
SPARQLe Up Your Knowledge Graphs with on-the-fly
Computed Triples
Geert Vanderhulst, Johan Van Noten and Davy Maes

CodesignS, Flanders Make, Leuven, Belgium

Abstract
Knowledge graphs (KGs) provide organisations with flexibility and insights hard to achieve with conven-
tional databases. However, not every type of data that lives inside an organisation integrates well in a KG
(e.g. time-series data, log files, unmaterialised data computed by scripts, etc). As a result, data scientists
still need to combine data from different sources and master different query languages to answer global
questions. In this paper, we introduce virtual predicates as a solution to query data via SPARQL that is
purposely not part of a KG. We augment existing SPARQL endpoints with triples that are generated on
the fly based on the query context. Our solution consists of a SPARQL-OTFC proxy endpoint through
which queries are routed and forwarded to a myriad of data sources to collect and compute missing data.

1. Introduction

A knowledge graph (KG) could be considered as a single entry point for data scientists and
visualisation tools to query and inspect an organisation’s data. In reality, however, there are
several barriers to overcome: some data types such as time-series data do not scale well to
triple stores, privacy and security policies may require sensitive data such as credit card details
to be stored separately and on-demand computations (e.g. embedded in stored procedures,
scripts, ...) can be difficult to integrate into SPARQL extensions. We assume a KG and its
ontology describing an organisation’s core data concepts and relationships, co-exists with other
heterogeneous data sources. Our goal is to make any relevant data – stored or computed, part
of the KG or not – accessible via a uniform SPARQL interface. To this end, we extend data in a
KG with triples that are generated on the fly based on the query asked. We introduce virtual
predicates, imitating regular predicates, to transparently query triples that do not exist (and fit)
in the KG. These virtual predicates enable us to:

• Dynamically pull in selective data from heterogeneous data sources such as specialty
databases, file servers and REST APIs;

• Perform advanced calculations and generate arbitrary datatypes on the fly;
• Regulate access to sensitive data based on user and virtual predicate policies.

We illustrate our approach via a proof-of-concept implementation that combines data from
publicly available data sources.

ISWC 2023 Posters and Demos: 22nd International Semantic Web Conference, November 6–10, 2023, Athens, Greece
" geert.vanderhulst@flandersmake.be (G. Vanderhulst); johan.vannoten@flandersmake.be (J. Van Noten);
davy.maes@flandersmake.be (D. Maes)
� 0000-0002-5420-2949 (G. Vanderhulst); 0000-0003-3904-8645 (J. Van Noten); 0000-0001-7744-7730 (D. Maes)

© 2023 Copyright 2023 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR

Workshop
Proceedings

ceur-ws.org

ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:geert.vanderhulst@flandersmake.be
mailto:johan.vannoten@flandersmake.be
mailto:davy.maes@flandersmake.be
https://orcid.org/0000-0002-5420-2949
https://orcid.org/0000-0003-3904-8645
https://orcid.org/0000-0001-7744-7730
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


Figure 1: Passing a user query with a virtual predicate through a SPARQL-OTFC proxy. In a compute
step, a script collects data and generates triples for each virtual predicate. In a federate step, computed
triples and data in a target KG are combined to answer the user query.

2. Related work

Virtual KGs are not new, with e.g. Ontop exposing non-semantic databases as SPARQL endpoints
[6]. After creating mappings between an ontology and a relational database schema, a SPARQL
query can be asked that is translated into SQL and SQL results are then converted back into
SPARQL bindings. We advance this virtualisation effort by augmenting a KG (virtual or regular)
with predicates that compute data that does not exist in its underlying data store. In [3], SPARQL
queries are extended with special syntax that is rewritten into VOLT procedures when passed
through a SPARQL proxy. Similar to SPARQL extension functions, GraphDB’s magic predicates
[1] and Jena’s property functions [2], these approaches combine query rewriting with functions
that accept query variables as arguments to compute data within a query’s result set. Opposed
to this, virtual predicates inject computed triples in a virtual KG prior to query execution and
are syntactically equivalent to regular predicates by design.

3. Virtual predicates

Consider the user query in fig. 1(a) targeted at OpenStreetMap (OSM) [4], that fetches McDon-
ald’s restaurants on 6th Avenue and Broadway where the ice cream machine is currently working.
Note that information about the state of a restaurant’s ice cream machine is not contained
in the OSM KG. It is dynamically generated from the highlighted otfc:iceCreamBroken
virtual predicate via a script (fig. 1(c)) that collets data required for computation via a predicate
query (fig. 1(b)) and ice cream machine states from mcbroken.com. This script is registered at
the SPARQL-OTFC proxy through which the query is routed, using the corresponding virtual
predicate’s IRI as identifier. The proxy is built using Node.js and Comunica [5] and supports
both JavaScript and Python interfaces for pluggable predicate scripts.

When a query is processed by SPARQL-OTFC, virtual predicates are resolved first via their
IRI. Preprocessed queries are then forwarded by the proxy to target SPARQL endpoints such as

mcbroken.com


OSM Sophox. The two main steps in its processing pipeline – computation and federation – are
discussed in section 3.1 and 3.2 respectively.

3.1. Computation

Just like a regular predicate, a virtual predicate 𝑃 is bound to a subject variable (or blank
node). For each matching subject 𝑆𝑖 in the KG, a triple {𝑆𝑖, 𝑃,𝑂𝑖} will be generated by a script
implementing the virtual predicate, with 𝑂𝑖 a computed literal or IRI. Consider as an example
of such script the implementation of the otfc:iceCreamBroken virtual predicate in list. 1.

1 import Predicate from ’../predicate.js’;
2
3 export default class IceCreamBrokenPredicate extends Predicate {
4 static iri = ’http://flandersmake.be/otfc/iceCreamBroken’; // see user query, fig. 1(a)
5
6 static async compute(query, context, engine) {
7 let q = this.read(’./queries/iceCreamBroken.sparql’); // see predicate query, fig. 1(b)
8 q = this.merge(q, query, ’mcdo’, IceCreamBrokenPredicate.iri); // merge constraints
9 let triples = [];

10 await engine.run(q, context, data => { // generate a triple for each relevant mcdo
11 let broken = getStateFromMcBrokenDotCom(data.coords);
12 triples.push({
13 s: Predicate.iri(data.mcdo),
14 p: Predicate.iri(IceCreamBrokenPredicate.iri),
15 o: broken
16 });
17 });
18 return triples;
19 }
20 }

Listing 1: Extract from iceCreamBroken.js. Information from the OSG KG (coordinates of McDonald’s
restaurants) is used to obtain ice cream machine states from an external data source (mcbroken.com).
From this data triples are generated that serve as input to a federation step (section 3.2).

Within the compute function, the script obtains 𝑆𝑖 candidates (?mcdo instances) along with
additional information that is not necessarily requested by the end user in what we call a
predicate query. For instance, while a user may not ask for a restaurant’s GPS coordinates, the
predicate script still needs those to obtain the ice cream machine’s state at that location. As
the creator of a predicate query cannot predict how a virtual predicate will be used in user
queries, she/he should collect all subject candidates from the KG and compute triples for each of
them. However, since a user query will likely constrain the subject, the predicate query would
overfetch and more triples than strictly needed will be computed. To avoid this, we extend
the predicate query with constraints on 𝑃 ’s subject (mcdo in our example) found in the user
query at runtime. These include triple patterns from the basic graph pattern in which 𝑃 appears
along with any FILTER expressions that further constrain the variables in those patterns. For
example, the predicate query in fig. 1(b) by default asks for all McDonald’s branded OSM objects
and their coordinates. However, the user query only asks for restaurants located in New York on
Broadway or 6th Avenue. Lines 3, 4, 6 and 7 in the user query (fig. 1(a)) define these constraints

mcbroken.com


and are automatically merged into the predicate query which will now only return the set
of strictly necessary results. Coordinates are then matched with JSON data obtained from
mcbroken.com to acquire the state of the ice cream machines. This state is encoded as a simple
boolean in triples such as { osmnode:2443892135, otfc:iceCreamBroken, false }
which are added to a "disposable KG" (i.e. a temporary triple store that caches results specific to
a user query). All the information to answer the user query is now available, albeit distributed
amongst the OSM KG and the disposable KG.

3.2. Federation

Once the disposable KG has been filled with computed data triples, the original user query is
federated against the original KG and the disposable KG. We consider three approaches for
federation:

1. Automated federation: the query engine decides how to probe the KGs and collect relevant
data from either of them;

2. Manual federation: the user query is rewritten by the proxy with a SPARQL SERVICE
group that tells the query engine which data to obtain from where;

3. Data offloading: relevant triples from the original KG are cached in the disposable KG to
minimise the need for federation.

The complexity of a user query, the size of a KG and the implementation of the federation
algorithm in a given query engine all influence the performance of this step. As could be
reasonably expected, in our preliminary experiments with Comunica as query engine, we found
that approach 2 consistently outperforms approach 1 for varying user queries and KGs. However,
even with manual federation, the amount of probing queries (i.e. COUNT queries) spawned by
the query engine can be overwhelming. In our running example, we can either send a user
query to the OSM KG with a SERVICE group that pulls computed data from the disposable
KG or vice-versa, send the query to the disposable KG and use a SERVICE group to fetch all
non-computed data from the OSM KG. Note that not every (public) KG supports federation or
has it disabled such that the latter strategy becomes the only option. As the required probing of
a KG bears a direct relation with the number of patterns within a SERVICE group, we aim to
minimize these patterns. This is achieved via approach 3, where we translate (parts of) basic
graph patterns into CONSTRUCT queries that fetch the data required to evaluate them and group
it along with triples computed from the virtual predicates in a disposable KG. For instance,
relevant triples such as { ?mcdo osmt:brand "McDonald’s" } can be offloaded from
the OSM KG to the disposable KG. Since offloading eliminates probing queries, it consistently
outperformed the automatic and manual federation approaches in our expirements. Of course,
this approach is limited by the amount of data to be offloaded which in turn depends on the user
query. The decision of when to federate and when to offload is taken by an evolving algorithm
that is beyond the scope of this paper.

mcbroken.com


4. Conclusions

We illustrated how virtual predicates can be used to query a KG along with dynamically
computed data using standard SPARQL. Since virtual predicates are indistinguishable from
regular predicates, there is no learning curve for SPARQL users. However, this transparency
may not be wished for if the computational cost of a virtual predicate is high, hence affecting
query performance. To this end, we plan to model the cost estimate as part of an ontology. A
direction for future work also includes studying user-based access control to virtual predicates.

5. Demo

For additional information, we refer to our public SPARQL-OTFC Github repository1. Here, a
demo video, source code and extra documentation can be found.

6. Acknowledgements

This research was supported by Flanders Make, the strategic research centre for the manufac-
turing industry.

References

[1] GraphDB Magic Predicates:
https://graphdb.ontotext.com/documentation/10.0/pdf/GraphDB.pdf, pp. 696

[2] Jena Property Functions:
https://jena.apache.org/documentation/query/writing_propfuncs.html

[3] Regalia, Blake et al.: VOLT: A Provenance-Producing, Transparent SPARQL Proxy for
the On-Demand Computation of Linked Data and its Application to Spatiotemporally
Dependent Data. In: ESWC, pp. 523–538 (2016)

[4] OSM Sophox Service: https://sophox.org
[5] Taelman, Ruben et al.: Comunica: a Modular SPARQL Query Engine for the Web. In: ISWC,

pp. 239–255 (2018)
[6] Xiao, Guohui et al.: The Virtual Knowledge Graph System Ontop. In: ISWC, pp. 259—277

(2020)

1https://github.com/Flanders-Make-vzw/sparql-otfc

https://graphdb.ontotext.com/documentation/10.0/pdf/GraphDB.pdf
https://jena.apache.org/documentation/query/writing_propfuncs.html
https://sophox.org
https://github.com/Flanders-Make-vzw/sparql-otfc

	1 Introduction
	2 Related work
	3 Virtual predicates
	3.1 Computation
	3.2 Federation

	4 Conclusions
	5 Demo
	6 Acknowledgements

