CEUR-WS.org/Vol-3632/ISWC2023_paper_446.pdf

C

CEUR
Workshop
Proceedings

Qanary Builder: Addressing the Reproducibility Crisis
in Question Answering over Knowledge Graphs

Aleksandr Perevalov?®**, Andreas Both®’, Florian Gudat!, Paul Brauning’,
Johannes Meesters!, Lennart Griindel!, Marie-Susann Bachmann?’ and
Salem Zin Iden Naser!

"Leipzig University of Applied Sciences, Karl-Liebknecht-Straf3e 132, 04277 Leipzig, Germany
?DICE Group, University of Paderborn, Warburger Str. 100, 33098 Paderborn, Germany
*Technology Innovation Unit, DATEV eG, Nuremberg, Germany

Abstract

This paper discusses the challenge of reproducibility in the field of Question Answering over Knowledge
Graphs (KGQA). To address this challenge, the Qanary Builder has been developed as a tool to facilitate
the creation and evaluation of component-based KGQA systems. The Qanary Builder is a full-stack Web
application that enables a no-code development process of KGQA systems by configuring them from
pre-defined components and providing evaluation functionality. Based on the Qanary Framework, it
provides visual insights and instant explainability of a KGQA process through semantic annotations. The
authors aim to present the effectiveness of the Qanary Builder in addressing the reproducibility crisis
and demonstrate how this tool can improve the KGQA system development and evaluation efficiency.

Keywords

Qanary Builder, Qanary Framework, Question Answering, Evaluation, Reproducibility

1. Introduction

The field of question answering over knowledge graphs (KGQA) has been increasingly important
in recent years, with many applications in various domains. However, the reproducibility crisis
in this field has posed a significant challenge to researchers, making it difficult to compare the
effectiveness of different KGQA systems [1] and their components that represent the subtasks
required for computing the answer to a given question (e.g., Named Entity Recognition). In
response to this challenge, the Qanary Builder has been developed as a tool to facilitate the
creation of component-based KGQA systems. The Qanary Builder extends the eponymous Qanary
Framework [2, 3] by providing a no-code development interface, visual insights, evaluation
management, and instant explainability of a KGQA process through semantic annotations (SAs)
automatically produced by KGQA components and representing the result of the corresponding
sub-task of the actual KGQA process. The Qanary Framework is a core engine for processing

ISWC 2023 Posters and Demos: 22nd International Semantic Web Conference, November 6—10, 2023, Athens, Greece
*Corresponding author.

& alpe@mail.uni-paderborn.de (A. Perevalov); andreas.both@htwk-leipzig.de (A. Both);
florian.gudat.1@stud.htwk-leipzig.de (F. Gudat); paul.braeuning@stud.htwk-leipzig.de (P. Brauning);
johannes.meesters@stud.htwk-leipzig.de (J. Meesters); lennart.gruendel@stud.htwk-leipzig.de (L. Griindel);
marie-susann.bachmann@stud.htwk-leipzig.de (M. Bachmann); salem.zin_iden_naser@stud.htwk-leipzig.de
(S.Z.1. Naser)

& https://perevalov.com (A. Perevalov); http://www.andreasboth.de/en (A. Both)

© 2023 Copyright ¢ 2023 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

=] CEUR Workshop Proceedings (CEUR-WS.org)

The SAs are stored as RDF using the Web Annotation Data Model (cf. https://www.w3.org/TR/annotation-model/).

mailto:alpe@mail.uni-paderborn.de
mailto:andreas.both@htwk-leipzig.de
mailto:florian.gudat.1@stud.htwk-leipzig.de
mailto:paul.braeuning@stud.htwk-leipzig.de
mailto:johannes.meesters@stud.htwk-leipzig.de
mailto:lennart.gruendel@stud.htwk-leipzig.de
mailto:marie-susann.bachmann@stud.htwk-leipzig.de
mailto:salem.zin_iden_naser@stud.htwk-leipzig.de
https://perevalov.com
http://www.andreasboth.de/en
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org
https://www.w3.org/TR/annotation-model/

questions. It acts as an orchestrator of different pre-defined components that can be combined
in a KGQA system. The SAs are used to persist the outputs of all components of a Qanary-
based system, hence, each KGQA process can be traced by following the SAs. In this regard,
the KGQA systems and their components may store their confidence score, execution time,
identified resources, and other information in SAs. In a nutshell, the Qanary Builder provides its
users—researchers—with a full-cycle development process of KGQA systems by interactively (re-
)configuring them from pre-defined components and providing built-in evaluation functionality
without writing code. In this demo paper, we present the aforementioned features of the Qanary
Builder and describe how it is addressing the reproducibility crisis and enabling more efficient
and reliable research in this field.

2. Related Work

Reproducibility is a general challenge in many research communities. In particular, for the
KGOQA field, a researcher may not be able to reproduce results presented a few years ago or even
the most recent ones [1]. Therefore, a number of various solutions were proposed to address
this problem. The authors of [2, 3] introduce Qanary as a knowledge-based methodology for
orchestrating component-based KGQA systems distributed over the Web. It employs its own
RDF ontology (based on the Web Annotation Data Model) as an exchange format (Semantic
Annotations) for components to build KGQA systems in a more flexible and standardized way.
GERBIL [4] has been introduced as an evaluation framework for semantic entity annotation
and KGQA (cf., GERBIL-QA [5]). This framework generates data in a machine-readable format
and provides persistent URIs for each experiment, ensuring the reproducibility and archiving of
the corresponding evaluation results. Furthermore, there were several initiatives to provide
standardized benchmarks [6] and leaderboards [1] for different KGQA tasks.

3. Qanary Builder’s Use Cases

The use cases that demonstrate the effectiveness of Qanary Builder in addressing the repro-
ducibility crisis are: (1) Researchers may create their own KGQA system from available Qanary
components and evaluate it on a provided dataset; (2) Researchers may take existing KGQA
systems, which are represented as a single Qanary component, run the evaluation, and compare
the obtained results. The use cases do not require any coding as everything is pre-defined,
therefore, it standardizes the evaluation process and decreases the chances of making mistakes
in between. For a better understanding, we provide a video® that covers Qanary Builder’s
use-cases and encourage readers to test the application online®.

Figure 1 presents the designer module of Qanary Builder. The designer enables users to manage
the available Qanary-based systems and the corresponding configurations, i.e., a sequential
order of components to form the process of a KGQA system. The workspace of the designer
allows a user to select components, try single questions to test the functionality, and see the
answer as well as the SAs created by each component during the KGQA process. Thus, the
designer contributes to both first and second use cases. The instant explainability is provided

*https://drive.google.com/file/d/10DT9UfgjFUObbhE6fsbT4EcjxRahl2Yc/view
’Live demo link: https://builder.qanary.net/. Login: “iswc2023”, Password: “dem0”.

https://drive.google.com/file/d/10DT9UfgjFUObbhE6fsbT4EcjxRahl2Yc/view
https://builder.qanary.net/

Qanary Desgrer B Duasets & res.ey@ Demopeline | Manage @

ET ... | >opentegend :
Question answered

@ DandelionNED & Named Entity Disambiguation @

v 0: AnnotationOfinstance

4472 ms 3

0.0000 2023-03- Endpoint http://20.113.135.50:8000/sparql O

03T13:45:07.912Z

in graph grap a
http://dbpedia.org/resource/Angela_Merkel a

Out graph urn:graph:9a120d8d-c6f5-49a0-89e3-a3 6 a03e868

Question htipi/ipie. ganary.net:3000/question/stored-question_text_f28645e7-4270-48ee-a171-7925629172:
REL-Falcon-2.0-dbpedia © Relation Linking

v 0: AnnotationOfRelation
Answer:

1.0000 2023-03- 00000
03T13:45:08.345Z

1SPARQL

a

select * where { <http://dbpedia.org/resource/Angela_Merkel> <http://dbpedia.org/ontology/birthPlace> 2ve. }

http://dbpedia.org/ontology/birthPlace

SINA © Query Builder

> 0:AnnotationOfAnswerSPARQL

®e

Figure 1: The designer. (1) — Menu to switch between the designer, datasets, and tester; (2) — Qanary
System configuration manager; (3) — Input field for a test question; (4) — Component configuration
manager; (5) — Component picker; (6) — SAs viewer (the one for the SINA component is collapsed); (7) -
Answer viewer (the answer is the very last SA of a pipeline, here — the SA by the SINA component).

through the SAs viewer (Element 6 of Figure 1) to enable user directly observe what a particular
KGQA component has identified. The datasets’ manager is responsible for managing custom
datasets that are further used for the evaluation. The accepted data format is a . csv file that
contains two fields: “question” and “answer”. An “answer” may be represented in different
forms: a textual answer, a SPARQL query, a named entity’s URI and many more. Hence, the
datasets’ manager is a crucial component for establishing a reproducible evaluation process
related the first and second use cases. The tester facilitates the evaluation runs given a specified
configuration and a dataset. Each run contains information on the run time, configuration,
dataset, and a question-wise accuracy score. The tester utilizes a dataset created with the datasets’
manager and iteratively sends questions to a KGQA system configuration defined in the designer.
The results appear after a particular question has been processed. Therefore, the tester addresses
both the first and second use cases as well.

4. Qanary Builder’s Technical Overview

The Qanary Builder is split into front-end and back-end subsystems. It connects to a specified
Qanary KGQA system instance* and monitors currently registered components. Hence, Qanary
Builder always has up-to-date information on what KGQA components can be used for config-
uring a system. A configured KGQA system can be directly evaluated in the Qanary Builder by
selecting a specific test dataset. In its turn, the test datasets are custom and are managed by a
dedicated module. The overview of the architecture of Qanary Builder is presented in Figure 2.

*The Qanary was developed outside of this work.

<<subsystem>> Qanary Builder's Front-end

9

Generated

Web pages

for a user {l {l
O NextJS ~ [--------- > Axios

<<subsystem>> Qanary Builder's Back-end
Database
{l driver {l
Metadata Database (e.g., @)
MongoDB) _J Spring Boot

Database Port

i

RESTful API RESTful API
Port Interface

Y]

1

;r\l Apache
Jena's Java

i Interface Question-
SPARQL Answering @

Interface Port {l Interface

Apache Jena]

<<external subsystem>> Qanary System {l
SPARQL
{l Exposed Endpoint
SPARQL Port r
Qanary Pipeline
Laquestion-
SPARQL Endpoint Answering
Encapsulated O
SPAR”)QL Port Component &—7J (to encapsulate the Triplestore) Port

registration Port

SPARQL
Endpoint

Registration

Interface kl_j
2] g |

Qanary Component N
(e.g., Named Entity
Recognition)

Qanary Component 1
(e.g., Query Builder)

Triplestore (e.g., Stardog)

Figure 2: The component diagram of the Qanary Builder which is connected to one of the Qanary
Systems (marked as «external subsystem»). The subsystems outlined in green were developed
within this paper and represent the Qanary Builder.

The front-end subsystem of the Qanary Builder is a Web application written with Next.js. It
contains three functional modules: designer, datasets manager, and tester that were described
in the above section. Thus, it helps users with managing their KGQA system configurations,
datasets, and test runs. The back-end subsystem is a RESTful API written using the Spring
Boot framework. It handles the logic for managing the metadata about Qanary Systems, KGQA
system configurations, datasets, and test runs. The storage of this metadata is done with
MongoDB via the corresponding database driver. The back-end requests the Qanary System via
its Question-Answering interface to trigger processing of a question given a set of components.
The back-end communicates with the Qanary System’s SPARQL endpoint via Apache Jena
library, which provides Java interface from one side and connects to the SPARQL endpoint from
the other side. This is used to fetch the SAs and present them at the front-end subsystem.

5. Conclusion

In conclusion, the reproducibility crisis in the KGQA field has been a major concern for re-
searchers. The development of the Qanary Builder offers a solution to this challenge by allowing
the creation and evaluation of component-based KGQA systems without the need for coding.
With built-in development and evaluation functionality, the Qanary Builder provides visual
insights and instant explainability. By utilizing this tool, researchers can improve the repro-
ducibility of KGQA system development and evaluation, leading to more efficient and reliable
research in the field of KGQA. The source code of the whole project is published online’ as
open source (MIT License).

Acknowledgments

This research has been partially funded by the Federal Ministry of Education and Research
(BMBF) under grant 01IS17046. as part of the Software Campus project “LASS KG: Language
Agnostic Semantic Search driven by Knowledge Graphs”, and by grants for the ITZBund®-funded
research project “Entwicklung und Erforschung von IT-basierten Losungen im Rahmen des
ChatBot-Frameworks des Bundes (Question-Answering-Komponenten zur Erweiterung des
ChatBot-Frameworks)” at the Leipzig University of Applied Sciences.

References

[1] A.Perevalov, X. Yan, L. Kovriguina, L. Jiang, A. Both, R. Usbeck, Knowledge graph question
answering leaderboard: A community resource to prevent a replication crisis, in: Proceed-
ings of the Thirteenth Language Resources and Evaluation Conf., 2022, pp. 2998-3007.

[2] A.Both, D. Diefenbach, K. Singh, S. Shekarpour, D. Cherix, C. Lange, Qanary-a methodology
for vocabulary-driven open question answering systems, in: European Semantic Web
Conference, Springer, 2016, pp. 625-641.

[3] D. Diefenbach, K. Singh, A. Both, D. Cherix, C. Lange, S. Auer, The Qanary ecosystem:
getting new insights by composing question answering pipelines, in: ICWE 2017, Rome,
Italy, June 5-8, 2017, Proceedings 17, Springer, 2017, pp. 171-189.

[4] R. Usbeck, M. Rider, A.-C. Ngonga Ngomo, C. Baron, A. Both, M. Briimmer, D. Ceccarelli,
M. Cornolti, D. Cherix, B. Eickmann, P. Ferragina, C. Lemke, A. Moro, R. Navigli, F. Piccinno,
G. Rizzo, H. Sack, R. Speck, R. Troncy, J. Waitelonis, L. Wesemann, GERBIL: General entity
annotator benchmarking framework, in: Proceedings of the 24th International Conference
on World Wide Web, WWW ’15, 2015, p. 1133-1143.

[5] R. Verborgh, R. Usbeck, M. Réder, M. Hoffmann, F. Conrads,]J. Huthmann, A.-C. Ngonga-
Ngomo, C. Demmler, C. Unger, A.-C. Ngonga Ngomo, I. Fundulaki, A. Krithara, Benchmark-
ing question answering systems, Semantic Web 10 (2019) 293-304.

[6] R. Usbeck, R. H. Gusmita, A. N. Ngomo, M. Saleem, 9th challenge on question answering
over linked data (QALD-9), in: Joint proc. of the 4th Workshop on Semantic Deep Learning
(SemDeep-4) and NLIWoD4 and QALD-9 co-located with ISWC 2018, 2018, pp. 58—-64.

Shttps://gitlab.imn.htwk-leipzig.de/qanary
Shttps://www.itzbund.de/

https://gitlab.imn.htwk-leipzig.de/qanary
https://www.itzbund.de/

	1 Introduction
	2 Related Work
	3 Qanary Builder's Use Cases
	4 Qanary Builder's Technical Overview
	5 Conclusion

