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Abstract
In Economics, authors conduct robustness checks, such as accounting for potential confounders, to
avoid drawing misleading conclusions from their causal analyses. To assist in this process, we propose
EconARC, a tool to automatically identify confounders from the literature relevant to a Cause and Effect
pair. Our methodology involves extracting cause-and-effect arguments using a fine-tuned sequence-
to-sequence model, clustering semantically similar arguments into topics, and utilizing the backdoor
criterion on the causal graph to detect confounders. Our study is the first to employ text mining
techniques to generate confounders in Economics, with implications for advancing Artificial Intelligence
towards human-level capabilities like engaging in academic discourse.
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1. Introduction

Figure 1: Overview of EconARC

Causal inference relies on addressing confounders, which are variables affecting both the
dependent and independent variables. In Economics, consideration of confounders is important,
and often a critical part of referee reports. However, staying abreast of confounders in this field
requires an extensive knowledge of the literature, which is a non-trivial task given the lengthy
and vast number of Economics papers.
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Existing literature on confounder detection from causal knowledge graphs prioritizes uncov-
ering latent relationships using quantitative variables [1]. We offer a novel approach by focusing
solely on text, thereby bridging the fields of causal text mining and causal identification. We
propose the Economics Assistant for Robustness Checks (EconARC), overview shown in Figure
1, that automates robustness check proposal by identifying confounders related to a Cause and
Effect pair. To our knowledge, we are the first work to use causal text mining techniques to gen-
erate confounders for Economics. We believe that EconARC will be a useful tool for Economics
authors to review their paper prior to submission, and reviewers to obtain an unbiased, initial
assessment of a paper. Our work also has implications for advancing Artificial Intelligence (AI)
towards human-level understanding and inference tasks like engaging in academic discourse.

2. Our Approach

In this section, we outline our methodology, and provide additional details in the Appendix.1

2.1. Dataset

Our study experiments on 177 papers from 23 issues of the Journal of Labor Economics (JOLE).2

(1) Annotating Causal Relations: One of our authors, who is an Econometrics graduate, annotated
5 papers (2,223 sentences) for training and 1 paper (560 sentences) for testing with causal
relations. We restricted our annotations to causal relations that appear across 5-sentences in
the same section of the paper, and for cause and effect arguments to be consecutive spans. We
mainly adapted the annotation guidelines from the Causal News Corpus (CNC) [2, 3] with
the key difference being that our annotated causal relations must be helpful to an Economics
academic. A consequence of this rule means that we differ from CNC in areas like our arguments
need not contain events, and we do not annotate: (1) Purpose relations, (2) justifications for
a data or methodology choice, etc. In total, 522 and 76 causal relations were annotated in
the training and test set respectively. (2) Annotating Argument Topics: For two papers from
the training set, the same annotator assigned open-ended topic labels to each argument. 356
arguments were annotated to 119 topics. Topic labels were as general as “education”, to more
specific labels like “greater upward mobility”, “areas where fathers tend to be richer within the
bottom half of households and whose sons did better accordingly”, etc.

Sequences without annotations will be referred to as our Out-of-Sample (OOS) set. The OOS
set comprises of 83,676 sentences from 171 papers.

2.2. Extraction of Causal Relations

We fine-tune SOTA sequence-to-sequence (S2S) pre-trained language models (PTMs), like
t5-base [4], bart-base [5] and pegasus-large [6]. Given the input_text , the model learned to
generate the target_text . These texts are described below:

1. input_text : An input sequence that is 5-sentences long with a “summarize: ” prefix.

1Our repository is available at https://github.com/tanfiona/EconARC.
2https://www.journals.uchicago.edu/toc/jole/current
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2. target_text : If no causal relations were annotated within the input_text , return “No key
causal relations”. Else, return a line-separated list of causal relations in the format of “Key
causal relations:\n1. Cause: <FIRST_CAUSE_SPAN>\tEffect:<FIRST_EFFECT_SPAN>\n ...”

2.3. Knowledge Graph Creation

To prevent a sparse graph, we grouped arguments with similar meaning into a topic. Similar
to [7, 8], we approached this task by (1) generating word embeddings and (2) clustering the
embeddings. We concatenated the annotated causal relations from the training set and the
inferred causal relations from the OOS set together when performing clustering. For (1), to
encode arguments into embeddings, we experimented with PTMs like the supervised pre-trained
language model by SimCSE [9] and the encoder portion of our fine-tuned T5 extraction model.
For (2), we condensed our embeddings into 400 components3 using Principal Components
Analysis (PCA) and used Mini-Batch K-Means [10] to perform our clustering. We explored
various levels of K (5000 to 15000, jumping by gaps of 2500). We removed relations where the
cause and effect have the same topic to avoid nodes with self-loops. Our knowledge graph (KG)
𝐺 = (𝑉 , 𝐸) is a collection of nodes 𝑉 = {(𝑣1, 𝑣2, ..., 𝑣𝑛)} and directed edges 𝐸 = {(𝑣1, 𝑣2), (𝑣2, 𝑣3), ...}.
A directed edge (𝑣𝑥, 𝑣𝑦) represents the presence of causality between the two nodes, where 𝑣𝑥 is
the cause argument and 𝑣𝑦 is the effect argument. The edges are also weighted by support 𝑠,
indicating the count of relations expressing causality from 𝑣𝑥 to 𝑣𝑦 in the dataset.

2.4. Confounder Detection

Given an ordered pair of variables (𝑋 , 𝑌 ) in a directed acyclic graph 𝐺, a set of variables 𝑍
satisfies the backdoor criterion relative to (𝑋 , 𝑌 ) if no node in 𝑍 is a descendant of 𝑋, and
𝑍 blocks every path between 𝑋 and 𝑌 that contains an arrow into 𝑋 [1]. Backdoor paths may
make 𝑋 and 𝑌 dependent despite lacking causal influences from 𝑋. To estimate the causal
relationship of 𝑋 on 𝑌, we need to condition on a set of nodes 𝑍 such that 𝑍 (1) blocks all
spurious paths between 𝑋 and 𝑌, (2) leaves directed paths between 𝑋 and 𝑌 unchanged, and (3)
creates no new spurious paths. In other words, the causal effect of 𝑋 on 𝑌 is given by the formula:
𝑃(𝑌 = 𝑣𝑦|𝑑𝑜(𝑋 = 𝑣𝑥)) = ∑𝑣𝑐 𝑃(𝑌 = 𝑣𝑦|𝑋 = 𝑣𝑥, 𝑍 = 𝑣𝑧)𝑃(𝑍 = 𝑣𝑧). This formula describes the
distribution of Y given an intervention (𝑑𝑜(𝑋 = 𝑣𝑥)) that sets X to the value 𝑣𝑥, thereby removing
X’s dependence on Z.

Given a source (Cause) and target (Effect), we automatically identify potential confounders
by adapting the backdoor criterion scripts from DoWhy [11], a Python package for causal
inference. A depth-first search algorithm to explore paths between the Cause and Effect pair
and determines the variables that need to be conditioned on to block all paths between them.
Since our whole graph is too large, we had to restrict our search space to improve run times:
For each node in the graph 𝐺, we designated it as a central node and obtained a subgraph (𝑠𝐺)
containing nodes located within a 2-step radius. For each node in 𝑠𝐺 that is not the central node,
we designated it as the target node, while the central node was fixed as the source. The benefit
of this setup is that we could search for backdoor variables within a feasible run time. However,
our methodology fails to identify backdoor variables that lie outside of each subgraph.

3With 400 components, only 5.005−05 of variance is dropped.



(A) Extraction (Seq2Seq Model) (B) Clustering (MiniBatch K-Means Model)
PTM ROUGE1 ROUGE2 ROUGEL ROUGELsum PTM K ARI FMI NMI

T5 79.90 77.65 79.25 79.65 SimCSE 7500 23.03 32.95 82.47
Pegasus 66.27 63.07 65.51 65.73 SimCSE 10000 18.32 27.51 80.54
BART 76.86 73.76 75.97 76.48 T5 7500 15.81 21.53 77.64

T5 10000 12.19 21.50 80.11

Table 1
Performance metrics for (A) cause-effect extraction in a S2S framework and (B) argument clustering
using Mini-Batch K-Means. Scores are reported in percentages (%). Top score per column is in bold.
Explanations for evaluation metrics are available in the Appendix.

3. Results & Conclusion

Panel A of Table 1 reports scores for extraction. Across all metrics, our best model was the S2S
model that fine-tuned T5, scoring 79.90% for ROUGE1 and 76.25% for ROUGEL.4 Hence, we
used this best model on our OOS set to obtain predicted causal relations. Panel B of Table 1
reports scores for clustering. Across all metrics, our best model uses SimCSE embeddings and
performs K-Means clustering for 7500 topics, scoring 23.03% for ARI and 82.47% for NMI. Using
the SimCSE embeddings consistently supercedes using T5’s, suggesting benefits in clustering
arguments that were converted to embeddings that convey semantic similarity. For our best
model, our KG comprises of 7498 unique nodes, 37557 edges, and an edge support ranging from
1 to 10 and averaging at 1.207.5 Finally, we apply the backdoor criterion detection algorithm to
identify confounders. For our dataset of 176 papers (train + OOS), we identified 152 papers and
676 confounders for authors to consider reviewing. These confounders lie 1 to 4 steps away
from either the cause or effect argument of the main relation. We also detected 161 papers and
1408 confounders that the authors themselves describe within their paper, which reveal that
confounders and robustness checks are definitely a key concern and covered by most authors.

In conclusion, EconARC successfully applies causal text mining techniques to automatically
identify confounders. EconARC will be a useful tool for Economics authors and referees to
critically evaluate the validity of a causal identification strategy. This tool will also help mitigate
reviewers’ unconscious bias by standardizing the review process. In the future, we hope to
expand the coverage of our work to more journals and to more branches of Economics, and to
evaluate our system with Economic academics. We also hope to design tools to identify other
threats to validity to provide a more comprehensive review.

References

[1] J. Pearl, M. Glymour, N. P. Jewell, Chapter 3: The effects of interventions, in: Causal
inference in statistics: A primer, John Wiley & Sons, 2016.

[2] F. A. Tan, A. Hürriyetoğlu, T. Caselli, N. Oostdijk, T. Nomoto, H. Hettiarachchi, I. Ameer,
O. Uca, F. F. Liza, T. Hu, The causal news corpus: Annotating causal relations in event

4We used ROUGE evaluation metrics since the task is a S2S open-ended generation task.
5Due to limited space, we provide experimental details, explanation of our evaluation metrics, ablation studies and
provide qualitative examples of confounders in the Appendix.



sentences from news, in: Proceedings of the Thirteenth Language Resources and Evalua-
tion Conference, European Language Resources Association, Marseille, France, 2022, pp.
2298–2310. URL: https://aclanthology.org/2022.lrec-1.246.

[3] F. A. Tan, H. Hettiarachchi, A. Hürriyetoğlu, N. Oostdijk, T. Caselli, T. Nomoto, O. Uca,
F. F. Liza, S.-K. Ng, RECESS: Resource for extracting cause, effect, and signal spans, in:
Proceedings of the 13th International Joint Conference on Natural Language Processing
and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational
Linguistics, Association for Computational Linguistics, Bali, Indonesia, 2023.

[4] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, P. J. Liu,
Exploring the limits of transfer learning with a unified text-to-text transformer, Journal of
Machine Learning Research 21 (2020) 1–67. URL: http://jmlr.org/papers/v21/20-074.html.

[5] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, L. Zettle-
moyer, BART: Denoising sequence-to-sequence pre-training for natural language gen-
eration, translation, and comprehension, in: Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, Association for Computational Lin-
guistics, Online, 2020, pp. 7871–7880. URL: https://aclanthology.org/2020.acl-main.703.
doi:10.18653/v1/2020.acl- main.703 .

[6] J. Zhang, Y. Zhao, M. Saleh, P. J. Liu, PEGASUS: pre-training with extracted gap-sentences
for abstractive summarization, in: Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, PMLR, 2020, pp. 11328–11339. URL: http://proceedings.mlr.
press/v119/zhang20ae.html.

[7] S. Sia, A. Dalmia, S. J. Mielke, Tired of topic models? clusters of pretrained word embed-
dings make for fast and good topics too!, in: Proceedings of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP), Association for Computational Lin-
guistics, Online, 2020, pp. 1728–1736. URL: https://aclanthology.org/2020.emnlp-main.135.
doi:10.18653/v1/2020.emnlp- main.135 .

[8] Z. Zhang, M. Fang, L. Chen, M. R. Namazi Rad, Is neural topic modelling better
than clustering? an empirical study on clustering with contextual embeddings for top-
ics, in: Proceedings of the 2022 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Associa-
tion for Computational Linguistics, Seattle, United States, 2022, pp. 3886–3893. URL:
https://aclanthology.org/2022.naacl-main.285. doi:10.18653/v1/2022.naacl- main.285 .

[9] T. Gao, X. Yao, D. Chen, SimCSE: Simple contrastive learning of sentence embeddings, in:
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
Association for Computational Linguistics, Online and Punta Cana, Dominican Republic,
2021, pp. 6894–6910. URL: https://aclanthology.org/2021.emnlp-main.552. doi:10.18653/
v1/2021.emnlp- main.552 .

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, E. Duchesnay, Scikit-learn: Machine learning in Python, Journal of Machine
Learning Research 12 (2011) 2825–2830.

[11] A. Sharma, E. Kiciman, Dowhy: An end-to-end library for causal inference, CoRR
abs/2011.04216 (2020). URL: https://arxiv.org/abs/2011.04216. arXiv:2011.04216 .

https://aclanthology.org/2022.lrec-1.246
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/2020.acl-main.703
http://dx.doi.org/10.18653/v1/2020.acl-main.703
http://proceedings.mlr.press/v119/zhang20ae.html
http://proceedings.mlr.press/v119/zhang20ae.html
https://aclanthology.org/2020.emnlp-main.135
http://dx.doi.org/10.18653/v1/2020.emnlp-main.135
https://aclanthology.org/2022.naacl-main.285
http://dx.doi.org/10.18653/v1/2022.naacl-main.285
https://aclanthology.org/2021.emnlp-main.552
http://dx.doi.org/10.18653/v1/2021.emnlp-main.552
http://dx.doi.org/10.18653/v1/2021.emnlp-main.552
https://arxiv.org/abs/2011.04216
http://arxiv.org/abs/2011.04216

	1 Introduction
	2 Our Approach
	2.1 Dataset
	2.2 Extraction of Causal Relations
	2.3 Knowledge Graph Creation
	2.4 Confounder Detection

	3 Results & Conclusion

