
Semantic bSDD: Improving the GraphQL, JSON and
RDF Representations of buildingSmart Data
Dictionary

Vladimir Alexiev1,*, Mihail Radkov1 and Nataliya Keberle1

1Ontotext, 79, Nikola Gabrovski Str. Twins Centre, fl.3, Sofia 1700, Bulgaria

Abstract
The buildingSmart Data Dictionary (bSDD) is an important shared resource in the Architecture,
Engineering, Construction, and Operations (AECO) domain. It is a collection of datasets
(“domains”) that define v arious c lassifications (o bjects re presenting bu ilding components,
products, and materials), their properties, allowed values, etc. bSDD defines a GraphQL
API, as well as REST APIs that return JSON and RDF representations. This improves the
interoperability of bSDD and its easier deployment in architectural Computer-Aided Design
(CAD) and other AECO software. However, bSDD data is not structured as well as possible,
and data retrieved via different APIs is not identical in content and s tructure. This lowers bSDD
data quality, usability and trust. We conduct a thorough comparison and analysis of bSDD
data. Based on this analysis, we suggest enhancements to make bSDD data better structured.
The complete list of suggestions can be found at https://bsdd.ontotext.com/README.html.
We implement many of the suggestions by refactoring the original data to make it better
structured/interconnected, and more “semantic”. We provide a SPARQL endpoint using
Ontotext GraphDB, and GraphQL endpoint using Ontotext Platform Semantic Objects. Our
detailed work is available at https://github.com/Accord-Project/bsdd (open source) and
https://bsdd.ontotext.com (home page, schemas, data, sample queries).

Keywords
Linked building data, buildingSMART Data Dictionary, Linked data best practices

1. Introduction

Reusable data dictionaries are widely used for the electronic exchange of product and
component information across industries, improving interoperation between systems.
Examples include:

Proceedings LDAC2023 – 11th Linked Data in Architecture and Construction, June 15–16, 2023, Matera, Italy
*Corresponding author.
$ vladimir.alexiev@ontotext.com (V. Alexiev); mihail.radkov@ontotext.com (M. Radkov);
nataliya.keberle@ontotext.com (N. Keberle)
� 0000-0001-7508-7428 (V. Alexiev); 0000-0001-7398-3464 (N. Keberle)

CEUR

Workshop
Proceedings

ceur-ws.org

ISSN 1613-0073

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0
International (CC BY 4.0).
CEUR Workshop Proceedings (CEUR-WS.org)

85

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://graphdb.ontotext.com/
https://platform.ontotext.com/semantic-objects/
https://github.com/Accord-Project/bsdd
https://bsdd.ontotext.com
mailto:vladimir.alexiev@ontotext.com
mailto:mihail.radkov@ontotext.com
mailto:nataliya.keberle@ontotext.com
https://orcid.org/0000-0001-7508-7428
https://orcid.org/0000-0001-7398-3464
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

• IEC Common Data Dictionary (IEC CDD): electrical components, units of measure,
documents and certificates, etc.

• eCl@ss: a product classification and parts description for a variety of industries.
• ISO 15926 part 4 Reference Data and Services: for digital information across process

plant industries (oil & gas).
• buildingSMART Data Dictionary (bSDD): for national, domain, com-

pany/projectwide standards and classification systems in the AECO industry.

The bSDD is a hierarchical dictionary of object concepts (Classifications), their Properties
and allowed values used in Building Information Models (BIM). Property sets are prede-
fined by regulation agencies and vendors and extend common property sets of the Industry
Foundation Classes (IFC). This allows to describe specific domains (e.g., transportation)
and building elements (e.g., doors, windows, stairs). bSDD is claimed to be organized
according to the ISO 23386:2020 [1] Methodology to describe, author and maintain
properties in interconnected data dictionaries. This is a language-independent model
used for the development of dictionaries according to ISO 12006-3:2022 [2] Framework
for object-oriented information.

bSDD was initiated to support improved interoperability in the building and construction
industry. Palos [3] noted that bSDD is a comprehensive solution aiming at the provisioning
of open product data definitions, identification, and distribution methods.

bSDD includes 108 domains, ranging from roads and rails to DIN, Omniclass, Uniclass,
IFC extensions, etc. It is a widely accepted source of BIM reference data. bSDD uses
URLs for many of its defined entities to enable globalized data use in a variety of AECO
applications and structured documents.

While the bSDD RDF and GraphQL representations are very useful, they also have
various problems, among them are different results obtained with different APIs, multiple
URIs for the same entities, various GraphQL implementation errors. In this paper, we
discuss these issues and propose improvements that follow Semantic Web and Linked
Data best practices to obtain “a semantically improved version” of bSDD.

2. Related Work

According to the buildingSMART technical roadmap, bSDD service provides output data
in various formats and APIs, including RDF, thus making bSDD content reusable in
the Linked Data ecosystem, particularly with geographical data, regulations, product
manufacturer data. However, Pauwels et al. in [4] note that there is no standard method
to generate RDF graphs from bSDD API. Starting from [5] where “bSDD vocabulary
has been transformed into a configurable RDF d ataset. On the meta-model l evel several
different m odelling a pproaches r anging f rom O WL t o R DFS a nd S KOS h ave been
implemented to evaluate the advantages and disadvantages of the respective modelling
strategies” the work was continued. [6] proposes and implements the solution to generate

86

https://cdd.iec.ch/
https://eclass.eu/en/
https://rds.posccaesar.org/
https://bsdd.buildingsmart.org/
https://www.buildingsmart.org/about/technical-roadmap/

from bSDD an OWL representation of a selected IFC element together with its property
sets on the fly.

[7] is the survey that discusses the question of where and how the bSDD can fit in the
Linked building data (LBD) ecosystem. Authors mention that bSDD has undertaken a
new round of development showing a shift towards publishing data classifications and
properties as Linked Data.

Unlike [6], we preserve the original bSDD structure (Domain, Classification, Property,
etc.) and only add specific improvements, described below, and convert the whole bSDD
at once. We pay more attention to describe the defects of the current solution, and
propose an improved solution that complies better with Semantic Web best practices.

3. GraphQL and bSDD

GraphQL is an approach to create simplified “façades” over various storages, and to
provide schema, uniform query language, API and runtime for handling queries, mutations
and subscriptions. It has many benefits over traditional REST APIs:

• Avoid over-fetching by specifying exactly which data and in what nested structure
should be returned by the server

• Data is returned in JSON that is precisely congruent to the shape of the query
• Retrieve many resources in a single request; even across storages by using GraphQL

Federation
• Schema introspection that allows IDEs and query helpers to offer contextual auto-

completion at any point in the query
• Data validation (for both input through mutations and output through queries) that

guarantees type and cardinality conformance (optional/mandatory, single/multi-
valued)

bSDD does offer GraphQL access, and an interactive in-browser GraphQL IDE called
GraphiQL:

• Test: https://test.bsdd.buildingsmart.org/graphiql/
• Production: https://api.bsdd.buildingsmart.org/graphqls/ (secured endpoint).
• NOTE: we worked with bSI to get access to the production endpoint, but due to

delays all our analysis is done on data from the test endpoint. Nevertheless, we
believe that most of our findings also apply to the production data.

3.1. Original GraphQL bSDD Schema: Voyager

GraphQL Voyager is a visual application that uses a Schema Introspection query to
explore a GraphQL endpoint and displays the schema of the endpoint, allowing the user

87

https://graphql.org/
https://github.com/graphql/graphiql/tree/main/packages/graphiql
https://test.bsdd.buildingsmart.org/graphiql/
https://api.bsdd.buildingsmart.org/graphqls/
https://ivangoncharov.github.io/graphql-voyager/

Figure 1: Original bSDD GraphQL Schema: Overview (uncheck “Show leaf fields”)

to search and browse the available types and queries. We used Voyager over the bSDD
GraphQL endpoint to investigate the original bSDD schema (see Fig. 1):

As we can see, bSDD has 12 entities (object types):

• Reference entities: Country, Language, ReferenceDocument, Unit (unit of mea-
sure)

• Domain: dataset by a single data provider
• Property: global property definition, PropertyRelation: relation between prop-

erties, PropertyValue: allowed property value for enumerated properties,
• Classification: object, material, component, ClassificationRelation: rela-

tion between classifications
• ClassificationProperty: property that is localized to a classification
• ClassificationPropertyValue: allowed property value for enumerated properties

Currently the test GraphQL bSDD endpoint contains 31720 Classifications,
111556 ClassificationProperties, 214121 ClassificationPropertyValues and
PropertyValues (represented the same, because they have the same structure), 6420
ClassificationRelations, 36069 Properties, 603 Units, 484 ReferenceDocuments,
39 Languages, 246 Countries, 108 Domains.

3.2. Original GraphQL bSDD Schema: Problems

Even in the Schema Overview (at low level of detail) we can notice some defects:

• The reference entities (Country, Language, ReferenceDocument, Unit) are dis-
connected from the rest of the schema, i.e., not used by the other entities

• Relation entities have only an incoming link but no outgoing link. This means
that if you want to get some data of a Classification and all its related
Classifications, you need to issue two queries because you cannot navigate
past ClassificationRelation.

• Many entities cannot be queried directly from the root, but have to be reached
through their respective “parent” entity.

88

https://rawgit2.com/Accord-Project/bsdd/main/bsdd-graphql-voyager-orig.html
https://rawgit2.com/Accord-Project/bsdd/main/bsdd-graphql-voyager-orig.html

Figure 2: Refactored bSDD GraphQL Schema: Overview (uncheck "Show leaf fields")

• There are no backward relations (arrows) to get from a lower-level entity back to
its “parent” entity.

• There are a number of parallel relations (arrows). This is not needed in GraphQL
because the schema can use parameters to distinguish between the different uses.

At the high level of detail we can notice more defects:

• Property and ClassificationProperty are very similar, but there’s no inheri-
tance/relation between them

• PropertyValue and ClassificationPropertyValue are exactly the same, so can
be reduced to one entity

3.3. Refactored GraphQL bSDD Schema: Voyager

The main purpose of this work is to refactor the bSDD data and schema in order to improve
them. The refactored schema (see Fig. 2) implements the following improvements:

• All entities are queryable directly from the root. Note: There’s a common interface
Object that provides functionality common to all entities: the dashed arrows show
that each entity implements it. This creates some clutter in the diagram, but
doesn’t complicate querying and navigation.

• There are no parallel arrows (relations) between entities; each relation is named
the same as the target entity, improving predictability and consistency.

• Navigation between entities is bidirectional (e.g., Domain.classification but also
Classification.domain), which is a feature expected of a Knowledge Graph. In
particular, the Classification hierarchy can be navigated both up and down
(parentClassification, childClassification).
A query can traverse a Relation entity to get data about the related entity:

– Classification.relation -> ClassificationRelation.related ->
Classification

89

https://rawgit2.com/Accord-Project/bsdd/main/bsdd-graphql-voyager-refact.html

Figure 3: GraphiQL Querying of Refactoring bSDD Endpoint

– Property.relation -> PropertyRelation.related -> Property

• A single entity PropertyValue is used by both Property and
ClassificationProperty

The solution proposed does not fix all defects noted in the original diagram. The
reference entities are still not used by the main entities. To fix that it would require
data cleaning work (e.g., to ensure that Unit code strings used in all Properties and
ClassificationProperties are in the reference list).

3.4. GraphiQL Querying of Refactored Endpoint

https://bsdd.ontotext.com/graphiql/ is the refactored GraphQL endpoint.

We have deployed a newer version of GraphiQL that keeps all benefits of the original
bSDD GraphiQL and adds some more (see Fig. 3):

• A hierarchical Explorer pane that shows the total schema structure and allows you
to select fields by clicking rather than typing. The History and Documentation
panes are still present (see toggles at the left edge)

• Useful keyboard shortcuts
• Search in the query text (in addition to search in the Documentation)
• Improved syntax highlighting
• Multiple query tabs so you can easily access several queries at once
• The query response reports errors in addition to returning data (this comes from

our GraphQL server implementation, not from the GraphiQL version)

90

https://bsdd.ontotext.com/graphiql/

Figure 4: Analysis of bSDD data returned with different APIs

4. Suggested Improvements

In this section, we analyze the shortcomings of the original bSDD data structure, and
suggest improvements. We briefly present three groups of shortcomings - representational,
modelling, and GraphQL implementation related, highlighting the most interesting. The
complete list of our findings together with explanations and examples can be found at
the bSDD project Web site.

4.1. Representational Shortcomings

• Return the same data across APIs. We have compared three representations
returned by the bSDD server: JSON from the GraphQL API1, JSON from the
REST (entity) API2, and RDF from the REST (entity) API3. We selected entities of
each class that have the maximum number of filled fields, and compared the results
returned by each API. We found a number of detailed differences, as presented in
the bSDD data analysis spreadsheet (see Fig. 4)

• Improve Property Names. Property names should conform to naming conven-
tions and be spelled consistently. Property (field) names should be spelled
in singular, even when they refer to an array. The arity is reflected in the
property kind. The GraphQL and JSON field childs should be spelled prop-
erly as children. RDF properties should conform to the lowerCamelCase
convention. namespaceUri is a misnomer since “namespace” means a set of
URIs sharing the same prefix, but most bSDD URIs are single URIs. RDF

1https://test.bsdd.buildingsmart.org/graphiql/
2curl https://identifier.buildingsmart.org/uri/buildingsmart/<domain>/class|prop/<name>
3curl -Haccept:text/turtle \
https://identifier.buildingsmart.org/uri/buildingsmart/<domain>/class|prop/<name>

91

https://github.com/Accord-Project/bsdd#5-suggested-improvements
https://docs.google.com/spreadsheets/d/1z_NRMlExlVuqWhBbSErQ9iiDBY4O_fKMd3avV3-NCmo/edit

properties should use one consistent namespace. Most of them use bsdd:
<http://bsdd.buildingsmart.org/def#>, except hasReference, which uses a
different namespace: <http://bsdd.buildingsmart.org/relation/def#>.

• Use the Same URL for Data and for Web Pages. bSDD has implemented “entity
URLs”, i.e., for each kind of entity it can return its data in JSON or RDF. The
same URL can be used to get a static web page in the browser. However, the
interactive bSDD Search UI uses a different URL that returns slightly different
information. There is not really a need for two different web pages showing nearly
the same info.

• Improve URL Structure and Consistency. To facilitate the accessibility of digital
artifacts available from bSDD, their URLs should be designed uniformly according
to Linked Data Principles. Recommendations on ontology URI design, including
versioning and opaque URIs to maintain evolution and multilingualism inherent
to bSDD, are described in [8]. Almost all domain URLs have the same structure:
https://identifier.buildingsmart.org/uri/<org>/<domain>-<version>.
The Linked Data Patterns book [9] describes a pattern of Hierarchical URIs, that
make URLs more “hackable”, allowing users to navigate the hierarchy by pruning
the URI. bSDD URLs could become more hierarchical if they all follow a structure
https://identifier.buildingsmart.org/uri/<org>/<domain>/<version>
which is not a case now. bSDD uses dash not slash to separate the version, in some
cases, the <org> is repeated in the <domain> part, in some cases, the <org> name
doesn’t quite mesh with the domain name, perhaps due to the way bSDD allocates
<org> identifiers to bSDD contributors.

We recommend also to explicate domain versions, to declare URLs to be ID and
use a mandatory field id in the GraphQL schema, to remove the overlap of En-
tity Classes with classificationType, to disambiguate URLs for Property and
ClassificationProperty, to provide an URL for all the Entities in the bSDD schema.

4.2. Modelling Issues

In addition to the technical recommendations above (to ease findability and accessibility
of data in bSDD by improving URls), we have noticed several modelling issues:

• Unify different solutions in the modelling of Complex Properties: the bSDD
data model allows the modelling of complex properties that are composed of
other properties, the key attribute propertyValueKind has values COMPLEX
and COMPLEX_LIST used in combination with connectedProperties. These
key values are defined for Property and ClassificationProperty, however,
connectedPropertyCodes is defined only for Property

• Improve modelling of Dynamic Properties, which is also done partially: while
12385 Properties are declared as isDynamic (135250 are not), the field
dynamicParameterPropertyCode is always empty.

92

https://search.bsdd.buildingsmart.org
https://www.w3.org/DesignIssues/LinkedData.html
https://patterns.dataincubator.org/book/hierarchical-uris.html

• Improve relations between entities: bSDD includes numerous string attributes
(codes or URLs) that should be converted to relations (object fields) to improve
the connectedness of the bSDD GraphQL graph. E.g., there are several enti-
ties (Country, Language, ReferenceDocument, Unit) that are not used anywhere.
Instead of relations pointing to these types, the other types have properties
(e.g. countryOfOrigin, countriesOfUse) representing the same information as
String. Also, ClassificationRelation and PropertyRelation use strings (e.g.,
relatedPropertyUri) instead of outgoing relations, thus blocking further GraphQL
navigation, see one possible solution in the Fig. 2.

• Add more entities: there are reusable components of the bSDD GraphQL graph
that can become entities. E.g., PropertySet, the important concept in IFC and
bSDD, PhysicalQuantity, which can govern allowed Units and subjugate to all
dimension-related fields, CountrySubdivision as lookup for subdivisionsOfUse,
subjugated to Country.

• Use class inheritance for ClassificationProperty and Property and whenever
possible.

• Improve representation of PropertyValues: PropertyValue and
ClassificationPropertyValue are structured values with rich fields: code,
value, namespaceUri, description, sortNumber. However, most of them
have only code, value.

• Improve representation of predefinedValue: while allowedValues property is
structured, its "sibling" property predefinedValue is a String, it does not have
structure and cannot be identified with its URL. The possible structure can resemble
the one for PropertyValue.

• Improve multilingual support: while bSDD is advertised as a multilingual dictionary,
most domains are unilingual.

4.3. GraphQL Improvements

In this subsection, we outline GraphQL implementation problems.

• Improve searchability and pagination. Currently, the user is limited to very basic
fetching of data. Also, there is no pagination, the user cannot get only a portion of
the results, and iterate through pages with limit/offset.

• Eliminate parallel links between entities. A number of parallel relations in the
original GraphQL schema, e.g., Root.domain,domains can be eliminated.

• Improve GraphQL arrays and nullability. It is better to use [Type!] – optional
array of mandatory elements.

• Null classifications error. Although classificationSearch is declared as nullable,
a GraphQL error is returned whenever the backend returns null.

• Null classification childs error. Classification.childs is defined as nul-
lable. However, unless includeChilds: true is provided as input argument

93

in classification, queries return NULL_REFERENCE errors, thus breaking
GraphQL specification compliance.

• Null ClassificationProperty name error. Some ClassificationProperties have no
name. Although that field is declared nullable, bSDD does not return such properties
and instead returns NULL_REFERENCE errors.

• Missing domains. The GraphQL root field domains used to return some domains
that are not available individually through the field domain.

• Deprecated properties. The field possibleValues is described as “deprecated”.
However, the GraphQL specification section Field Deprecation shows that a specific
@deprecated directive should be used for this purpose.

We found also many data quality problems in bSDD, but due to page limits we leave
them out, see more details online.

5. Implementing Improvements

We implemented a lot (but not all) of the improvements suggested above by using the
following process:

• Fetch bSDD data as JSON with the help of a script bsdd2json.py developed to get
all the data.

• Convert it to RDF using SPARQL Anything.
• Load it to GraphDB.
• Refactor the RDF using SPARQL Update.

The refactoring update does the following:

• Cut out fractional seconds from date-times, and add datatype xsd:dateTime
• Convert strings to URIs, and shorten props as appropriate
• Drop redundant information of a referenced resource
• Drop deprecated property bsdd:possibleValues, since bsdd:allowedValue is

used instead;
• Multi-valued properties: skip a level (rdfs:member) and change property name to

singular
• Shorten the path bsdd:parentClassificationReference/bsdd:namespaceUri

to just bsdd:parentClassification;
• Add rdf:type based on GraphQL __typename;
• Drop parasitic rdf:type fx:root;
• Because link ClassificationProperty.namespaceUri refers to a Property re-

name it to ClassificationProperty.property;
• Add meaningful URIs to blank nodes whenever possible. In particular (here +

indicates concatenation):

94

https://spec.graphql.org/draft/#sec-Field-Deprecation
https://bsdd.ontotext.com/README.html#data-quality-problems
https://github.com/Accord-Project/bsdd/blob/main/scripts/bsdd2json.py
https://sparql-anything.cc/
https://www.ontotext.com/products/graphdb/
https://github.com/Accord-Project/bsdd/blob/main/scripts/transform.ru

– ClassificationProperty gets URI:
Classification.uri+"/"+propertyCode ;

– ClassificationPropertyValue gets URI:
Classification.uri+"/"+ClassificationProperty.propertyCode
+"/"+value.
This class has namespaceUri, but that is optional and is rarely filled;

– PropertyValue gets URI:
Classification.uri+"/"+Property.propertyCode +"/"+value.
This class has namespaceUri, but that is optional and is rarely filled.

• The following remain blank nodes:

– ReferenceDocument: no id field (only name, title, date);
– ClassificationRelation: is just a pair of related Properties, no own URI;
– PropertyRelation: is just a pair of related Properties, no own URI;

• Remove redundant namespaceUri when equal to the node’s URI.

5.1. GraphQL to SOML and Back

The major goal of this work is to improve the bSDD RDF representation and GraphQL
API. To achieve this, in addition to refactoring RDF:

• The original GraphQL schema was fetched with GraphQL introspection:
bsdd-graphql-schema-orig.json, 116kb

• Then it was converted to a prototypical SOML schema using the script
graphql2soml.py: bsdd-graphql-soml-orig.yaml, 22kb. This SOML schema
has issues inherited from the original GraphQL schema. The purpose of the gen-
erated SOML schema is to serve as a starting point (instead of starting from
scratch).

• The schema was refactored by hand, using similar steps as the RDF refactoring
above: bsdd-graphql-soml-refact.yaml, 20kb.

• The results were loaded to Ontotext Platform Semantic Objects to generate a
refactored GraphQL schema: bsdd-graphql-schema-refact.json, 867k. The
reason it is so much bigger is that it includes a comprehensive where query language

6. Conclusions and Future Work

Admitting the advances of bSDD community at providing data in RDF format, we met
some issues where accommodating these data for our purposes in the frame of ACCORD
project, among them are different results obtained with different APIs, multiple URIs for
the same entities, various GraphQL implementation errors. In the presented work, we
highlighted these issues and proposed a set of both technical and modelling improvements

95

https://platform.ontotext.com/semantic-objects/soml/index.html
https://platform.ontotext.com/semantic-objects/
https://accordproject.eu/
https://accordproject.eu/

following the best practices of the Semantic Web and Linked Data to obtain “a semantically
better version” of bSDD. Namely, we revealed new potential entities, improved relations,
making bSDD GraphQL graph more connected thus more navigable. We implemented
and made available our solution using the Ontotext Platform.

In the future, we plan to work with bSI to implement more of the suggested improvements
and to deploy the official bSDD using Ontotext software. Among the directions are:
improvement of bSDD ontology, implementation of more radical data model refactoring
to convert "strings" (countries, reference documents, etc.) into "things", linkage of bSDD
units of measure to QUDT ontology. We also plan to perform deeper data quality
analysis using SHACL shapes generation and validation provided by Ontotext Platform
Semantic Objects; to address and resolve more data quality issues, including seeking
correlation between dimension vectors, units of measure and physical quantity, parsing out
enumeration values from Property/ClassificationProperty descriptions and creation
of corresponding PropertyValue lists.

7. Acknowledgements

This work is partially funded by the European Union’s Horizon Europe research and
innovation programme under grant agreement no 101056973 (ACCORD).

Author contributions:

• VA conceived the work, described bSDD shortcomings, implemented GraphQL and
RDF refactoring.

• MK wrote GraphQL queries, fetched bSDD data, and deployed GraphDB and
Ontotext Platform Semantic Objects.

• NK performed statistics and comparisons of bSDD data and wrote the final paper.

We thank Léon van Berlo and Erik Baars from buildingSmart International for their help
with accessing bSDD.

References

[1] “ISO 23386:2020 Building information modelling and other digital processes used in
construction — Methodology to describe, author and maintain properties in in-
terconnected data dictionaries,” international standard [Online]. Available: https: //
www.iso.org/standard/75401.html. [Accessed: Jan. 25, 2023]

[2] “ISO 12006-3:2022 Building construction — Organization of information about con-
struction works — Part 3: Framework for object-oriented information,” international
standard [Online]. Available: https://www.iso.org/standard/74932.html. [Accessed: Jan.
25, 2023]

96

https://bsdd.ontotext.com/workbench/graphql
https://github.com/buildingSMART/bSDD/blob/master/RDF/preview-bsdd-rdfs-0.4.ttl
http://qudt.org/2.1/schema/qudt
https://platform.ontotext.com/semantic-objects/
https://platform.ontotext.com/semantic-objects/
https://accordproject.eu/
https://www.iso.org/standard/75401.html
https://www.iso.org/standard/75401.html
https://www.iso.org/standard/74932.html

[3] S. Palos, “State-of-the-art analysis of product data definitions usage in BIM,” in eWork
and eBusiness in Architecture, Engineering and Construction: European Conference
on Product and Process Modelling 2012, ECPPM 2012, 2012, pp. 397–403.

[4] P. Pauwels, T. Krijnen, and J. Beetz, “Making sense of building data and building
product data,” Mar. 2016 [Online]. Available: https://pdfs.semanticscholar.org/93f0/27
8821cf554be5a6f6e2667b24cb39096fe4.pdf

[5] J. Beetz, W. Coebergh Van Den Braak, R. Botter, S. Zlatanova, and R. De Laat,
“Interoperable data models for infrastructural artefacts : A novel IFC extension method
using RDF vocabularies exemplified with quay wall structures for harbors,” in eWork
and eBusiness in Architecture, Engineering and Construction - Proceedings of the
10th European Conference on Product and Process Modelling, ECPPM 2014, 2014, pp.
135–136, doi: 10.1201/b17396-26

[6] J. Oraskari, “Live Web Ontology for buildingSMART Data Dictionary,” in Forum
Bauinformatik, 2021, pp. 166–173

[7] R. Kebede, A. Moscati, H. Tan, and P. Johansson, “Integration of manufacturers’ prod-
uct data in BIM platforms using semantic web technologies,” Automation in Construction,
vol. 144, p. 104630, Dec. 2022, doi: 10.1016/j.autcon.2022.104630.

[8] D. Garijo and M. Poveda-Villalón, “Best practices for implementing FAIR vocabularies
and ontologies on the web,” in Applications and practices in ontology design, extraction,
and reasoning, vol. 49, G. Cota, M. Daquino, and G. L. Pozzato, Eds. IOS Press, 2020
[Online]. Available: http://ebooks.iospress.nl/doi/10.3233/SSW200034. [Accessed: Feb.
15, 2023]

[9] L. Dodds and I. Davis, “Linked data patterns: A pattern catalogue for modelling,
publishing, and consuming linked data. Linked data patterns,” Sep. 06, 2022. [Online].
Available: https://patterns.dataincubator.org/. [Accessed: Apr. 11, 2023]

97

https://pdfs.semanticscholar.org/93f0/278821cf554be5a6f6e2667b24cb39096fe4.pdf
https://pdfs.semanticscholar.org/93f0/278821cf554be5a6f6e2667b24cb39096fe4.pdf
https://doi.org/10.1201/b17396-26
https://doi.org/10.1016/j.autcon.2022.104630
http://ebooks.iospress.nl/doi/10.3233/SSW200034
https://patterns.dataincubator.org/

	1 Introduction
	2 Related Work
	3 GraphQL and bSDD
	3.1 Original GraphQL bSDD Schema: Voyager
	3.2 Original GraphQL bSDD Schema: Problems
	3.3 Refactored GraphQL bSDD Schema: Voyager
	3.4 GraphiQL Querying of Refactored Endpoint

	4 Suggested Improvements
	4.1 Representational Shortcomings
	4.2 Modelling Issues
	4.3 GraphQL Improvements

	5 Implementing Improvements
	5.1 GraphQL to SOML and Back

	6 Conclusions and Future Work
	7 Acknowledgements
	References

