utilize this sequence of
functions to manipulate the clipboard data, making it
essential to detect these functions in sequence to prevent
data hijack and manipulation.

A flagging mechanism can be employed to effectively
detect the sequence of Windows API calls for remote
clipboard data sniffing or targeted manipulation. The
mechanism involves setting and incrementing a flag each
time a targeted API is detected in the correct order. Once
the last targeted API call is detected and the flag thresh-
old is reached, an alert is triggered to notify the user or
system administrator. To minimize false positives, the
time factor, i.e., the time difference between the first and
last detected API calls in the targeted sequence, should
be measured.

Integrating the timing factor with other detection
mechanisms can differentiate between normal remote
clipboard data copying and targeted attacks. The study
presents the necessary time for detecting the targeted se-
quence of API calls for each attack, serving as a valuable
reference for devising effective detection and prevention
strategies. However, relying solely on detecting the pro-
posed targeted sequences of API calls to detect remote
clipboard data sniffing or manipulation may lead to false
positives. Therefore, the time factor can aid in differen-
tiating between the two scenarios. Table 2 provides the
results of calculating the required time for the attack to
be performed.

In the case of an attack initiated from a virtual machine
accessed via VMWare console, the timing factor may not

be effective in detecting remote clipboard data sniffing
or targeted manipulation. This is because the exchange
of clipboard data in this scenario depends on switching
between the host and guest operating systems. Therefore,
the timing for detecting the targeted sequences of API
calls may not indicate an attack in progress.

7. RESULTS EVALUATION
The section presents the results of the clipboard data
attacks proposed in this study and evaluates the effective-
ness of the suggested detection techniques. This evalua-
tion process is crucial for assessing comprehensively the
security of computer systems against such attacks and
for devising more robust security protocols. To ensure
a comprehensive evaluation, all test cases considered in
this study assume that the malicious server is based on
Microsoft Windows since the Remote Desktop Protocol
is a Microsoft protocol. The tests included clients with
various operating systems, and including Windows 7,
Windows 10, and Windows 11 with both x86 and x64
versions. The results presented in this section provide
critical insights into the vulnerabilities of sharing clip-
board data and the effectiveness of the proposed detection
techniques in detecting and preventing potential secu-
rity threats. Through the analysis and discussion of the
results, this study aims to advance our understanding
of clipboard data security and guide the development of
more effective security measures.

7.1. Attack Results
This section outlines the results obtained from conduct-
ing remote clipboard data attacks using various test case
scenarios as listed in Table 3. The experiments were car-
ried out using different versions of Microsoft Windows
including Windows 7, Windows 10, and Windows 11
with both x86 and x64 versions. These findings suggest
that any remote access application that shares clipboard
data using the discussed technique would be susceptible
to the proposed attacks.

The present study conducted experiments to evalu-
ate the effectiveness of the proposed remote clipboard
data attacks, as listed in Table 3. The results of all test



Table 2
Remote clipboard data manipulation attacks required time.

Remote access application Attack Spent time (Seconds)

Native Windows RDP Sniffing and Manipulation 0 < 𝑇 < 0.1

TeamViewer Blind Manipulation 0.1 < 𝑇 < 0.5

TeamViewer Sniffing 0.1 < 𝑇 < 0.7

Table 3
Remote clipboard data manipulation attacks and detection results.

Remote Connection Application Attack Results Detection Results

Windows RDP Succeeded Detected

VMWare Console Succeeded Not Detected

TeamViewer Succeeded Detected

cases showed successful attacks. When a victim connects
to a malicious server that has a malicious DLL for the
proposed blind manipulation attack, his clipboard data
is compromised. The copied data is either modified or
wiped out for as long as the victim’s connection with the
malicious server is active.

For the remote clipboard data sniffing attack, the vic-
tim’s copied data is immediately logged on the remote
server after a copy operation is performed on the victim’s
machine. Lastly, the attack that aimed to manipulate spe-
cific shared clipboard data monitored all shared copied
data on the victim’s machine and performed the manip-
ulation when a match occurred, without affecting any
other copied data. These findings illustrate the vulner-
abilities of sharing clipboard data and emphasize the
importance of implementing robust security measures to
prevent such attacks.

7.2. Detection Results
This section presents the results of the evaluation of the
proposed detection techniques for clipboard data attacks.
The evaluation was conducted using a range of test cases,
assuming a malicious server based on Microsoft Win-
dows, as the Remote Desktop Protocol is a Microsoft
protocol. Tests included clients with various versions of
Windows including Windows 7, Windows 10, and Win-
dows 11 with both x86 and x64 versions. The results
provide valuable insights into the effectiveness of the
proposed detection techniques in detecting and prevent-
ing potential security threats related to clipboard data
sharing.

The presented detection method was effective in de-
tecting all the cases mentioned in Table 3, except when
the victim accessed a virtual machine armed with the
attacking tool through the VMWare console, as it is a
limitation in our proposed detection technique.

8. FUTURE WORK
One promising avenue for future research is the examina-
tion of clipboard attacks that focus on copied files. Such
attacks could involve the insertion of malicious code into
an executable file that a user copies, which could sub-
sequently be executed on the victim’s device. The tech-
niques outlined in this paper could be used to execute
this type of attack, with modifications made to detect the
copying of executable files and insert the malicious code
into the targeted file. Further exploration of this area
could yield valuable insights into the potential dangers
posed by these attacks and facilitate the development of
stronger defense mechanisms.

9. CONCLUSION
This research paper provides a comprehensive examina-
tion of the security risks associated with clipboard data
sharing across various environments. The investigation
considers clipboard data sharing on local machines, Re-
mote Desktop Protocol (RDP) sessions, and virtualized
environments and identifies remote clipboard data ma-
nipulation as a significant threat to security. The paper
presents detailed explanations of the different types of



attacks that can occur on shared clipboard data, with a
focus on remote clipboard data manipulation and sniffing.
The efficacy of proposed detection and prevention tech-
niques is evaluated through successful experiments that
demonstrate the importance of being vigilant against po-
tential clipboard data attacks. This research contributes
to the understanding of clipboard data security and em-
phasizes the need for further research and development
of more robust security measures to protect against at-
tacks.

References
[1] Microsoft, [MS-RDPECLIP]: Remote Desktop Pro-

tocol: Clipboard Virtual Channel Extension, [On-
line]. Available: https://winprotocoldoc.blob.core.
windows.net/productionwindowsarchives/MS-RDPECLIP/
%5BMS-RDPECLIP%5D.pdf, 2021.

[2] M. Manna, A. Case, A. Ali-Gombe, G. G. Richard III, Memory
analysis of. net and. net core applications, Forensic Science
International: Digital Investigation 42 (2022) 301404.

[3] A. Pillai, V. Saraswat, A. VR, Smart wallets on
blockchain—attacks and their costs, in: Smart City and
Informatization: 7th International Conference, iSCI 2019,
Guangzhou, China, November 12–15, 2019, Proceedings 7,
Springer, 2019, pp. 649–660.

[4] G. S, GBHackersX: Metamask - first copy-and-paste hijacking
crypto malware found in google play, https://gbhackers.com/
clipper-hijacking-malware/„ 2019.

[5] L. Abrams, Clipboard Hijacker Malware Mon-
itors 2.3 Million Bitcoin Addresses, https:
//www.bleepingcomputer.com/news/security/
clipboard-hijacker-malware-monitors-23-million-bitcoin-addresses/,
2018.

[6] E. Itkin, D. Baril, He said, she said - poisoned rdp offense and de-
fense, 2019. URL: https://i.blackhat.com/USA-19/Wednesday/
us-19-Baril-He-Said-She-Said-Poisoned-RDP-Offense-And-Defense-wp.
pdf, black Hat.

[7] Z. Wang, X. Wu, C. Liu, Q. Liu, J. Zhang, Ransomtracer: ex-
ploiting cyber deception for ransomware tracing, in: 2018 IEEE
Third International Conference on Data Science in Cyberspace
(DSC), IEEE, 2018, pp. 227–234.

[8] J. Woodruff, J. Alexander, Data transfer: A longitudinal analysis
of clipboard and drag-and-drop use in desktop applications,
International Journal of Human-Computer Studies 132 (2019)
112–120.

[9] J. Okolica, G. L. Peterson, Extracting the windows clipboard
from physical memory, digital investigation 8 (2011) S118–
S124.

[10] Microsoft, About the clipboard, Microsoft, 2021. URL:
https://docs.microsoft.com/en-us/windows/win32/dataxchg/
about-the-clipboard.

[11] Microsoft, Clipboard, Microsoft, 2021. URL: https://docs.
microsoft.com/en-us/cpp/mfc/clipboard?view=msvc-170.

[12] Microsoft, Clipboard: When to use each clipboard mechanism,
Microsoft, 2021. URL: https://docs.microsoft.com/en-us/cpp/
mfc/clipboard-when-to-use-each-clipboard-mechanism?
view=msvc-17.

[13] Microsoft, Clipboard operations, Microsoft, 2022. URL:
https://docs.microsoft.com/en-us/windows/win32/dataxchg/
clipboard-operations#delayed-rendering.

[14] Microsoft, mstsc, Microsoft, 2021. URL: https:

//docs.microsoft.com/en-us/windows-server/administration/
windows-commands/mstsc.

[15] G. Pathak, G. K. Tak, Implementation of clipboard security
using cryptographic techniques, International Journal of Com-
puter Applications 86 (2014).

[16] J. Berdajs, Z. Bosnić, Extending applications using an advanced
approach to dll injection and api hooking, Software: Practice
and Experience 40 (2010) 567–584.

[17] J. Lopez, L. Babun, H. Aksu, A. S. Uluagac, A survey on function
and system call hooking approaches, Journal of Hardware and
Systems Security 1 (2017) 114–136.

[18] G. Hunt, D. Brubacher, Detours: Binaryinterception ofwin 3 2
functions, in: 3rd usenix windows nt symposium, 1999.

[19] Microsoft, Clipboard formats, Microsoft, 2020. URL:
https://learn.microsoft.com/en-us/windows/win32/dataxchg/
clipboard-formats.

https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-RDPECLIP/%5BMS-RDPECLIP%5D.pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-RDPECLIP/%5BMS-RDPECLIP%5D.pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-RDPECLIP/%5BMS-RDPECLIP%5D.pdf
https://gbhackers.com/clipper-hijacking-malware/
https://gbhackers.com/clipper-hijacking-malware/
https://www.bleepingcomputer.com/news/security/clipboard-hijacker-malware-monitors-23-million-bitcoin-addresses/
https://www.bleepingcomputer.com/news/security/clipboard-hijacker-malware-monitors-23-million-bitcoin-addresses/
https://www.bleepingcomputer.com/news/security/clipboard-hijacker-malware-monitors-23-million-bitcoin-addresses/
https://i.blackhat.com/USA-19/Wednesday/us-19-Baril-He-Said-She-Said-Poisoned-RDP-Offense-And-Defense-wp.pdf
https://i.blackhat.com/USA-19/Wednesday/us-19-Baril-He-Said-She-Said-Poisoned-RDP-Offense-And-Defense-wp.pdf
https://i.blackhat.com/USA-19/Wednesday/us-19-Baril-He-Said-She-Said-Poisoned-RDP-Offense-And-Defense-wp.pdf
https://docs.microsoft.com/en-us/windows/win32/dataxchg/about-the-clipboard
https://docs.microsoft.com/en-us/windows/win32/dataxchg/about-the-clipboard
https://docs.microsoft.com/en-us/cpp/mfc/clipboard?view=msvc-170
https://docs.microsoft.com/en-us/cpp/mfc/clipboard?view=msvc-170
https://docs.microsoft.com/en-us/cpp/mfc/clipboard-when-to-use-each-clipboard-mechanism?view=msvc-17
https://docs.microsoft.com/en-us/cpp/mfc/clipboard-when-to-use-each-clipboard-mechanism?view=msvc-17
https://docs.microsoft.com/en-us/cpp/mfc/clipboard-when-to-use-each-clipboard-mechanism?view=msvc-17
https://docs.microsoft.com/en-us/windows/win32/dataxchg/clipboard-operations#delayed-rendering
https://docs.microsoft.com/en-us/windows/win32/dataxchg/clipboard-operations#delayed-rendering
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/mstsc
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/mstsc
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/mstsc
https://learn.microsoft.com/en-us/windows/win32/dataxchg/clipboard-formats
https://learn.microsoft.com/en-us/windows/win32/dataxchg/clipboard-formats

	1 Introduction
	2 Background
	3 Clipboard Data Sharing Analysis
	4 Clipboard Data Attacks
	4.1 Local Attacks
	4.2 Remote Attacks

	5 ATTACK IMPLEMENTATIONS
	5.1 Host-based clipboard hijacking via malicious software
	5.2 Remote clipboard hijacking via malicious RDP server
	5.2.1 Attack walkthrough

	5.3 Remote Clipboard Data Targeted Manipulation
	5.4 Remote Clipboard Data Sniffing

	6 ATTACK DETECTION
	7 RESULTS EVALUATION
	7.1 Attack Results
	7.2 Detection Results

	8 FUTURE WORK
	9 CONCLUSION

