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Abstract
Knowledge Graph embedding (KGE) methods are concerned with mapping entities and relations in a KG
into a low-dimensional vector space. KGEs have been effectively used for a variety of tasks such as link
prediction, and entity classification or entity similarity. However, these methods are often considered
as black boxes, providing users with no insights into the information captured by the embeddings
and justifications for the computed outcome on a particular task. Recently, FeaBI, a framework for
interpreting pre-computed entity embeddings relying on entity neighborhoods, has been proposed.
In this paper we present a demo for this work. Our intuitive and interactive demo allows users to
conveniently exploit the respective framework for computing embedding-based similarity between KG
entities as well as generating and visualizing explanations for the respective similarity.
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1. Introduction

Knowledge Graph embeddings (KGEs) (see, e.g., [1]) represent entities and relations in a low-
dimensional vector space. They have been useful in a range of tasks, including link prediction
(e.g., [2, 3, 4]), entity classification (e.g., [5, 6]) or entity similarity. However, despite their success,
KG embeddings are often regarded as black boxes. Lack of transparency and interpretability of
KGEs limits users’ understanding of their inner mechanisms, and undermines the trust in these
models. E.g., given an entity, embedding-based suggestions regarding other entities similar to it
might be less convincing if the user cannot examine the reasons behind the similarities.
Recently, a framework named FeaBI [7] has been proposed for explaining pre-computed

entity embeddings. More specifically, given a KG and its embedding model FeaBI employs
embedded feature selection techniques to extract from the KG propositional features in the form
of relations and entities that are important for a given KG embedding model. These features are
treated as KG embedding model explanations. FeaBI can be conveniently used for explaining
similarities between entities.
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Figure 1: Overview of the Feature Selection-Based Framework
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Figure 2: Structure of the Demo for the Framework (local setup)

In this paper, we present a demo for FeaBI, which offers a user-friendly graphical interface to
facilitate user experience in exploring the computed explanations. This is achieved through
the visualizations of the relevant graph-based entity surroundings and textual descriptions of
explanations. The demo can be used for the analysis and comparison of different embedding
models in terms of KG features that they capture, thus supporting the users in deciding which
embedding model would suit their purpose best.

The recorded video of our demo is available at https://figshare.com/s/b941c7e0c800c23f5d82.

2. Demo Overview

Figure 2 presents an overview of our demo which is designed as a web application. In what
follows, we describe the server and the frontend components of the demo in details.
The sever side is divided into two parts: 1) the backend (based on FeaBI [7]), which given

a KG and its embedding model computes the explanations, and 2) the webservice, which
communicates the KG and the embedding model chosen by the user to FeaBI and presents the
received results to the user via the frontend.

https://figshare.com/s/b941c7e0c800c23f5d82
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Table 1
The runtime of feature construction and feature selection steps of FeaBI
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Regularizing the Random
Forest makes it run faster.

Upload your pre-trained
embeddings in json format:

{
    "bob": [0.1, -0.5, 0.2],
    "alice": [0.3, 0.4, -0.6],
    ...
}

Current running tasks

Figure 3: Illustration for different customizations, e.g., uploading a custom KG to the demo

Feabi (Backend). For a given KG and its embedding model, FeaBI computes KG embedding
explanations defined as a list of KG features ranked based on their importance for the generation
of the KG embedding. The top most important features are then used to build interpretable
representations of the KG entity embeddings. The main components of FeaBI are KG embedding
training, feature construction and feature selection (see [7] for details). The training of the KG
embedding model is naturally the most time-consuming step, which typically takes up to 5
hours (e.g., for CompGCN on FB15K237 dataset). Therefore, in our demo we provide a number
of pre-trained embedding models. At the moment we support 4 popular embedding models:
TransE [2], CompGCN [8], NodePiece [9] and SNoRe [10], but other pretrained embeddings
can also be provided by users as illustrated in Figure 3.
Table 1 shows the running time of the feature construction and feature selection steps of

FeaBI for two popular KGs and embedding models available in the demo.



Figure 4: Model explanations as a ranked list of selected KG features

Figure 5: Similarity explanations and their visualization

Webservice. The webservice handles the communication of FeaBI with the frontend. In the
frontend, the KG and KG embedding models are first selected by the user, and then passed to
FeaBI via the webservice. Subsequently, FeaBI computes the results, which are then sent to the
webservice and presented to the user via the frontend.

Frontend. The frontend allows users to conveniently explore the model explanations for a
given embedding model, entity embedding explanations, as well as explanations for similarities
between a pair of selected entities retrieved by the webservice.
The workflow of the demo proceeds as follows. First, the user selects a KG and an embed-

ding model from the provided list (or uploads custom ones) via the visual interface. Then, a



model explanation (i.e., a list of symbolic features ranked by their importance) is automatically
generated and presented to the user (see Figure 4).
Additionally, the demo offers a possibility to compare entities in the KG in terms of their

similarity relying on the given embedding model. As shown in Figure 5, for a given entity
provided by the user, similar entities can be retrieved based on the distance metric in the
embedding space (cosine similarity and Euclidean distance are currently supported). The user
can select any pair of entities and use the system to generate explanations for their similarity, i.e.,
a list of selected KG features that the entities share along with their graph-based visualizations.

3. Conclusion

We presented a demo for FeaBI [7], which is a recently proposed framework for explaining
KG embedding models. While the work in [7] focuses on technical details of the method, our
demo system allows the users to easily analyse KG features captured by an embedding model
as well as reasons behind embedding-based entity similarities. Future directions include the
analysis of explanations for relation embeddings as well as the consideration of ontologies and
KG schemes within the studied framework.
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