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Abstract
There is great potential in urban energy modeling for mitigating the effects of increasing energy con-
sumption in cities. However, there is limited integration of traditional building information and urban 
data in general. Therefore, this project suggests a novel data integration structure, the Neighborhood 
Energy Ontology (NEO). This ontology aims to connect urban data from different domains and scales 
to provide more intelligible insight to the end user. In order to assist with this goal, a dashboard was 
created which allows the end-user to interact with the data and come to new insights. It is suggested 
that the created ontology, in combination with the dashboard, is a suitable proof-of-concept to show 
how semantic solutions can aid in improving the potential of urban energy modeling to mitigate the 
adverse effects of increasing urbanization.
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1. Introduction

Growing urban populations [1] cause increased energy consumption in cities. As a result,
cities currently consume ‘two-thirds of primary energy resources and are responsible for more
than 70% of Green House Gas emissions worldwide’ [2]. Buildings in these cities account for
40% of global energy consumption [3]. In order to address this issue, there is great potential
in urban energy modeling which can result in increased energy use efficiency on an urban
and building level [4]. However, according to Curry et al. [5], there is limited integration
of traditional building information and other data, such as energy consumption. This limits
possibilities for cross-domain monitoring, simulation, and interventions. More readily available
information could indeed facilitate the identification of problems and solutions with respect
to urban energy consumption [6]. Moreover, while many studies focus on integrating data
on the building scale [7, 3, 5, 8], most goals for reducing energy use and Green House Gasses
are set on a national level, and most action is taken at the city scale [9]. Abbasabadi and
Mehdi Ashayeri [10] describe the fundamentally different approaches in assessing urban energy
use. On the highest level, methods can be divided into top-down and bottom-up approaches,
where ‘the top-down approach focuses on the macro scale and treats the built environment as
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a whole energy user, without taking into account individual end-users. It relies on historical
aggregated energy data to understand energy consumption in cities. In contrast, the bottom-up
approach takes a localized approach to studying energy use and considers urban attributes at the
microscale of individual units, such as individual buildings or a collective set of buildings. This
approach estimates energy use for individual end-users and extrapolates it into regional and
national scales’ [10]. The aim of this project is to adapt semantic web technologies to integrate
cross-domain data and information on multiple scales, enabling both top-down and bottom-up
urban energy assessment. Moreover, the project aims to visualize this integration in order to
allow stakeholders to interpret and work with the data more intuitively. Placing this effort in
the current digital twin paradigm, the definition provided by VanDerHorn and Mahadevan [11]
should provide some insight, as they describe a digital twin as ’a virtual representation of a
physical system (and its associated environment and processes) that is updated through the
exchange of information between the physical and virtual systems.’ The goal of this project
is to take the initial steps toward such a digital twin. In order to show the potential of this
approach, firstly, an ontological structure is defined (section 2). After this, a visual dashboard is
presented that allows stakeholders to read and interact with the linked data. This dashboard
is tested using the city of Eindhoven (the Netherlands) (section 3). This use case integrates
publicly available data from multiple stakeholders.

2. Method

Before describing the newly proposed ontological structure named Neighborhood Energy On-
tology (NEO), existing ontologies should be considered. The study by De Nicola and Villani [12]
gives a preliminary overview of available ontologies related to several urban topics. Regarding
energy use, they identify several ontologies, however, they are unsuitable for the purposes of
this research. They lack the possibility to describe urban data on a neighborhood level, as they
mostly relate to other urban units like microgrids [13], houses [14] or appliances [15]. Moreover,
the authors give an overview of available ontologies describing urban systems, which are not
aligned with the specific goal of this project as they mostly describe specific urban infrastructure
or three-dimensional geospatial objects. Besides these ontologies, SAREF4CITY [16] can be
considered. This ontology focuses on extending SAREF [17] in order to create a common core
of general concepts for smart cities and data-oriented to the Internet of Things (IoT) field
[16] and describes a data structure that allows for the description of several city objects, their
geographical definition and corresponding measurements. While this ontology does reflect the
core idea of NEO, it is deemed unsuitable for the purposes of this project, as it is more aimed
at structuring IoT data and Key Performance Indicator (KPI) measurements. Moreover, NEO
tries to capture urban data, without relying on a geographical definition as they are considered
hard to work with and impractical for practical implementation. However, alignment between
SAREF4CITY and NEO could be achieved (see section 4). Secondly, the Energy Management and
Key Performance Indicator (EM-KPI) ontology can be considered. This ontology is created to
describe the relationship between the master data sources for identifying energy performance
problems and key areas for improvement and to help energy managers make informed decisions
regarding energy efficiency measures [18]. Again, this ontology has similar goals and structure
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to NEO, however, is deemed unsuitable for the purposes of this project as it has an extensive
focus on KPI measurement, energy systems, and building aspects, while NEO is focused on
purely urban data. Moreover, as will be explained below, the central concepts of NEO are the
Building Performance Ontology (BOP, https://w3id.org/bop) and Building Topology Ontology
(BOT, https://w3c-lbd-cg.github.io/bot/). These ontological structures are considered to be able
to describe building-level information and data in high detail and are therefore extended in
this project. As the previously described ontologies are not connected to either BOT or BOP,
they are not reused in this project. Therefore, a new ontological structure has been created
named Neighborhood Energy Ontology (NEO), which reuses and extends multiple existing data
structures. NEO tries to achieve the previously described goals by defining ‘neighborhoods’ as
urban areas, which can contain other urban areas of a different (smaller) scale. These neighbor-
hoods are linked to certain properties that are attributable to these areas, following a similar
structure as defined in the Building Performance Ontology. In this project, neighborhoods are
considered a ‘bop:FeatureOfInterest’ and therefore can be associated with a ‘bop:Property’. This
structure is given in Figure 1 (namespaces are defined in Table 1). In this overview, it is shown
how neighborhoods can contain other neighborhoods, of a different scale. NEO can therefore
describe data on multiple levels, where a contained neighborhood might be assumed to inhered
the properties described by the containing neighborhood. Moreover, multiple properties can be
attributed to a neighborhood, which might come from different domains. Therefore, a more
holistic description of urban data can be given (examples of different domains are given in
section 3 below). In order to create a high-level structure of these properties, the property
structure in Figure 2 is adopted. This figure shows that a ‘neo:Neighborhood’ is a sub-class of a
‘bot:Zone’, which allows for the previously described relationship where neighborhoods (zones)
can contain other neighborhoods (zones). Moreover, neighborhoods can thus contain buildings
(bot:Building) as shown in Figure 1. The anchor point for building information in NEO is the
existing data structure of the Cadastre, Land Registry and Mapping Agency of the Netherlands.
Their Key Register for Addresses and Buildings (Dutch acronym: BAG) is published as linked
data and knowledge related to buildings, public spaces, cities is captured in the BAG2 ontology.
The building registration is reused in this project (Figure 1). This information is captured in the
‘Basisregistratie Adressen en Gegevens’ ontology (BAG2 [19]), which is reused as the basis for
capturing data on buildings in this project (Figure 1, ‘Building’). While this ontology entails a
larger structure, only the building registration aspect is shown in this Figure as it is the core
element used in this project.

Properties of the neighborhood are linked to a bop:Execution and bop:Procedure. As a single
property can be measured (and therefore defined) through multiple methods, this structure
allows for these differences to occur in the data. For example, an area’s population can be mea-
sured by multiple methods, and will likely deviate across different datasets. These measurements
(of type bop:Execution) are linked to the same property but describe different values measured
by different procedures. Conversely, different properties (e.g. the populations of multiple areas)
might apply similar measurement procedures. Lastly, each execution of a property can have one
or multiple results which provide a value (Figure 1, ‘Property Results’). Moreover, each result is
assigned a specific time interval that denotes its temporal relevance. Thus it can be said that the
result is only relevant within the time interval attributed to it. To summarize, neighborhoods of
varying scales may possess multiple properties which can be measured or assessed through
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Table 1
Prefixes and corresponding namespaces used in Neighborhood Energy Ontology

Prefix Namespace Color Representation

bag2 https://bag2.basisregistraties.overheid.nl/bag/def/ Orange
bot https://w3id.org/bot# Green
bop https://w3id.org/bop# Pink
time http://www.w3.org/2006/time# Brown
neo https://sanderdemeij.github.io/neo/ Blue
skos http://www.w3.org/2004/02/skos/core# -
rdfs http://www.w3.org/2000/01/rdf-schema# -
xsd http://www.w3.org/2001/XMLSchema# -
seas https://w3id.org/seas/EvaluationOntology# -

Figure 1: Overview of data integration method

multiple executions with different procedures. These executions may yield multiple results,
each with a designated time interval that reflects its temporal relevance.

In this project, data from multiple domains is being collected to provide a more intelligible
overview for end-users. However, these datasets which describe data about the same urban
areas (neighborhoods) are often stored in separate data silos with different data owners, leading
to a lack of cooperation and connection. To connect these datasets, a concrete sample of the

113

https://bag2.basisregistraties.overheid.nl/bag/def/
https://w3id.org/bot#
https://w3id.org/bop#
http://www.w3.org/2006/time#
https://sanderdemeij.github.io/neo/
http://www.w3.org/2004/02/skos/core#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2001/XMLSchema#
https://w3id.org/seas/EvaluationOntology#


Figure 2: Class structure of Neighborhood Energy Ontology (NEO)

integrated data mentioned above is in Figure 3. This figure illustrates how data from multiple
domains is connected on multiple scale levels. Similarly, a sample of this data in Turtle format
is shown in Figure 4. While Figure 3 is a visual representation, 4 is a machine-readable example
of the data which is used in section 3. By adopting this method, the data is made accessible for
further analysis and interpretation by different stakeholders (an example of this will be given in
section 3.3). Moreover, in future development, different scales and domains can be added easily
(which will be compatible with the designed dashboard).

3. Results

3.1. Dashboard Design

In order to achieve the goal of more insightful urban energy use data, a web-based viewer is
created that visualizes the integrated data from multiple stakeholders. The back end of the
viewer consists of two databases. First, a graph database (Ontotext GraphDB [20]) is used to
store the linked data. This project incorporates data from four main sources: (1) energy use data
obtained from a Dutch energy provider [21]; (2) socio-economic data collected from several
sources of the Dutch Central Bureau of Statistics (CBS) [22]; (3) energy label data procured
from the Dutch Enterprise Agency (Dutch acronym: RVO) [23], and (4) building-related data
gathered from the BAG data [19]. A Python converter has been developed to convert tabular
data into RDF data. The converter can integrate data from multiple datasets as long as the
tabular data has a postal code identifier. It is a helpful addition to the dashboard described above,
which can accommodate any data adhering to the data structure outlined in section 2. The
aforementioned data is used as an example in this project, but the converter allows for the easy
extension of new datasets in the future. The geometric city information is typically unsuitable
for graph databases, which is why Cesium Ion [24] is used to store and stream the geometric
data. This data consists of both 2D and 3D geometries. The dashboard, a web application in
JavaScript, visualizes the geometric information. This data is linked with the linked data using
GUIDs. The web application lowers the entry barrier for end-users and can be easily built upon.

114



Figure 3: Overview of a sample of the integrated data in visual and code form

The dashboard serves two main functions, visualization, and querying. End-users are able to
build visual queries, just like the common web shop filter bars (see Figure 5). These queries are
transformed into SPARQL. Expert users can choose to type SPARQL queries manually. The
results of these queries will be visualized in the 3D map, in a table, and in a graph. The 3D
map is created using the Cesium package [25], and the graph is constructed using vis.js [26].
All these items are interactive so that if a user clicks on a certain neighborhood in the map,
on a row in the table, or on an element in the graph, the SPARQL query will be automatically
updated and new results will pop up. Users are therefore not limited to querying functionalities
but can explore the available data via different intuitive methods. These functionalities are
shown in Figure 5, where the map is shown in the top left, while the query is shown in the top
right. The table and graph are shown in the bottom left and right respectively. The remainder
of this section will show these elements in more detail and show the different forms they can
take (which correspond to different functionalities).

As has been mentioned, the map is created using the Cesium package [25], which allows for
a multitude of geospatial representations. Cesium was chosen specifically in order to be able to
visualize 3D shapes on the map. The main map displays the city under investigation (Eindhoven,
the Netherlands) to the end-user, including all 6-digit postal code areas in this city. The user is
able to zoom, pan, and rotate the view to investigate all aspects of the city. Moreover, within the
map, the user has the ability to click on the postal code areas, which gives more information on
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Figure 4: Sample of integrated data in Turtle format

the selected neighborhood. Firstly, an automatic query is generated which queries all variables
associated with this postal code area. This allows the user to investigate the extent of the data
available for this area, and get an initial sense of the area. Secondly, a 3D visualization of the
buildings within the area is shown. These buildings are part of the 3D BAG dataset [27] and
have Level of Detail (LoD) 2. The buildings are available for the entire city, however, buildings
are only shown based on the selected postal code area, due to load time restrictions. The map
can be considered the core of the dashboard. Moreover, all other functionalities will interact
with the map in some way in order to provide the end user with a clear overview of the data.
While the map can be considered the core element of the dashboard, the query functionality
adds the first layer of interactive capabilities. As is shown in Figure 5, the user has the option
to select energy use variables, as well as other variables, in order to construct a query. These
variables are automatically generated based on the available instances of bop:Property in the
graphs. Moreover, the user is able to select multiple variables in order to construct more complex
queries (section 3.2) and visualize the results of the query on the map. Lastly, the user is able
to visualize the data in tabular and graph form. The table represents data in common form
and allows the user to select individual neighborhoods for further investigation. Moreover, the
graph visualizes the structure of the data to the user. Here, the user can investigate the data on
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Figure 5: Overview of dashboard

a higher level and discover what data is available and create new queries. Based on the available
data, the graph shows the connections of the properties, firstly based on their super-property
class (as shown in Figure 2). When the user selects a property, the level of measurement, unit,
and measurement procedure are shown. Moreover, when any of these aspects are selected
their relationship to other properties is also visualized, allowing the end-user to investigate the
nature of the data in more detail. Using these functionalities and their interactions, the user
is able to query data that crosses multiple domains using one method. The user can discover
new aspects of the data which were previously impractical to discover and therefore gain new
insights about their individual questions. This dashboard could be used in this way to answer
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Figure 6: Process of constructing a query using the dashboard

existing questions or formulate new questions which the user was unable to form before.

3.2. Querying

The structure for constructing a query is provided in Figure 6. Firstly, the user can select one of
the available properties (with different execution methods). This list of properties is created
dynamically based on the available data. Secondly, the user selects a property to query, after
which the property is represented correctly. The representation method is based on the level of
measurement indicated for the execution method (Figure 1, ‘Property’) and a high-level check
of the found values. Based on whether the data is numerical, categorical, or nominal, a different
user interface is generated to build the visual query method. In the example provided in Figure
6, the data is numerical, and therefore the user is represented with means to query this data
accordingly. Moreover, the user is able to select multiple properties to run a complex query.
Meaning that individual SPARQL queries are constructed and executed, which all return the
correct postal codes and their values. When multiple variables are queried the overlap between
the found postal codes is established, and these postal codes are shown on the map. When the
user chooses to visualize the results, the found values for that variable are converted to five bins,
each represented by a color (as shown in Figure 5). This allows a more intuitive way to explore
the spread of the found values over the city. The user can switch between the visualization of
all the found variables, however, the visualization of multiple variables at once is not available
as the interpretation of this visualization would be too complex.

3.3. Generating Urban Energy Insights

In order to show the potential of the data structure and the dashboard, a relevant use case
is explored. In order to cope with the increasing energy prices, the Dutch government has
initiated a maximum price for energy [28]. Part of this policy is the fact that energy price is
only limited when energy use remains under a certain limit annually. For gas, this limit is set
at 1200 m3. Given this policy, the municipality (or another stakeholder concerned with urban
policy) might be interested to know where in the city this consumption is exceeded. Given
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the provided data, the end-user can start an initial investigation of the data by querying for all
postal codes where the average gas use exceeds these limits, as is done in Figure 5. Moreover,
it is suggested that persons who rent their homes are more vulnerable to energy poverty and
therefore increasing energy prices [29, 30]. Therefore, the query is extended to areas with a
high percentage of ‘renters’. Lastly, in order to exclude areas where few dwellings are present
(and are more likely to include industry), a query is included to search for areas with more than
50 dwellings. The results of this query are shown in Figure 5 and indeed show that there are
multiple areas in the city under investigation that might be relevant for further investigation. For
example the larger area in the south of the city, as well as the cluster of areas in the north-west.
The end-user might want to go into more detail on why gas use is relatively high in these
areas, however, this dashboard has provided a first step in the process. As Figure 3 shows, data
from multiple stakeholders is (and can) be used in this use case, while the possibility exists for
further expansion of the data in further conducted research into these areas of interest. The
graph function shown in Figure 5 allows the user to see which data is already available for the
areas under investigation. As an example, the end-user might collect more detailed building
information in these areas to further the investigation. While this type of data collection is
infeasible for the entire city, it is possible for only a few areas. What should also be noted is the
fact that a multitude of areas are marked gray, indicating that no data is available for these areas
for one of the variables as indicated by the provider of the data. As the provider of the data has
indicated the data as unavailable, it is unclear whether the data does not exist, is zero, or is kept
secret (for instance for privacy reasons). During the addition of the variables, it became clear
that these missing values are attributable to the data on rented dwellings. While this might
limit the validity of the analysis, it might be useful information to the end-user and indicate
several steps to be taken in order to do a more thorough investigation of this problem.

4. Discussion

Urban energy modeling has great potential to support energy efficiency in buildings and the
urban environment. However, the lack of data integration across different scales and domains
has limited this potential. As an example, the paper by Ali et al. [6] describes a seven-step
process ‘to analyze and visualize large dataset and extract meaningful information from the
data’. To address this issue, and make the extraction of meaningful information much easier, this
project has proposed a new data structure that enables the integration of multiple relevant data
sets into urban energy modeling. Moreover, we proposed an interactive visual dashboard, which
allows end-users to investigate the data in more detail and gain insights that were previously
difficult to obtain. As the proposed data structure is only demonstrated in the context of urban
energy use, more research is needed to test its suitability for other urban properties. In addition,
the data currently used is rather static data (yearly or monthly). More tests are needed to
integrate dynamic data, such as real-time sensor data. Here, alignment with currently existing
ontologies like SAREF4CITY and EM-KPI (section 2) should be investigated, as they show
potential for including this type of data. Additionally, the data structure was designed for Dutch
urban systems, which defines neighborhood by postal code areas. The effectiveness of the
data structure in more complex urban structures needs to be tested further. The dashboard
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presented in this project serves as a proof of concept. It is suggested that this is a good example
of using the proposed data structure. However, more research is required to fully explore the
possibilities of semantic digital twins for urban policy testing, by integrating additional data
sets such as mobility, traffic, and stakeholder-specific use cases. Referring back to the definition
of a digital twin provided in section 1 by VanDerHorn and Mahadevan [11], it is suggested
that the presented dashboard is a first step towards an urban digital twin, using semantic web
technologies. The definition provided that a digital twin consists of three elements: a physical
reality, a virtual representation, and an interconnection that exchanges information between
the physical reality and virtual representation [11]. While the main focus of the project has
been on the second of these elements, it can be argued that the third element needs further
development (as has been discussed with the further exploration of dynamic data integration).
However, VanDerHorn and Mahadevan [11] argue that update frequency and manner in which
a digital twin should be updated is arguable. The authors state that this does not have to be
online and by frequent sensor updates, for instance, but can depend on the specific use case.
Considering the urban nature of this project, it could therefore be argued that the proposed
dashboard is indeed an adequate first step towards a semantic urban digital twin.

5. Conclusion

In conclusion, this project has demonstrated the potential of data integration with the semantic
modeling method for urban energy analysis and planning. By collecting data from multiple
sources and proposing a new ontology (NEO), the project has shown how previously discon-
nected data sets can be linked and analyzed in a more meaningful way. The visual and interactive
semantic dashboard developed in this project allows end users to explore and gain insights
into urban energy use and related socio-economic factors. However, the project also highlights
several limitations and challenges, such as the need to further testing and refinement of the
data structure for different urban systems and the inclusion of real-time or near-real-time data
in the data structure. Nevertheless, the project provides a useful example of the possibility of
semantic digital twins for urban energy modeling and suggests future directions for research
and development in this area. Overall, the project contributes to the broader goal of achieving
a more sustainable and efficient urban energy system, which is crucial for improving urban
livability.
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