
Development of a National Scale Digital Twin for
Domestic Building Stock
Cathal Hoare1,∗,†, Tareq B. M. AlQazzaz1,†, Usman Ali1,†, Shushan Hu2,† and
James O’Donnell1,†

1School of Mechanical and Materials Engineering and UCD Energy Institute, University College Dublin, Belfield, Dublin
4, Dublin, Ireland
2 Hubei University, Wuhan, Hubei, China

Abstract
The operation of buildings accounted for 40% of global energy consumption and 27% of greenhouse
gas emissions (GHG) in 2022. Access to integrated information sources about a building stock is key
to supporting policy and decision makers as they pursue green house gas reductions. However, over
time, information has evolved into functional silos which accordingly limits the ability of experts in
functional areas to exchange data and implement broader decision support systems. This paper describes
the creation of a national scale digital twin for a national domestic building stock and is achieved through
the use of semantic technologies to create a homogeneous knowledge graph frommultiple heterogeneous
data sources. The utility of the digital twin is demonstrated by the development of a virtual surveyor.
This tool is used to predict building features such as window u-values for buildings that have not been
surveyed as part of the national EPC scheme. In turn, these values are used to enrich the digital twin.
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1. Introduction

The operation of buildings accounted for 40% of global energy consumption and 27% of green-
house gas emissions (GHG)[1] in 2022. According to the International Energy Agency, further
statistics indicate that 8% of GHG emissions and 19% indirect GHG emissions related to buildings
are due to the production of electricity and heat. The EU member states have established a leg-
islative framework to boost sustainable strategic planning and improve the energy performance
of buildings. The framework includes the Energy Performance of Buildings Directive (EPBD)
2010/31/EU and the Energy Efficiency Directive 2012/27/EU. The members of this directive
promote policies directed towards implementing measures to achieve a highly energy-efficient
and decarbonized building stock by 2050 [2].
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Long-term renovation strategies are required to achieve higher level of sustainability and de-
carbonize the building stock. The information that must be managed to support these strategies
is, however, complex and heterogeneous, both in content and organization [3]. Information
sources are dynamic, evolving, and multifaceted; information can be distributed across multiple
sources providing related, yet heterogeneous collections of data that inform utility companies,
planners and other stakeholders [4]. National and district level views of the same entities are
managed by separate formats and systems, requiring expensive data reorganization in order
to extract relevant information for planners and policy makers [5, 6, 7]. Taken together these
data sources, as an integrated whole, would provide rich insights to a variety of stakeholders;
however, their current utility is diminished by their disjointed and heterogeneous nature. This
work develops a national-scale digital twin to overcome these difficulties and increase the utility
of the data sets by integrating these diverse sources into a single connected homogeneous data
source[8].

This paper describes the use of the Dynamic District Information Management Server (DDIM)
[9] to integrate multiple government, national agency and commercial data sources. In so doing,
a country scale digital twin is created to provide a rich view of national domestic building stock.
The work utilizes the DDIM to create a common context for these data sources and provides a
platform to support data access. The creation of this context and overarching data structure
will be described. The utility of the approach will be further illustrated by a use case that uses
the digital twin’s data and computer vision to enrich its own data.

After providing a background to key concepts used in this work, the paper will continue by
describing the data sources and how a common context was created for these. The enrichment
use case will then be described before concluding with potential future directions for the work.

2. Background

This work uses semantic technologies to create mapping relationships between a collection
of data sources. These mappings seek to define a context that is common to all data sources.
Having defined this core or common context, other data sources are integrated with this data
structure to create an integrated homogeneous data source.

2.1. The Semantic Web and Energy Modelling

Digital twins (e.g. [11, 12, 13]) provide data and analysis that can inform decision support
systems. Typically, the architecture of decision support systems broadly follow that shown
in Figure 1 [10]. Four general tasks, including data collection (including integration and
enrichment), data processing, learning and interpretation combine human intelligence and
machine learning techniques to inform decisions with many dynamic variables.

This work uses semantic technologies[14] to create the digital twin. While data are encoded
as RDF, meaning is imbued by providing ontologies that define the concepts and relationships
of a domain, and so provide meaning to the encoded data [15]. These meanings provide a
common vocabulary between different data providers, ensuring that data can be exchanged and
integrated in a structured way. These ontologies are represented using Web Ontology Language
(OWL). This approach has been used extensively in both industry and research to facilitate data
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Figure 1: The general organisation of simulation and other machine learning systems [10]

integration and exchange. The use of ontologies to facilitate data exchange and integration was
explored by [16], while the ability to reuse, and so broaden the adoption of these ontologies
was explored by [17]. Linked data has been used to support complex reasoning. For example,
Baumgärtel et al [18] used semantic approaches to reason about the application of building
performance regulations to design and operation; in doing so, they improved the efficiency and
effectiveness of a complex form of analysis.

2.2. The Role of Context

Context provides a framework to allow entities to be related to one another. The concept of
using a common context has been used by several works to provide a mechanism to integrate and
share AEC information. ISO 21597’s approach provides a framework that expresses a common
context by creating a document container that represents some context [19]; documents and
other data related to that context can be grouped together in this container. The embedded
documents are not modified and the notion of relatedness between them is communicated
through their common association with the container. This approach is, in itself, a combination
of the Multi-model [20] and Linked Building Data (LBD) approaches [21]. The former created
a common context for distributed information collections that form a federated database. A
series of ID-based links are formed between collections, creating an interlinked collection of
data that can then be subject to query. These federated queries - queries that can be distributed
amongst several linked data sources - are submitted to a single authority, which responds by
querying the distributed members of the database and returning an aggregation of those results.
The approach is beneficial because data can be maintained in its original format, though some
compatible API must be provided to make each source queryable [22, 23]. LBD also admits the
concept of a common context; in this approach, relationships between represented entities are
captured through relationships that are defined as part of some ontology defined using the Web
Ontology Language (OWL). Objects within the resulting model are uniquely identified using a
URI and related objects can be retrieved by querying across relationships using the SPARQL

61



language which supports federated queries; as a result, data can be distributed across multiple
servers.

3. Methodology

The paper continues by describing the implementation of the digital twin using the Dynamic
District Information Server (DDIM) server [9]. The text further describes the initial data sources
used and the DDIM server that marshalled these data. The structure used to support data
integration is examined, before a description of the mechanism for data access is provided.

3.1. Data Sources

GeoDirectory GeoAddress [24] and GeoBuilding Intel [25], SEAI’s BER research tool [26]
and commercial data form the core data that is managed by the digital twin. GeoDirectory’s
GeoAddress and GeoBuilding Intel databases are created by the Irish Postal Service, An Post, and
Ordnance Survey Ireland, the Irish State’s National Mapping Agency. GeoDirectory contains
an extensive database on Irish domestic stock, including geographical contexts (addresses,
Irish postal codes (Eircodes) and longitude/latitude), mappings to organisational geographical
contexts (small areas, urban areas, counties, etc) and building information, including details of
building fabric, building epoch, and other data relevant to energy modelling; this later data is
extensive, though not comprehensive across the entire stock.

Each building is related to a small area and other administrative areas. Equivalence tables
are created between building address, longitude/latitude and Eircode. These building data
are also enriched by adding Building Energy Rating (BER) certificate data (Ireland’s Energy
Performance Certificates (EPC) scheme). This data provides a detailed picture of the building
fabric, heating systems and other data significant to energy modelling. BER certificates are
required by home owners when selling, renting or applying for energy oriented renovation
grants. As such, certificates exist for just under one half of Irish domestic building stock. Both
Geodirectory data and BER sources are provided in comma separated file (CSV) format. For the
purposes of the use case described later, one other category of data is collected. This data is
building imagery. This was collected from a variety of commercial sources including images
used in realtor oriented websites and street level imagery. While the raw images are maintained
in their original format in a file hierarchy, CSV formatted meta data about the images was also
collected and submitted to the DDIM for management. Like the BER data, these meta data were
associated with individual buildings through longitude/latitude, address or Eircode.

3.2. Using the DDIM to Create a Common Context

The Dynamic District Information Model (DDIM) [9], is used to mine and manage relationships
between the data sources mentioned above. For this project, the DDIM uses the relationships
that exist between geographical areas and locations to provide a common context between
data sources. This context is captured through an RDF graph where relationships conform to a
context ontology (see Section 3.3). This allows queries at one level of geographical granularity,
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for example, details of individual buildings, to be associated with data stored at a different gran-
ularity; this approach allows data to remain in context, reducing data duplication. Furthermore,
data sources remain general and are not specific to any one purpose; they can be reused for
other interrogation tasks.

The server implementation consists of three key functional areas:

• A ‘Core Spine’ or RDF schema that can be used to place other information in the space
and time covered by the project. This spine allows information to be associated with
entities in either the urban or building information spaces, and creates a bridge to allow
seamless querying across these spaces;

• A series of interfaces to allow client software to query (through RESTful or SPARQL based
interfaces);

• A DCAT compliant data catalogue;

The server is implemented using the Django Framework [27] with RESTful [28] extensions.
This framework also provides user management and security. GraphDB [29] is installed within
the same domain. SPARQL queries are submitted through the Django server to this and its
functionality is responsible for the execution of any federated queries to the distributed sources.

As well as describing an entity’s context, the ’core spine’ also informs relationships mined
from uploaded data. For example, in this project, buildings are contained by small areas. These
relationships are defined as rules at project setup and as information sources are uploaded to the
server, triples are generated by applying these rules. Federated queries are also supported. In
this case, triples are generated, again from the rules, but the named entities include the Uniform
Resource Identifier (URI) of remote entities; the model permits the data sources’ owners to
maintain complete ownership and access control over their information on their own servers;
this allows them to contribute information while mitigating against any reluctance due to
commercial or regulatory concerns.

3.3. Data Integration

Data integration was achieved using semantic web technologies. Figure 2 shows the resulting
data structure. The core context places the Building at the core of two different contexts, both
by defining entity hierarchies to a county level (counties represent high level administrative
areas and their aggregation represents the national level). These hierarchies are grouped by
county and local administrative entities through to individual buildings. A second organisation
uses small area - areas containing 65-90 households to create a second hierarchy. These entities
and relationships are defined either by the OSI ontology or by using a project ontology (until
the entities are also defined as part of OSI). Buildings can be uniquely 1 identified by Eircode
or address, and depending on the building type (bungalow, detached, semi-detached) by their
geographic co-ordinates. Buildings can be associated with two other entities, imagery of the
building (via realtor data or street level imagery) and with their BER certificate data; one or
other or both of these entities may not be present, and indeed, the range of properties for each
building may also vary depending on their availability in the original data sources.

1Strictly speaking, some rural addresses are not unique until the home owner name or Eircode is included
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Figure 2: Graph structure for National Scale Digital Twin for Domestic Building Stock.

3.4. Data Access

The DDIM server provides a data registry where entries are described using W3C’s DCAT
ontology to aid knowledge discovery. This creates a catalogue of data sources, versions of data
published and other metadata such as the publishing agent. A catalogue record includes an
endpoint for data sources published (a network address where SPARQL queries can be submitted
to query the source) and the source’s schema or data model. Together, these models allow a
stakeholder to examine source models, formulate federated queries across these and submit the
query through the DDIM server.
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4. Use Case: A Computer Vision Agent for Data Enrichment

Having described the implementation of the digital twin, with a focus on Irish datasets, this
paper will now describe a use case to illustrate the utility of the approach. The digital twin
supports energy modelling and so must serve a minimum set of parameters for each building.
The existing data ingested to populate the twin with these parameters provide limited coverage
of the national domestic building stock. A virtual surveyor is trained using the twin’s data. In
turn, the surveyor is used to classify other data contained by the twin and in so doing, derives
values for some of the missing parameters.

While the focus of this work so far has been on Irish data, the need for similar solutions in
other jurisdictions is apparent. The United Kingdom, Ireland, Belgium, Denmark and Portugal
have coverage of greater than .1 registered EPC certificates per capita, the highest figures in
the EU [30]. When average household occupancy is considered, this indicates significant gaps
in coverage even in countries with high EPC registrations. The need to carry out accurate
enrichment of these data sets is urgent. This process is enabled by the availability of national-
scale digital twins of the type described in Section 3.

4.1. Minimum Set of Energy Modelling Attributes

Several studies have identified the non-geometric and geometric parameters associated with the
existing building stock to perform a parametric simulation for energy modelling. For instance,
the building physics parameter values (window, wall, roof, and floor u-values) and their ranges
can be extracted from EPC data such as that contained in the digital twin. Studies by Egan et al.
[31] and Ali et al [32] have identified other relevant non-geometric parameters that influence
the energy performance of the Irish building stock.

When the available data sources are examined, it is found that 2,377,498 domestic properties
are listed (including derelict sites). In total, details of 1,055,975 BER certificates are available for
research purposes (coverage of 44% of all properties); where available, BER data contains all of
the parameters listed in Table 4.1. Building attributes that can inform parameter values are also
present in the Building Intel database. In this case, coverage varies depending on the attribute
sought. The Vi ritual Surveyor Agent was proposed to improve these coverage figures.

4.2. Approach to Data Enrichment

The Digital Twin was used to conduct self-enrichment by informing a virtual surveyor agent.
The agent, trained using data stored in the digital twin, will classifies building elements contained
in high quality realtor imagery of buildings in order to determine some of the values listed in
Table 4.1. Once the surveyor has been trained, it could be used to classify street level imagery
that has high coverage of building stock with the agreement of commercial data providers.
Initially, the approach has been used to determine window u-values for a small area.

A high-level architecture of the virtual surveyor is shown in Figure 3. This is divided into
two elements, training and operational classification. Data training criteria are used to identify
imagery to use for training and validation of the classifiers. These criteria include identifying
buildings with known u-values, building epoch, and building type. Having applied these criteria
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Number Parameters Unit
P1 Wall U-value 𝑊/𝑚2𝐾
P2 Window U-value 𝑊/𝑚2𝐾
P3 Floor U-value 𝑊/𝑚2𝐾
P4 Roof U-value 𝑊/𝑚2𝐾
P5 Door U-value 𝑊/𝑚2𝐾
P6 Orientation North Axis {deg}
P7 Lighting density W/m2

P8 Occupancy Person(s)
P9 Equipment density W/m2

P10 Heating setpoint ∘C
P11 Heating setback ∘C
P12 HVAC efficiency %
P13 Renewables boolean
P14 DHW 𝑙/𝑚2/𝑑𝑎𝑦
P15 ACH Air changes per hour
P16 Window-to-wall ratio %
P17 Heating factor numeric
P18 Electricity factor numeric

Table 1
Parameters needed for parametric simulation of archetypes [32].

Digital 
Twin

Image 
Collection

Training 
Criteria

Data 
Collator

Segmentation Validation Training

Classification 
Model

Classifier

Model Training

Classification

Figure 3: Virtual Surveyor architecture for training and classification of building imagery to determine
simulation parameters.

to filter appropriate imagery, the images are segmented into training and validation sets. A
Python implementation using TensorFlow is used to create a classifier. After the classifier’s
accuracy is validated it is made operational and used to classify street level imagery for buildings
in the digital twin. Once windows for a building are classified, their 𝜇-value is written back to
the digital twin to update building’s data.

66



4.3. Preliminary Results

The virtual surveyor has been trained to classify window u-values. While results are promising,
it remains a work in progress. Currently the classifier achieves an accuracy of 76% when
classifying images of windows with no other building fabric. Initial work has show that this
figure improves to 81% when some of the building facade is included as it offers more context
to the classifier; the amount of facade to include remains an open question. It has been found
that the approach works well when classifying second floor windows and higher for buildings
in urban and suburban areas. This is because a clear view of ground floor windows can be
obstructed by traffic, garden plants, etc. One off builds are also less likely to provide a clear
view of the windows, or have problems identifying windows due the the heterogeneous design,
building orientation or location of building on property. It is expected that these difficulties
will extend to other ground level features such as door u-values. However, it is anticipated that
enrichment for up to 70% of building stock that currently have no EPC data will be possible.

5. Conclusions and Future Work

Energy oriented renovation policies are an important pillar for green house gas reduction.
Energy modelling at regional and national scales can provide decision support to policy makers
and other stakeholders. While large data sets exist to inform decision support, the data’s
heterogeneous structure is costly to integrate and utilize. Creation of a knowledge graph
through the use of semantic technologies and the development of a common context.

The work described here creates a national scale digital twin Irish domestic building stock.
The graph is created, managed and queried through the DDIM server. This uses rules to define
relationships that can be used to mine triples from the data set. These are, in turn, managed by
a GraphDB instance that is part of the DDIM. The utility of the digital twin is demonstrated
by the development of a virtual surveyor. This tool is used to predict building features such as
window u-values. It is trained by data queried from the digital twin, and in classifying window
types is capable of accurately enriching the its data.

The development of both the digital twin - through the addition of new data and data sources
will continue in parallel with the development of classifiers to expand the virtual surveyor. In
addition to windows and other external features, other forms of imagery such as aerial views
will be integrated to determine values for other parameters used in energy modelling. Together
these advances will continue to improve the accuracy and coverage of data available to guide
Ireland’s move towards energy efficient building stock.
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