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Abstract
Logical patterns, such as symmetry and composition, have been proven to be beneficial in the knowledge
graph completion task. However, their influence has been unexplored in first-order logical (FOL) query
reasoning methods. In this work, we present an inductive bias for query embedding models, Pattern-
aware Cone Embedding (PConE), to support learning and reasoning with logical patterns. PConE
combines the advantages of cones and the rotation operator for powerful algebraic operations for pattern
inference. Our experiments demonstrate how the capability to capture logical patterns positively impacts
the results of query answering.
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1. Introduction

Knowledge Graphs (KGs) represent real-world facts as sets of triples of the form (head entity,
relation name, tail entity). KGs can be stored in and queried efficiently by triple stores using
query languages such as SPARQL under the assumption of completeness. However, when
querying incomplete KGs, some triples are not explicitly available. Simply traversing the graph
misses relevant results. Query embedding methods [1, 2, 3] are proposed to infer the missing
links while reasoning FOL queries. These methods map queries and entities to a vector space
to measure the plausibility of an entity being the answer of a query based on their distance.
The considered queries allow the use of query variables for both head and tail positions, along
with the negation (¬) of such constrained triple patterns, as well as the conjunction (∧) and
disjunction (∨) of intermediate outcomes. An example of such queries is given in Figure 1.
The quality of query embedding approaches depends mainly on their ability to represent

entities, relations, and queries in geometric spaces. In particular, relations in KGs may exhibit
logical patterns, and effectively modeling these patterns relies on the geometry and the defined
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Figure 1: An example on how query answering over an incomplete KG is affected by logical patterns,
with the absent edges labeled by dashed lines. The variables of the given FOL query cannot be directly
extracted from the given facts.

operators. Examples of patterns found within KGs encompass symmetry (e.g., 𝑇 𝑒𝑎𝑚𝑚𝑎𝑡𝑒),
inversion (e.g., 𝐵𝑜𝑟𝑛𝐴𝑡 and ℎ𝑎𝑠𝐵𝑖𝑟 𝑡ℎ𝑃𝑙𝑎𝑐𝑒), and composition (e.g., when an athlete 𝑃𝑙𝑎𝑦𝑠𝐹𝑜𝑟 a
team and 𝑇 𝑒𝑎𝑚𝑊𝑜𝑛𝑇 𝑟𝑜𝑝ℎ𝑦, it implies 𝐴𝑡ℎ𝑙𝑒𝑡𝑒𝑊 𝑜𝑛𝑇 𝑟𝑜𝑝ℎ𝑦). As these logical patterns greatly
influence the interplay of entities and relations, related work [4, 5] has demonstrated that an
embedding’s ability to support them improves its link prediction quality. However, similar
accommodation of logical patterns in the embedding space is still lacking for query embeddings.

In this poster, we propose a novel method, PConE, to support the acquisition and representa-
tion of logical patterns for query answering. We describe its basic working mechanism and the
evaluation strategy and present experimental evidence to demonstrate its efficiency in handling
first-order logical queries with a lightweight structure (with only half the parameters of other
baseline models).

2. PConE

PConE defines each relation as a rotation from the source entity set to the answer/intermediate
entity set, where entities and entity sets are modeled as vectors and cones, respectively. Each
cone q is parameterized by q = (h𝑈,h𝐿), where |h𝑈|2 = 1, |h𝐿|2 = 1 with | ⋅ |2 being the L2
norm, and h𝑈, h𝐿 ∈ ℂ𝑑 represent the counter-clockwise upper and lower boundaries of the cone,
such that h𝑈 ≡ 𝑒𝑖𝜃𝜃𝜃𝑈 ,h𝐿 ≡ 𝑒𝑖𝜃𝜃𝜃𝐿 , where 𝜃𝜃𝜃{𝑈 ,𝐿} represent the angle between the boundary and the
axis, 𝑑 is the embedding dimension. First-order logical operators, conjunction, disjunction, and
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(ii) Composition

Figure 2: Illustration of PConE on query reasoning. Given the KG in Figure 1, PConE answers the
query by deriving the following information with relational rotation: (i) 𝑃𝑒𝑝𝑒 is 𝐶.𝑅𝑜𝑛𝑎𝑙𝑑𝑜’s 𝑡𝑒𝑎𝑚𝑚𝑎𝑡𝑒
(symmetric rotation); (ii) 𝑀𝑏𝑎𝑝𝑝 is the athlete who has won the 𝐸𝑢𝑟𝑜𝑝𝑒 𝐶𝑢𝑝 (compositional rotation);
(iii) The birthplaces of 𝑀𝑒𝑠𝑠𝑖/𝑀𝑏𝑎𝑝𝑝 are 𝑅𝑜𝑠𝑎𝑟 𝑖𝑜/𝑃𝑎𝑟 𝑖𝑠 (inversion rotation).

negation, are translated into geometric operators in the complex vector space. We derive the
final query embedding by executing geometric operators on the selected entity sets along the
computation graph. The model is trained to minimize the distance between the query cone
embedding and the answer entity vector. The geometric operators are designed below.

Relational Transformation Given a set of entities and a relation, the transformation operator
selects the neighboring entities by relation. Existing query embedding methods [2, 1, 6, 3]
apply multi-layer perceptron networks to accomplish this task. They do not accommodate the
learning of potential logical patterns which can help in reasoning logical queries. To capture
diverse patterns, we represent each relation r ∈ ℂ2×𝑑 as a counterclockwise relational rotation
on query embeddings about the origin of the complex plane such that r = (r𝑈, r𝐿), where
|r𝑈| = 1, |r𝐿| = 1, and r𝑈, r𝐿 ∈ ℂ𝑑. Given the query embedding q = (h𝑈,h𝐿) and a relation r,
the transformed query embedding (h′

𝑈,h
′
𝐿) is defined as h′

𝑈 = h𝑈 ∘ r𝑈,h′
𝐿 = h𝐿 ∘ r𝐿. Figure 2

illustrate the relational transformation process in the presence of various patterns.

Logical Operators Given the input of multiple entity sets modeled by cone embeddings, the
intersection operator computes their intersections through a neural network-based permutation-
invariant function. Given the cone embedding of a set of entities q, the negation operator finds
its corresponding negation q¬ as the complement of the cone. In addition, given the input
of multiple entity sets q1, ...,q𝑛, the union operator finds the disjunction set as the union of
multiple cone embeddings in the same complex plane.

3. Preliminary Results

We evaluate our model on a wider range of datasets and dataset splits in addition to existing
query answering benchmark datasets to thoroughly assess how learning logical patterns affects
query answering.

Model Performance Table 1 summarizes the performance of all methods on answering
various query types in two benchmark datasets WN18RR [7] and NELL [3]. On nearly all query



Dataset Model 1p 2p 3p 2i 3i pi ip 2u up
Q2B 22.4 4.6 2.3 25.6 41.2 13.2 11.0 2.9 3.4

WN18RR BetaE 44.1 9.8 3.8 57.2 76.2 32.6 17.9 7.5 5.3
LinE 45.1 12.3 6.7 47.1 67.1 24.8 14.7 8.4 6.9
ConE 46.8 14.5 9.3 59.0 83.9 33.6 18.7 10.0 9.8
PConE 50.9 17.6 9.9 70.5 89.0 38.9 29.6 18.4 14.0
Q2B 42.7 14.5 11.7 34.7 45.8 23.2 17.4 12.0 10.7

NELL BetaE 53.0 13.0 11.4 37.6 47.5 24.1 14.3 12.2 8.5
ConE 53.1 16.1 13.9 40.0 50.8 26.3 17.5 15.3 11.3
PConE 54.5 17.7 14.4 41.9 53.0 26.1 20.7 16.5 12.8

Table 1
MRR results (%) of PConE and baseline models on answering logical queries on datasets NELL and
WN18RR. The best statistic is highlighted in bold, while the second best is highlighted in underline.

types, PConE consistently outperforms all baseline approaches.
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Figure 3: Average performances of PConE and
Baseline model (ConE) over query sub-
groups with different logical patterns.

Respective Influences of Logical Patterns
To better study the specific impact of PConE
on queries involving logical patterns, a more
in-depth analysis is made of the query an-
swering dataset NELL. We categorize the test
dataset into five categories, 𝐼 𝑛𝑣𝑒𝑟𝑠𝑒, 𝑆𝑦𝑚𝑚𝑒𝑡𝑟𝑦,
𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡 𝑖𝑜𝑛, 𝐽 𝑜𝑖𝑛𝑡, and 𝑂𝑡ℎ𝑒𝑟𝑠, based on the re-
lations involved in the queries. The subgroup
𝐽 𝑜𝑖𝑛𝑡 is a conjunctive set of queries that in-
volve all three logical patterns. The category
𝑂𝑡ℎ𝑒𝑟𝑠 corresponds to queries that do not in-
volve any of these logical patterns. Figure
3 shows the average performances of PConE
and neural baseline model on these subgroups.
It is observed that PConE outperforms the
neural baseline model on queries that had log-
ical patterns, especially inverse relations. However, PConE does not generalize as well to queries
that were not influenced by logical patterns compared to the baseline model.

4. Conclusion

Logical patterns in complex query answering remains understudied. To the best of our knowl-
edge, PConE is the initial study to investigate how logical patterns improve logical query
reasoning. On the other hand, due to natural geometry features, the relational rotational projec-
tion can only be used to cone embedding. We will develop more generic and effective ways to
improve relation pattern learning in complex query reasoning.
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