
OBG-gen: Ontology-Based GraphQL Server
Generation for Data Integration
Huanyu Li1,2,∗, Olaf Hartig1, Rickard Armiento2,3 and Patrick Lambrix1,2

1Department of Computer and Information Science, Linköping University, Linköping, Sweden
2Swedish e-Science Research Centre, Linköping, Sweden
3Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden

Abstract
A GraphQL server contains two building blocks: (1) a GraphQL schema defining the types of data
objects that can be requested; (2) resolver functions fetching the relevant data from underlying data
sources. GraphQL can be used for data integration if the GraphQL schema provides an integrated view
of data from multiple data sources, and the resolver functions are implemented accordingly. However,
there does not exist a semantics-aware approach to use GraphQL for data integration. We proposed
a framework using GraphQL for data integration in which a global domain ontology informs the
generation of a GraphQL server. Furthermore, we implemented a prototype of this framework, OBG-gen.
In this paper, we demonstrate OBG-gen in a real-world data integration scenario in the materials design
domain and in a synthetic benchmark scenario.

Keywords
GraphQL, Ontology, Data Integration, GraphQL Server Generation

1. Introduction

GraphQL1 is a conceptual framework for building Web APIs. The framework introduces a
so-called GraphQL schema (Figure 1a) that defines the types of data objects that can be requested,
and resolver functions (Figure 1b) that specify how to retrieve and fetch data from underlying
data sources. Another building block of the framework is the GraphQL query language for
expressing data retrieval requests (Figure 1c). The example schema contains an object type
(University) with a field definition UniversityID of which the value type is String and a field
definition departments of which the value type is [Department] . It also contains two input object
types (UniversityFilter and StringFilter) which can capture the notions of filter expressions.
For instance, the query accepts the argument (UniversityID:{_eq: “u1”}) according to the

ISWC 2023 Posters and Demos: 22nd International Semantic Web Conference, November 6–10, 2023, Athens, Greece
∗Corresponding author.
Envelope-Open huanyu.li@liu.se (H. Li); olaf.hartig@liu.se (O. Hartig); rickard.armiento@liu.se (R. Armiento);
patrick.lambrix@liu.se (P. Lambrix)
GLOBE http://huanyuli.se (H. Li); https://olafhartig.de (O. Hartig); https://rickard.armiento.se (R. Armiento);
https://www.ida.liu.se/~patla00/ (P. Lambrix)
Orcid 0000-0003-1881-3969 (H. Li); 0000-0002-1741-2090 (O. Hartig); 0000-0002-5571-0814 (R. Armiento);
0000-0002-9084-0470 (P. Lambrix)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1http://spec.graphql.org/October2021/

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:huanyu.li@liu.se
mailto:olaf.hartig@liu.se
mailto:rickard.armiento@liu.se
mailto:patrick.lambrix@liu.se
http://huanyuli.se
https://olafhartig.de
https://rickard.armiento.se
https://www.ida.liu.se/~patla00/
https://orcid.org/0000-0003-1881-3969
https://orcid.org/0000-0002-1741-2090
https://orcid.org/0000-0002-5571-0814
https://orcid.org/0000-0002-9084-0470
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
http://spec.graphql.org/October2021/

type University {
UniversityID: String
departments: [Department] }

input UniversityFilter {
UniversityID: StringFilter
_and: [UniversityFilter] }

input StringFilter {
_eq: String
_in: [String] }

type Query {
UniversityList(filter:
UniversityFilter): [University] }

(a) GraphQL schema example.

const UniversityList = (uid) => {
/*assume the underlying data source is a
relational database containing a table
named university with an id column*/

let data = db_connection.select().from(
‘university’).where(‘id’, uid);

/*assume University is an object defined
according to the type in the schema*/

let allUniversities = data.then(rows =>
new University(rows[0]));

return allUniversities;
};

(b) Resolver function example.

{
UniversityList(
filter:{
UniversityID:{_eq:“u1”}

})
{
departments
{
head

}
}

}

(c) Query example.

Figure 1: Example GraphQL schema, resolver function and query.

UniversityFilter definition, which represents “UniversityID is equal to ‘u1’”. Additionally,
GraphQL schema presumes the Query type as the query root operation type. The example
schema has the UniversityList field definition of which the returned type is [University] , a
list of universities. GraphQL can be used for data integration by building a GraphQL server
over underlying data sources where the GraphQL schema provides an integrated view of data,
and the resolver functions specify implementations for accessing data sources. However, there
does not exist a semantics-aware approach to employ GraphQL for data integration. It means
the developer needs to write program code (i.e., resolver functions) to populate the various
elements of a GraphQL schema. In our previous work, we provided a semantics-aware approach
to employ GraphQL for data integration which is a global as view approach [1], with formal
methods to generate the GraphQL server [2]. In this paper, we demonstrate the implemented
prototype of this approach, OBG-gen.2

2. Approach

Figure 2 shows the framework of our approach for data integration based on GraphQL. The
framework relies on an ontology as an integrated view of the data from multiple sources, and
semantic mappings defining how the underlying data can be interpreted by the global ontology
(arrows (a) and (b)). In addition, there are two processes defined in the framework. The first
process is for automatically generating the GraphQL schema (arrow (i)) and implementing
a generic resolver function based on semantic mappings (arrow (ii)). This process thus can
benefit GraphQL application developers by eliminating constructing GraphQL servers from
scratch. The second process is for answering (integrated) GraphQL queries (arrow (1) to (4)).
To generate the GraphQL schema based on an ontology, we assume that the ontology is

represented by a TBox in a description logic which allows atomic concepts, the universal concept,
intersection, value restriction, qualified number restrictions and datatypes. The general concept
inclusion (GCI) of the TBox can be five forms: P ⊑ Q, P ⊑ ∀r.Q, P ⊑= 1r.Q, P ⊑ ∀a.d, P ⊑= 1a.d
where P and Q are atomic concepts, r is a role, a is an attribute and d is a datatype.

2All the material related to OBG-gen is available online at https://github.com/LiUSemWeb/OBG-gen.

https://github.com/LiUSemWeb/OBG-gen

GraphQL Server

GraphQL Schema

(a) (b)

(i) (ii)

Databases or Data Sets

Ontology

Generic Resolver Function
CSVJSON

(2)

(3)

(1)

(4)

GraphQL Server Generation
Process

GraphQL Query Answering Process

Semantic Mappings

Figure 2: GraphQL-based framework for data access and integration.

Algorithm 1: Schema Generator
Input :a set of concepts, C; a set of GCIs, G
Output :a GraphQL schema 𝒮

1 for 𝑃 ∈ C do
2 extend 𝒮 with an empty object type, 𝑃
3 extend 𝒮 with an empty input type, 𝑃Filter
4 add field/argument declarations to the Query type
5 for 𝑡 ∈ G do
6 if 𝑡 is of the form P ⊑ Q then
7 extend 𝒮 with an empty interface type, 𝑄
8 extend 𝒮 with an input type, 𝑄Filter
9 extend 𝒮 with field/argument declarations to

the Query type
10 extend 𝒮 with declaration that 𝑃 implements 𝑄

11 else
12 /* 𝑡 is of the other forms */
13 extend 𝒮 with field declarations to 𝑃, 𝑃Filter

Our schema generator (as shown in Al-
gorithm 1) first iterates over the concept
names. For each concept (e.g., University),
the concept name is used as the name of
type to be generated in the GraphQL schema
(University); the term concatenatedwith ‘Fil-
ter’ is used as the name of an input type to be
generated (UniversityFilter); the term con-
catenated with ‘List’ is used as the name of a
field of the Query type (UniversityList). Ad-
ditionally, each such field of the Query type
is assigned an argument named ‘filter’, with
a type that is the corresponding input type
(e.g., filter:UniversityFilter to UniversityList). In the next step, the algorithm iterates
over GCIs. Taking such a GCI, University ⊑ ∀ departments .Department , as an example, the
algorithm generates field definitions departments: [Department] of the University type, and
departments: [DepartmentFilter] of the UniversityFilter type. For a GCI University ⊑ =
1 UniversityID .String , the algorithm generates field definitions UniversityID: String of the
University type, and UniversityID: StringFilter of the UniversityFilter type.
The generic resolver function includes technical components QueryParser and Evaluator

as shown in Figure 3a. The QueryParser parses a query including a filter expression given as
an input argument, and outputs the corresponding abstract syntax trees (ASTs) for the input
argument and the query structure, respectively. Figure 3b shows example ASTs for a filter
expression and a query structure according to the query example in Figure 1c. The QueryParser
parses the query, converts a filter expression into a union of conjunctive expressions (arrow
1⃝), and generates an AST for each conjunctive expression and an AST for the query structure
(arrow 2⃝). Then, the filter expressions (frame a⃝) and the query fields (frame b⃝) are evaluated.
The Evaluator is responsible for sending requests to underlying data sources and fetching data
according to an AST. During evaluation of the filter expression, for each AST representing a
conjunctive (sub-)expression, an evaluator is called to request data satisfying the conjunctive
(sub-)expression. After a call to an evaluator based on an AST, data representing the requested
type, which contains identifier information, is returned. During evaluation of the query fields,
the identifier information is an input in the call to the evaluator (arrow 3⃝). Taking the query in

(a) Outlined generic resolver function. (b) Example Abstract Syntax Trees.

Figure 3: Overview of the generic resolver function.

Figure 1c as an example, the requested type is University and data that can identify university
instances returns. Such identifier information captured in semantic mappings, is used to
construct the URIs for subjects where such subjects represent University instances.

3. Demonstration

We demonstrate OBG-gen in a real-world data integration scenario in the materials design
domain and in a synthetic benchmark scenario, Linköping GraphQL Benchmark (LinGBM) [3].
The demonstration is shown in a public page,3 with pointers to an introduction video, detailed
evaluation results and live GraphQL servers for the two demonstration scenarios.

Materials Design Domain Demonstration. This demonstration focuses on a real-world
scenario in the field of materials design to integrate data from two data sources following
different data models. We will demonstrate that the GraphQL server, generated based on the
Materials Design Ontology (MDO) [4, 5], can provide integrated access to data from hetero-
geneous data sources (i.e., requests data with a single GraphQL query without materializing
the underlying data). The domain ontology used by this demonstration aims to improve the
interoperability in the field for data integration. Therefore, the generated GraphQL schema
plays as an integrated view of materials design data. We write 12 GraphQL queries in total
among which 7 are with filtering conditions. Some of the queries are of domain interest written
based on competency questions used for developing MDO. The other queries are written for
testing the functionalities of the tool. One example query, as shown in Listing 1, is to get all the
calculations pertaining to silicon-based materials with band gap property above 2.0.4

LinGBM Demonstration. LinGBM is a performance benchmark for GraphQL server im-
plementations. It provides a scalable dataset regarding the University domain and specifies
key technical challenges (e.g., relationship traversal) of GraphQL server implementations. In
addition, it contains query templates covering different technical challenges. Therefore in this
scenario, we focus on demonstrating: (1) the generability and applicability of our approach
for data access in a different domain; (2) the current coverage of our approach in terms of key
technical challenges (e.g., attribute retrieval, relationship traversal, searching and filtering).
We use the GraphQL schema provided by LinGBM and manually define semantic mappings

3https://liusemweb.github.io/obg-gen/demo/
4This query is of domain interest, because semiconductor materials with band gaps above 2 electronvolts are referred
to as wide-bandgap semiconductors. Such semiconductors are widely used in various electronic devices.

https://liusemweb.github.io/obg-gen/demo/

Listing 1: Example query to get calcuations of silicon-based materials with band gaps above 2.0.
1 {
2 CalculationList(
3 filter: {
4 _and: [
5 {
6 hasOutputStructure: {
7 hasComposition: { ReducedFormula: { _like: ”Si” } } }
8 },
9 {
10 hasOutputCalculatedProperty: {
11 _and: [{ PropertyName: { _eq: ”Band Gap” } }, { numericalValue: { _gt: 2.0 } }] }
12 }] }
13)
14 {
15 ID
16 hasOutputCalculatedProperty {
17 PropertyName
18 numericalValue
19 }
20 }
21 }

to construct a GraphQL server. We select 7 query templates from LinGBM to create query
instances. One query template is used to construct queries that request all the publications of
which the titles contain a specific string (e.g., “formalization”).

4. Conclusion

This paper has briefly introduced the OBG-gen, a prototype implementation for generating
GraphQL servers. Using OBG-gen, GraphQL application developers can avoid constructing
GraphQL servers from scratch. In the future, we will work on supporting more query features
(e.g., order by) in the generic resolver function; follow the development of the GraphQL language
and explore the possibility of formally generating new features based on ontologies.

References

[1] D. Calvanese, G. De Giacomo, Data Integration: A Logic-Based Perspective, AI magazine
26 (2005) 59–59. doi:10.1609/aimag.v26i1.1799 .

[2] H. Li, Ontology-Driven Data Access and Data Integration with an Application in the
Materials Design Domain, Ph.D. thesis, 2022. doi:10.3384/9789179292683 .

[3] S. Cheng, O. Hartig, LinGBM: A Performance Benchmark for Approaches to Build GraphQL
Servers, in: Web Information Systems Engineering –WISE 2022 - 23rd International Confer-
ence on Web Information Systems Engineering, 2022. doi:10.1007/978- 3- 031- 20891- 1_16 .

[4] H. Li, R. Armiento, P. Lambrix, An Ontology for the Materials Design Domain, in: The
Semantic Web - ISWC 2020 - 19th International Semantic Web Conference, 2020. doi:10.
1007/978- 3- 030- 62466- 8_14 .

[5] P. Lambrix, R. Armiento, H. Li, O. Hartig, M. Abd Nikooie Pour, Y. Li, The materials design
ontology, Semantic Web (2023). doi:10.3233/SW- 233340 .

http://dx.doi.org/10.1609/aimag.v26i1.1799
http://dx.doi.org/10.3384/9789179292683
http://dx.doi.org/10.1007/978-3-031-20891-1_16
http://dx.doi.org/10.1007/978-3-030-62466-8_14
http://dx.doi.org/10.1007/978-3-030-62466-8_14
http://dx.doi.org/10.3233/SW-233340

	1 Introduction
	2 Approach
	3 Demonstration
	4 Conclusion

