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Abstract 
A smart building is a combination of advanced information systems originating from different 
domains. Domains such as design and construction, maintenance, energy management, 
automation & control have complex yet important relationships, and ensuring their 
connectivity is crucial for building operations. Semantic web technologies can be used to 
model and link these domains and their relationships using domain ontologies. To that end, 
there are a number of smart building ontologies that are available in each domain. However, 
the process of generating a metadata schema by using those ontologies for a given building is 
not investigated adequately. Further, such tools that generate those metadata schemas are rare. 
Therefore, this study presents a semi-automatic metadata schema generator using an ontology 
database and a text search engine. The proposed approach is applied to a campus building. 
Building Automation System metadata was used in the metadata schema generator. Finally, 
this study shows how the generated metadata scheme can be used to efficiently query and 
visualize time-series data for developing data-driven smart building applications. 
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1. Introduction

Centralized Building Automation Systems (BAS) are widely used in large buildings to regulate
indoor climate, ventilation, lighting schedules, and other essential building functions. These systems 
are integrated with various sensors and actuators, such as Air Handler Units (AHUs), boilers, exhaust 
fan systems, chillers, fire safety systems, and more. The BAS collects data from these sensors and 
provides built-in functions for data collection, trend analysis, and visualization[1]. BAS vendors like 
Johnson Controls, Siemens, or Priva often provide these proprietary functionalities. As a result, 
integration with other data analytics tooling becomes a challenge. Another problem is using vendor-
specific conventions and data models for describing sensor points[2]. This leads to customized 
translators and data models, making it harder to use available data for any party interested in developing 
data-driven building controllers[2]. The naming of points is often called a "tag" and these tags 
encapsulate data about the type of point, its relationship with other equipment and its location, which 
are essential in developing applications. These complex tags are created to be understood by field 
engineers and, therefore not intended to make them machine-readable[3]. Therefore, extensive research 
has been conducted to see how these BAS data points can be recognizable and unified across various 
vendors and buildings and how to make machine-readable. 

Proceedings LDAC2023 – 11th Linked Data in Architecture and Construction, June 15–16, 2023, Matera, Italy
* Corresponding author
EMAIL : l.c.rathnayaka.mudiyanselage@tue.nl (Lasitha Chamari)
ORCID : 0000-0003-2726-1393 (Lasitha Chamari) 0000-0002-8651-0671 (Ekaterina Petrova) 0000-0001-8020-4609 (Pieter Pauwels)

©  2023 Copyright for this paper by its authors. 
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  
CEUR Workshop Proceedings (CEUR-WS.org)  

139

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://orcid.org/0000-0002-8651-0671
https://orcid.org/0000-0001-8020-4609


Recent advancements in ontologies in the BAS domain, such as the Brick ontology[4] and standards 
such as Haystack2, have contributed positively to standardizing the semantics of various metadata 
associated with BAS. These standards help establish semantic models that describe physical and/or 
logical points in the BAS, such as equipment, their locations, associated points, and the type of those 
points, whether they are an alarm, setpoint, or command, for example. In essence, a metadata schema 
for a building is a Resource Description Framework (RDF)3 graph that uses classifications available in 
BAS domain ontologies such as the Brick ontology, and this type of metadata schema is the focus of 
this research. These metadata schemes facilitate deploying analytics applications without making 
previous knowledge about the building a prerequisite[3]. Despite advancements in the field, creating 
metadata schemas for BAS remains a challenge. The process of transforming the existing legacy 
identifiers in BAS to ontological models is non-trivial. This paper presents a five-step methodology that 
can be employed to generate metadata schemas for a given BAS based on the Brick ontology.  

1. Set the objective clearly, why the metadata scheme is needed and how it will be used.
2. Sort the relevant metadata required for schema generation and classify and group metadata into

understandable and logical categories.
3. Use a text search engine populated with the classes and definitions extracted from the chosen

ontology.
4. Run an automatic text search and fine-tune the results with expert human input.
5. Integrate the schema with the application to achieve the objectives set in step 1.

This methodology is demonstrated through a case study in a Dutch building, a living lab at the Delft
University of Technology. This living lab is a testing ground for data-driven control methods developed 
in the Brains for Buildings4 project, including Fault Detection and Diagnosis (FDD) and other data-
driven applications. 

2. Related Work

This section discusses methods for standardizing the concepts around BAS systems and methods for
generating a metadata schema based on those standards. 

Ontologies and tagging systems have been used prominently for standardizing BAS metadata. 
Haystack is a tag-based method that allows describing BAS points using a library of predefined 
vocabulary. Because of the absence of formal rules on how to use these tags, the buildings that use 
Haystack tags usually tend to have an ad-hoc collection of tags. Charpenay et al. [5] also identified 
Haystack's textual document approach to describe semantics and its limited accessibility via web 
standards, such as a RESTful Application Programming Interface (API), as barriers to implementing 
Haystack on a large scale. To that end, they proposed the Haystack Tagging Ontology (HTO), which 
supports semantic web technologies (RDF, OWL, SPARQL) to address this gap in Haystack [14]. The 
Brick ontology uses classes and subclasses to describe points hierarchically. The main Classes are 
Collection, Equipment, Location, Measurable, and Point. 

Further, a Relationship Class defines relationships between the subclasses such as hasLocation, 
hasPoint, isFedBy, etc. The Semantic Sensor Networks (SSN)5 [6] and Sensor, Observation, Sample, 
and Actuator (SOSA) [7] ontologies describe the sensors and actuator domains in general (not specific 
to BAS) in great detail. Terkaj et al. [8] elaborated on how multiple ontologies (BOT, SSN, SOSA, etc.) 
can be reused by integrating them to describe BAS. Their proposed BACS ontology also tried to 
describe control logic in addition to BAS points. The RealEstateCore6 (REC) ontology [9] is another 
addition to the smart building domain, which aims at integrating the concepts described by the above 
ontologies according to real estate needs. 

2 https://project-haystack.org/ 
3 https://www.w3.org/TR/rdf11-concepts/#section-rdf-graph 
4 https://brains4buildings.org/ 
5 https://www.w3.org/TR/vocab-ssn/ 
6 https://www.realestatecore.io/ 
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As mentioned, ontologies define standard semantics for the BAS and beyond to great depth. The 
next challenge is using them to translate legacy BAS identifiers available in buildings usually made 
without standardized semantics. Previous studies have employed three methods to derive standard 
semantics of BAS points. They are i) tag-based [3] [10], ii) time-series data based [11] [12] [13] and 
iii) a combination of both using tags and time-series data. They often aimed at inferring mostly the type 
of point [14]. Other inferences include the location and relationships among points.  

Tag-based methods used identification techniques such as regular expressions [3], syntactic 
clustering of text identifiers[3], and linguistics. Bhattacharya [3] showcased the use of regular 
expressions to identify typical patterns in metadata descriptors with human expertise as input. Their 
technique transforms metadata into Haystack standard. In [5], a system has been proposed for the 
automated classification, naming, and management of sensors through active learning from sensor 
metadata. This method was based on matching unique point descriptions. Their approach focuses on 
pool-based active learning algorithms, which leverage scenarios with a small set of labelled data and a 
vast pool of unlabeled data and showed 28% fewer training examples when compared to a regular 
expression-based method. However, the algorithm's performance under different equipment, vendors, 
and facilities management sets is not investigated.  

The above text-based methods are effective when the naming convention is in place. When a proper 
naming convention is unavailable, time-series data can infer the metadata of points. Fürst [15] 
developed a crowdsourcing approach for maintaining BAS metadata. The authors propose a web 
application that allows users to suggest and vote on the mappings between BAS data points and a 
common ontology. Their solution is based on their hypothesis that much of the physical state of a 
building can be observed by humans and that building metadata maintenance should be based on human 
input. However, this is heavily dependent on end-users' participation, who may not be motivated or 
have the necessary expertise to accurately match and label sensor points. Also, the method may not be 
effective in environments with complex or specialized equipment, as users may lack the necessary 
domain expertise to correctly match and label sensor points. This method also requires system control, 
which may only be feasible for some buildings and during a specific period. Another method used is 
perturbing the operation of equipment such as AHUs [16] to discover the functional relationships 
between AHUs and VAV boxes and studying the responses in VAVs. This approach is suitable when 
the point names are unavailable and the relations are not encoded in the point naming convention.  

The study by Gao [14] involved implementing and evaluating six distinct metadata inference 
techniques based on time-series data analysis. These approaches were tested on sensors from 614 AHUs 
installed in 35 building sites, encompassing over 400 buildings in the United States of America. The 
study focused on inferring 12 types of sensors and actuators in AHUs necessary for a rule-based FDD 
application and subsequently mapped to the Brick ontology. However, since the research was conducted 
solely on AHUs, the findings may not be generalizable to other equipment types. It is also important to 
note that the time-series data-based methods employed in the study necessitated the availability of 
historical sensor data collected from the buildings, which may not be readily accessible in all cases. 
Another method of generating inferences by time-series data is demonstrated by [17] by relying on the 
fact that sensors and equipment in the same physical environment are affected by the same real-world 
events, thereby making correlated changes in the time-series data. All the approaches require some level 
of human input, and no fully automated method is currently available for metadata standardization. 

After reviewing the existing literature on metadata mapping, we have identified several gaps that 
need to be addressed.  

 
1. Many of these studies have only been able to map metadata to a predefined ontology and, 

therefore, have no freedom to choose another ontology. 
2. Often the need for such a metadata schema is subjective in terms of the end goal, and therefore 

not all buildings need to or have the required resources to execute existing methods to generate 
its schema. 

3. Tag-based mapping relies solely on predicting the standard semantics based on the point 
descriptions. This method needs a lot of training data and human input. Point descriptions can 
also be limited regarding the information that can be extracted from them. 
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4. Additionally, previous work did not demonstrate the integration of generated schemas with the 
buildings and the practical application of such schemas for data-driven applications making it 
challenging to evaluate their usefulness. 

 

3. Methodology 

This section outlines the suggested approach to generating metadata schema from the legacy BAS 
points. Section 3.1 and 3.2 discusses the objectives of a metadata schema and types of metadata sources 
in buildings that can be used in the metadata schema generation process. Section 3.3 describes the 
method for classifying a list of BAS object identifiers into logical groups and how to use them to 
interpolate to a given full list of object identifiers extracted from a BAS, thereby reducing the number 
of total points for mapping. Section 3.4 describes a text search engine method to map a given identifier 
with the most suitable classes from the chosen ontology. We also discuss how much human interaction 
is needed to fully map all the identifiers to the classifications of the chosen ontology.  

 
The proposed method can be summarized in five steps. 
 
1. Set the objective clearly, why the metadata scheme is needed and how it will be used. 
2. Sort out the relevant metadata required for schema generation and classify and group metadata 

into understandable and logical categories. 
3. Use a text search engine populated with the classes and definitions extracted from the chosen 

ontology. 
4. Run an automatic search and fine-tune the results with human input. Generate the metadata 

schema in RDF syntax. 
5. Integrate the schema with the application to achieve the objectives set in Step 1. 
 
Our proposed metadata schema generation method generally applies to mapping metadata to a 

chosen ontology. We demonstrate this methodology with the Brick ontology for our use case building.  
 

3.1. The objective of the metadata schema generation 

Buildings have many metadata sources, which are usually difficult to comprehend or access. First, 
it is important to decide on the objective of a metadata schema. This helps to narrow down both; the 
metadata source to be used and the pool of available ontologies and their classifications that can be used 
for creating a metadata schema. It also helps to create semantic graphs with semantic sufficiency[18] 
to execute an intended application. One objective could be to link the time-series data to the standard 
semantics of the sensors and equipment they are linked to for efficiently querying the data. Another 
objective can be using the semantic graph for reasoning over it for FDD applications[19], linking time-
series data with BIM models[20] and so on. Depending on the requirement, one or many metadata 
sources can be included in the process. 

3.2. Data collection  

There are multiple sources of metadata in a building. Four such sources and the metadata available 
from them are illustrated in Figure 1. They include a list of BAS object identifiers, time series data 
from systems, Process and Instrumentation Diagrams (P&ID), and BIM models. As discussed above, if 
the objective is to enrich time-series data with standard semantics, source 1 and 2 would be sufficient. 
If the objective is to link time-series data with BIM models, sources 1, 2 and 4 are required. For an FDD 
application where process and instrumentation details are crucial, sources 1, 2 and 3 are required. 
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Figure 1: Metadata sources available in a building 

 

3.3. Classifying BAS metadata  

Although many sources are described above, in this section, we will focus on BAS metadata. BAS 
usually contains a lot of information about the device type, control commands, room numbers, etc. A 
partial list of BAS object identifiers extracted from a BAS of a building is shown in Table 1. This 
metadata table includes properties specified by the BACnet standard and those defined by the vendor. 
In the given example, metadata associated with each point in the BAS system includes properties such 
as Item Reference, Object ID, Object Type, and Point Name. The Item Reference is also the reference 
used in time-series data storage. Object ID and Type denote the BACnet Object identifier and type, 
respectively. The Point Name column assigns a unique name for each point. The description column 
provides text describing any additional information. 

 
Table 1 
Metadata extraction from BAS containing time-series reference (Item Reference) and descriptions. 

 Item Reference Object 
ID 

Object 
Type 

Point Name Description 
(NL) 

Description (EN) 

1 XXX.FEC005.CLG-O CLG-O AO 
Mapper 

(33) 201.CV-02V-- Regelafsluiter 
koeler 

Cooler control 
valve 

2 XXX.FEC006.CLG-O CLG-O AO 
Mapper 

(33) 202.CV-02V-- Regelafsluiter 
koeler 

Cooler control 
valve 

3 XXX.SHWP1-FAULT SHWP1-
FAULT 

BI 
Mapper 

(33) 001.TP-01A-- Transportpomp 
1 storing 

Transport pump 1 
malfunction 

 
However, different vendors use different naming conventions, so each building has its unique 

naming. An example is shown in Figure 2. This name comprises four parts. The first part refers to the 
building number; the next part identifies the system type (such as 201 for AHU); the third position 
represents a part of the previous equipment (such as a valve belonging to AHU), and the last part 
indicates whether the point refers to a Measure, Report, or Control code.  

 

 
Figure 2: Point naming convention example 

 
At this stage, points can be grouped into groups according to the naming convention. In the above 
example, since there are three parts in the naming convention (since the building no. does not change) 
that have distinct values, looking at each of these groups separately and mapping them to standard 
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semantics is more efficient than, for example trying to find relevant classes for a list of thousands of 
identifiers. 

3.4. Mapping to ontology using a search engine.  

In this step, it is required to determine which ontology will be used for the metadata schema. 
Regarding BAS systems, two major standards are now being used, namely Brick and Haystack. A study 
by [21] compared the Brick and Haystack ontologies and showed that due to their excessive flexibility, 
Haystack often leads to unexpected representations. Brick being an ontology, provides more structured 
representations. Further, the Brick ontology maintains a wealth of documentation and is, therefore, 
straightforward for a developer. Therefore, we use the Brick ontology in this demonstration. Of course, 
several other ontologies, such as SSN or RealEstateCore, can also be used, depending on the use case.  

The idea is to find the relevant classes from the Brick ontology that closely match the BAS point 
identifier classification system. As described above, the naming convention can be broken down into 
four parts, and each part can individually be mapped to the Brick ontology's classes. Further, any 
relationships derived by the point names can also be used to find the Brick relationships such as 
(haspart, hasLocation etc.).  

A text search engine can be used to automate this mapping up to a certain level. This process is 
illustrated in Figure 3. Classes and definitions from the ontology can be extracted by running a 
SPARQL7 query on the Brick ontology's RDF representation. The retrieved data can then be indexed 
using the Meilisearch8  text search engine: the first index includes only class names, while the second 
index contains both class names and definitions.  

 

 

Figure 3 : Extracting class names and definitions from the ontology and populating the search 
engine. 

Then, the BAS point classifications from the above step can be matched against the search engine. 
These matching results can then be reviewed with the assistance of a human expert to override any 
mismatching choices made by the text search engine. Mapping for the points shown partially in Table 
1 is illustrated in Figure 4. Here, three parts of the naming convention were individually mapped to the 
Brick ontology. Results shown in green are the result of the text search engine, and the results shown 
in grey are the inputs from an expert human. 

The final step is the generation of RDF-based schema out of the class mappings. Since the metadata 
is now available in CSV, it is possible to use a tool that generates the RDF graph from the CSV file by 

 
7 https://www.w3.org/TR/sparql11-query/ 
8 https://www.meilisearch.com/ 
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specifying the target relationships between columns. The Brick ontology group provides three such 
software tools9. The results will be the metadata schema in RDF syntax. 

 

 
Figure 4 : Three parts of the naming individually mapped to the Brick ontology 
 

4. Results 

This section presents the results of the metadata schema generation method applied to a campus 
building located in Delft, Netherlands. This building is a living lab used in the Brains for Buildings 
project. One of the primary objectives of the living lab is to provide historical and real-time access to 
BAS sensor data. Unfortunately, the sensor data and metadata are not understood properly by users and, 
therefore, difficult to use for data-driven applications. To ensure that users understand the sensor data, 
contextual data must be added. This contextual data will enable developers to filter the sensor data of 
the equipment, sensors, and points of interest to them. Therefore, we aim to develop a tool that can be 
easily deployed in a building, providing the ability to query time-series data efficiently [20]. This 
includes the ability to query data by equipment or point types and gain initial insights about the data 
through data visualization. Therefore, our objective of the metadata scheme is to standardize the 
semantics of the time series data available from the BAS and provide them to end users who need to 
develop data-driven applications. With such an objective, the metadata schema generation becomes 
straightforward and requires less data than the literature. Our method categorises point types based on 
their equipment and point types, and we do not rely on ambiguous point descriptions. 

4.1. Generating the metadata schema 

To generate the metadata schema, we utilized a list of object identifiers extracted from the BAS, 
which is the primary source of metadata in the building (Table 1). We used recorded time series data 
from the BAS over one year, which contains references to the list of metadata and serves as the link 
between the two datasets. Additionally, we examined the Process and Instrumentation Diagrams 
(P&ID) of the systems; however, due to their format in PDF, we did not incorporate them into the 

 
9 https://docs.brickschema.org/lifecycle/creation.html#from-structured-tabular-sources 
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process. The building's Building Information Model (BIM) contained a significant amount of 
Mechanical, Electrical, and Plumbing (MEP) equipment and their relationships, but its usage was 
restricted due to inconsistent naming conventions with the BAS. Ultimately, we used the metadata 
extraction list and time-series data to generate the metadata schema. 

We classified the naming convention into three parts (system number, control code, and point type). 
This results in another three mapping tables for each part of the naming convention, available in the 
vendor catalogues. However, our main objective is to link the BAS points with their time-series data 
and expose the time-series data to the user with its standardized metadata. Our applications of interest 
do require normalizing the metadata of all sensors in the building, but only specific sensors with time-
series data. Therefore, the selection of identifiers can be narrowed down to those with associated time-
series records. This can be done by matching the identifiers containing the time-series data for a selected 
period for all BAS points. In our case building, we reduced the full list of 2338 points to 948 points 
based on the availability of time-series records. Again, these points were filtered down to the points that 
followed the naming convention using a simple regular expression, further narrowing it down to 763 
points. 

Table 2 presents the number of classes the text search engine identified for the three different groups 
of identifiers in the naming convention. A maximum of three search matches were used to map the BAS 
point labels against both indexes. However, manual refinement was necessary with the assistance of 
human experts, as the text search engine could not map all point labels successfully. Some identifiers 
did not have a matching Brick Class, such as room control units (devices used to control room 
temperature, ventilation, and light levels), sprinklers, hydrophore installations (water pressurization 
systems used in areas with insufficient water pressure), and manual switches. The Brick ontology 
development group has acknowledged these omissions and intends to include them in future updates. 
Then, the results were interpolated to all 763 points of interest, each with three corresponding Brick 
classes according to its naming convention.  

 
Table 2  
Summary of matching Brick Classes 

Part of the naming 
convention 

No. of identifiers No. of identifiers 
based on time-series 
data availability  

No. of Identifiers 
mapped to Brick 
Classes 

System number 39 16  11 
Control code  117 40 28 
Point type 34 19 12 

 
In order to find a logical pattern between the three types of Brick classes we obtained from mapping, 

we examined a sample of the matching classes, as shown in Table 3. 
 
Table 3  
Summary of matching Brick Classes for the three parts of the point naming 

Systems 
 

Control Code Point type 

Boiler Water_Pump Open_Close_Status 
Hot_Water_System Gas_Valve Alarm 

Chilled_Water_System Pump Reset_Command 
AHU Valve Power_Loss_Alarm 

Exhaust_Fan Damper Status 
Energy_Storage Energy_Sensor Setpoint 

Fire_Safety_System Flow_Sensor Sensor 
Breaker_Panel Switch Parameter 

 
Our analysis revealed a logical pattern in the point labels in terms of the Brick ontology's 

arrangement of points, which can be used to effectively map the BAS points to the Brick ontology. 
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These relationships are shown in Figure 5. Specifically, the first column represents a brick:Equipment, 
while the second column denotes a part of the equipment mentioned in the first column. The relationship 
between these columns can be established using the Brick ontology's brick:hasPart property. Finally, 
the last column specifies the point's characteristics, such as whether it is an alarm, setpoint, sensor, or 
status, which can be linked to the Brick Point class, a subclass of the Brick class, using the 
brick:hasPoint property. Finally, the Points are related to their timeseries data by using the 
ref:hasTimeseriesId relationship. 

 

 
Figure 5: Relationships among the metadata identifiers. 
 

However, not all available points had relevant Brick classes, and not every point followed this logical 
pattern. There were a few point labels which did not follow this logic.  

 
1. 25 out of 763 did not follow the brick:equipment class. However, all these 25 points belonging 

to a miscellaneous category are irrelevant enough to be included.  
2. 157 points did not match the brick:hasPart relationship, mainly because they also redundantly 

described the brick:point type, which was again found under “point type”.  
 
Since we identified the logical arrangement of the points in the BAS, we then created the metadata 

schema of the building using the Brick Builder10 CSV to RDF tool. Part of the RDF graph for an AHU 
is shown in Figure 6. This graph is further uploaded to GraphDB11, an RDF store optimized for graph 
data. This graph will be used in the next step when integrating with time-series sensor data. 
 

 
Figure 6: Part of the metadata schema containing the AHU and its Points represented graphically using 
GraphDB interface. 
 
  

 
10 https://github.com/gtfierro/brick-builder 
11 https://www.ontotext.com/products/graphdb/ 
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4.2. Integration with time-series data 

One of the main aims of the developed RDF graph is to provide users with a seamless experience 
while exploring the vast amounts of time-series data available. In this context, we considered time-
series data for one year, which was pre-processed to transform and handle missing values and then 
recorded in TimescaleDB. We developed an Application Programming Interface (API) to execute 
queries against the metadata schema and fetch relevant time-series data from TimescaleDB. To 
facilitate user exploration of both metadata and time-series data, we also provided a Grafana dashboard. 
API facilitates data exchange between the Timescale DB, GraphDB and the Grafana web application. 
This API also enables users to authenticate and authorize themselves to access the databases and query 
time-series data. 

Using the Grafana dashboard, users can query the BAS points of interest by selecting the equipment 
type from a dropdown list (green box in see Figure 7). This list contains all the equipment types in the 
generated metadata schema. For example, in Figure 7, the equipment type AHU is selected as the 
brick:Equipment. This selection triggers a SPARQL query that requests the time-series identifiers 
related to all the points related to brick:AHU in the graph. The resulting point list is then displayed (red 
box in Figure 7), and users can select one or more of these identifiers to explore the time-series data. 
In the example shown in Figure 7, a brick:Differential_Pressure_Sensor has been selected for 
exploring the time-series data. This selection results in an API request being sent to the time-series 
database with the time-series identifier, and the charts are subsequently populated with data. Overall, 
this approach provides an efficient and user-friendly means of exploring large amounts of time-series 
data with their standard semantics. 

                             

 
Figure 7: Grafana application integrated with metadata schema of the building. 
 

5. Conclusion 

This research article presents a five-step methodology for creating a semantic graph and its 
integration with time-series data, with a further demonstration on how this generated metadata schema 
can be queried through the Grafana web application. Using the generated schema, we could quickly 
sort, and group BAS data based on their equipment type and directly link the resulting time-series data 
to a visualization environment. This led to a significant improvement in the quality of data access. 

148



However, like any research, this methodology also has its limitations. Notably, the proposed method 
for linking metadata is limited in its ability to describe the complex relationships between equipment 
components and points, for example, fluid flow and spatial relationships. These relationships are 
typically available in P&ID in pdf formats, which is a large barrier to extracting their relationships. A 
potential research direction is investigating how these image-based relationships can be extracted and 
standardized since complex relationships between systems and components are necessary in some use 
cases. To this end, ontologies such as FSO [22] and TUBES [23] may be useful, depending on the type 
of application to be developed with the data. However, generating a semantic graph that covers every 
aspect is impossible. Recent developments, such as application-based semantic graph generation [18], 
aim to create semantically sufficient graphs for a given application. 

Further improvements to this research include integrating the BIM model in the process of creating 
the semantic graph and using it as a visualization tool. However, initial evaluation of available BIM 
models has revealed inconsistencies in naming conventions between BIM and BAS and a lack of 
sufficient spatial information. An automated procedure for creating a metadata schema that addresses 
complex relationships within the building and its systems is not possible except if (1) the BIM model 
is appropriately modelled; (2) naming conventions are followed; and (3) mapping between naming 
conventions and the Brick ontology is available, or the Brick ontology is used to annotate the BIM 
model in the first place.  

An important takeaway from this project is the need to enforce a metadata schema by building 
owners to the BAS providers, at least for newly constructed buildings. This will enable easy and fast 
integration of systems, allowing development efforts to focus more on energy-saving algorithms rather 
than data extraction methods. Overall, the proposed method has the potential to facilitate more efficient 
and effective analysis of building systems and the data, but further research is necessary to address the 
limitations and improve its applicability to a wider range of buildings and use cases. 
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