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Abstract
The storage and processing of massive time series data collected from smart buildings consume con-
siderable computational resources. However, major information redundancy can be found in the smart
building data. This paper proposed a partial correlation graph based approach to map the dependencies
among sensors and detect the sensor communities in which the sensors are strongly “net” correlated.
Specifically, the sparse partial correlation estimation method is used to learn the partial correlation graph.
The Louvain algorithm is used to detect the communities of sensors by optimising the graph modularity.
The case study demonstrates that the proposed method can identify spare sensors in the detected sensor
communities and thus enhance the computational feasibility of smart building applications.
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1. Introduction

In recent years, the Internet of Things (IoT) has become increasingly popular in the realm of
smart buildings, leading to a more livable and sustainable indoor environment. By deploying
various IoT sensors and devices, a great amount of data is generated reflecting diverse aspects
of buildings’ operations [1]. The heterogeneous data contains valuable information that can
be used to facilitate better-informed decision-making [2]. Leveraging machine learning and
many big data analytic methods, the sensor data is transformed into information and further
mined to extract knowledge. This allows machines to gain better insights and wisdom into
the building systems, following the Data-Information-Knowledge-Wisdom (DIKW) pyramid
[3]. However, strong spatiotemporal dependencies exist between the multivariate time series
generated by multiple sensors. It is unsustainable to treat each sensor as an independent
individual without considering the spatial correlation and temporal dynamics among them
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[4, 5]. Because computations generate 100 megatons of CO2 emissions per year, accounting for
3% global carbon footprint. For smart buildings, redundant information is computed repeatedly,
rarely contributing to new knowledge while generating extra carbon for computing. For
example, the window open/close sensors are redundant to a certain extent if indoor and ambient
temperatures are monitored for unconditioned spaces.

Graphical models have been proven as useful tools for analysing multivariate time series [6],
which specify conditional independence relationships among a collection of random variables.
The vertices (nodes) in the graph represent variables, while the directed or undirected edges
(links) reflect the causalities or dependencies between variables. The dynamic relationships
over time among the variables help to determine and explain the causation or association
mechanisms of the underlying systems. The application of graphical time series models can
be seen in a wide range of areas, such as financial market analysis [7] and brain interactivity
analysis [8]. In particular, for high-dimensional stationary multivariate Gaussian time series,
the Gaussian graphical model, an undirected graph of partial correlation coefficients, allows for
sparse modelling of the underlying association structure amongst observed variables. This is
an efficient tool for modelling complex systems of myriad variables by building them using a
smaller proportion of variables.

With the ubiquitous IoT sensors in smart buildings, buildings are modelled as systems with
humans in the loop. This requires huge computation and storage resources as well as advanced
software that implements innovative algorithms for analysing high-dimensional sensor data. In
this paper, the Gaussian graphical model, also known as the partial correlation graph, is used
to model the relationship underlying the multivariate time series data collected from smart
buildings. Based on the learned partial correlation graph, the communities of sensors could
be formed, in which a few sensors would represent the overall pattern of a community with
similar spatiotemporal features. It leads to a computationally feasible strategy to model the
diverse spatiotemporal processes for buildings in a dimension-reduced manner.

2. Literature review

2.1. Feature selection for multivariate time series

Data analysis is a computationally intensive process, particularly when dealing with large
datasets containing a significant number of variables. In this context, these “variables” are also
called “features”. The computational complexity, in terms of space or time, which measures the
total amount of either time or memory taken by an algorithm to run, often increases dramatically
with the feature dimensionality [9]. To avoid the so-called “curse of dimensionality”, feature
extraction and feature selection techniques are proposed respectively. Feature extraction meth-
ods aim to project high-dimensional data into low-dimensional subspace. Principal Component
Analysis (PCA), multidimensional scaling (MDS) and Isometric Mapping (ISOMAP) are typical
feature extraction methods [10]. However, the new set of features built from the original feature
set lacks clear physical interpretations. On the other hand, feature selection methods remove
irrelevant and redundant dimensions from the raw dataset with minimal loss of information.
By filtering out unrepresentative features, the process of feature selection helps to extract
meaningful insights from the original dataset, reduce the complexity of data analysis, release
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the computational burden, avoid the overfitting problems, and improve the generalisation and
interpretability capacity of the corresponding machine learning approaches [11].

In general, feature selection methods can be classified into three categories, which are filter,
wrapper, and embedded methods [12]. Filter methods measure and rank feature importance
based on certain feature evaluation criteria quantifying their statistical characteristics, such as
Pearson correlation coefficient, Fisher score [13], and mutual information [14]. Independent of
the machine learning approach adopted for data analysis, the filter methods are computationally
efficient by simply filtering out lowly ranked features. As the alternative, wrapper methods
search for a subset of features that optimises the performance of the predefined machine learning
approach. Typical search strategies include sequential search,hill-climbing search, best-first
search, branch-and-bound search, and heuristic genetic algorithms. However, for very large 𝑑
features within 2𝑑 search space, the wrapper methods become computationally infeasible [15].
Embedded methods provide a trade-off between filter and wrapper methods. Inheriting the
merits of the wrapper and filter methods, embedded methods introduce sparse regularisation
terms to the optimisation objective of a machine learning model to penalise complex models
and reduce the dimensionality of the input features.

Many existing feature selection methods are based on an illusory assumption that features
are independent of each other while ignoring the inherent feature structures [12]. In the case of
smart buildings, the inherent feature structures mainly come from the spatial proximity and
functional association of sensors inside a building. Incorporating such spatial structure can help
select more important features for smart building applications. In this paper, a partial correlation
graph of multivariate time series data from smart buildings is learned, where undirected edges
with weights indicate the pairwise dependencies between features represented by vertices.

2.2. Partial correlation graph of time series

Partial correlation graphs have long been used to explicitly map the dependencies between
various stationary variables in multiple domains, such as river stage forecasting [16]. By
identifying the nonzero entities in the partial correlation matrix (equivalent or related to
inverse covariance matrix, concentration matrix and precision matrix), the topology of the
partial correlation graph can be reconstructed and the conditional dependencies among the
observed variables can be elucidated [17]. The partial correlation coefficients, ranging from −1
to 1, encode the dependence between two variables after eliminating the influence of all the
remaining variables. When determining the conditional dependency between two variables of
interest A and B, the conventional Pearson correlation coefficient may give misleading results
when another confounding variable C has the so-called common cause or common effect on
both A and B. By computing the partial correlation coefficients, the spurious correlation can be
eliminated where only the “unbiased relationship” of A and B remains.

Estimating partial correlation coefficients comes down to calculating the inverse of the
covariance matrix. Studies have shown that partial correlations are proportional to not only the
multiple linear regression coefficients but also the off-diagonal entries of the inverse covariance
matrix [17]. Especially, in cases where the number of variables is greater than the number
of observations, the rank of the covariance matrix is equal to the number of observations,
and methods like generalised inverse or pseudo-inverse need to be adopted to tackle this ill-
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posed inverse problem. However, these methods often fail to provide accurate and sparse
interpretable solutions. To address this issue, regularisation techniques are explored to impose
sparse constraints on the inverse covariance matrix. The overall sparsity assumption of the
partial correlation matrix is reasonable and taken for granted for many real-world problems.
L1-norm regularisation and elastic net regularisation, which is the combination of L1- and
L2-norm regularisation, have been used to extract sparse nonzero partial correlation coefficients,
with the elastic net regularisation showing stronger robustness for the estimation.

In the graphical model for the multivariate time series, the number of possible edges between
vertices grows quadratically. Fortunately, there usually exists a corresponding sparse graph such
that the edges directly linked to each vertice are few [18]. By taking this sparsity into account, it
is possible to develop graph models with good generalisation and predictive capability from far
fewer samples. This is the desired character for smart building applications, where the analysis
can be conducted and the decisions can be made relying on fewer data instead of all.

3. Methodology

3.1. Estimation of partial correlation graph

Considering a weighted undirected graph 𝒢 = {𝑉 , ℰ} with vertices indexed by 𝑉 = {1, 2, ⋯ , 𝑝}
and a corresponding set of undirected edges ℰ ⊆ ℝ𝑝×𝑝, let 𝑥𝑖 ∈ ℝ𝑛 denote the time series
observed from the vertice 𝑖 and the edge from vertice 𝑗 to vertice 𝑖 has a weight 𝑤𝑖𝑗 (𝑖, 𝑗 ∈ [ 1, 𝑝] ).
The weighted undirected graph becomes the partial correlation graph when the respective
weights 𝑤𝑖𝑗 are assigned the partial correlation coefficients between these variables 𝑖 and 𝑗.
More precisely, the edge between vertice 𝑖 and 𝑗 exists if and only if 𝑥𝑖 and 𝑥𝑗 are conditionally
independent given the remaining 𝑝 − 2 variables. Suppose the multivariate Gaussian time
series data 𝑋 = [ 𝑥1, 𝑥2, ⋯ , 𝑥𝑝] has positive-definite covariance matrix 𝛴 = 𝔼(𝑋 𝑇𝑋) and inverse
covariance matrix 𝑃 = 𝛴−1. The (𝑖, 𝑗) element in 𝑃, represented by 𝑃𝑖𝑗, is nonzero when 𝑥𝑖 and 𝑥𝑗
observed by vertice 𝑖 and 𝑗 are conditionally dependent straightforward.

Acquiring the inverse of the covariance matrix becomes an ill-posed problem when the
number of observations 𝑛 is less than the number of variables 𝑝. In this case, the covariance
matrix 𝛴 is singular and non-invertible. A computationally efficient sparse partial correlation
matrix estimator, Sparse PArtial Correlation Estimation (SPACE) method, is proposed in [17].
SPACE method alternates between solving for the partial correlation matrix 𝑃 and for the
diagonal of the precision matrix 𝛩 with the objective function of:

𝐿(𝑃, Θ) = 1
2

𝑝
∑
𝑖=1

||𝑥𝑥𝑥𝑖𝑖𝑖 −
𝑝
∑
𝑗≠𝑖

𝑃𝑖𝑗
√

𝛩jj
𝛩ii

𝑥𝑥𝑥𝑗𝑗𝑗||22 + 𝜆 ∑
1≤𝑖<𝑗≤𝑝

|𝑃𝑖𝑗| (1)

𝑃𝑖𝑗 = −
𝛩ij

√𝛩ii𝛩jj
(2)

To solve this, a Least Absolute Shrinkage and Selection Operator (LASSO) problem is formu-
lated. Typically, the optimisation problem converges after 2 to 3 iterations.
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3.2. Inference of sensor communities in smart buildings

By 2026, the number of sensors deployed in smart buildings will exceed one billion, according
to a study from Juniper Research. With this growth, more smart building applications will
emerge to gain insights and make better-informed decisions using the vast amount of building
data collected [19]. Assuming 𝑝 sensors are deployed in a specific area of a building, the data
accumulates with time according to the sensor sampling rate or the frequency of changes in
sensor data values. However, the time series data from these 𝑝 sensors are not independent
of each other due to the spatial correlations. To reflect the dependencies among these sensor
readings, a partial correlation graph of the multivariate time series collected from 𝑝 sensors
is learned, as illustrated in Figure 1. These sensors can be of the same type, such as carbon
dioxide (CO2) sensors within the same space. Typically, they provide similar readings under the
well-mixed assumption when the sensor sampling interval is greater than 10 minutes. Strong
dependencies also exist between data generated by different types of sensors. For instance, the
volatile organic compound (VOC) concentration is highly correlated with the CO2 concentration
because CO2 serves as a common surrogate indicator for indoor air quality.

Figure 1: Learning of partial correlation graph for time series data from sensors deployed in smart
buildings (adapted from [20]).

To identify intensively tied sensors with considerable data redundancy, the community
detection approach is used to cluster dependent sensors based on the estimated partial correlation
graph [21]. A community refers to a group of vertices that are closely connected to each other
but less connected to the vertices outside the group. Detected communities contain groups of
sensors that generate highly correlated time series. Louvain algorithm is a classical method to
extract communities from networks, which optimises the defined modularity of communities
indicating the density of (weighted) edges within communities with respect to edges outside
communities [22]. The choice of Louvain algorithm is due to its properties of computational
efficiency and scalability that make it suitable even for large-size networks. The modularity
score is formulated as:
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𝑄 = 1
2𝑚

∑
𝑖,𝑗

[𝐴𝑖𝑗 −
𝑘𝑖𝑘𝑗
2𝑚

] 𝛿(𝑐𝑖, 𝑐𝑗) (3)

, where 𝑚 is the sum of all edge weights in the undirected graph, 𝐴𝑖𝑗 denotes the weight of the
edge between vertice 𝑖 and 𝑗, 𝑘𝑖 and 𝑘𝑗, represents the sum of weights connecting vertice 𝑖 and
𝑗, 𝑐𝑖 and 𝑐𝑗 are the communities of the vertices, and 𝛿(⋅) is the Kronecker delta function. The
Louvain algorithm alternatively conducts modularity optimization and community aggregation.
This process is repeated until no further increase in modularity is possible and the detected
communities stabilise, leading to an optimal partition of the partial correlation graph into
communities of sensors.

4. Case study

To validate the proposed methodology, the urban science building (USB) of Newcastle University,
a part of the Newcastle Helix site within Newcastle city centre, is used as the testbed. With
over 4,000 sensors, computing technology is embedded throughout the building’s structure,
making it one of the most intensively monitored buildings in the UK. Figure 2 (a) shows the
exterior of the urban science building and Figure 2 (b) shows the layout of its second floor and
the included spaces (red cubes indicating the centre of spaces) where sensors are deployed.

In this case study, the carbon dioxide (CO2) concentration sensors on the building’s second

Figure 2: Urban science building (a), the layout of its 2nd floor and spaces where sensors are deployed
(b).
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floor are used to demonstrate the information redundancy residing in the collected sensor data.
Figure 3 presents the CO2 concentrations measured by 24 sensors, in the unit of ppm (parts per
million). The 24-hour data was collected on Feb 15, 2023, which is a Wednesday. The sensor data
is cleaned and preprocessed to impute the missing sensor values and resampled to 15-minute
intervals. The sensors are labelled with the respective room names they are located in (i.e.,
‘R’+floor_number+‘.’+room_number). Note that, more than one sensor may be deployed in
one open space, in which the sensors inside are specified by the additional zone number (i.e.,
‘R’+floor_number+‘.’+room_number+‘-Z’+zone_number).

The partial correlation graph is learned based on the collected daily CO2 data. Figure 4
visualises the partial correlation graph of the sensor time series, in which the edges indicate the
dependencies between the CO2 concentrations measured at proximate locations. The stronger
the dependency is, the thicker the corresponding edge is. The highest partial correlation
coefficient emerges between the CO2 concentrations measured in R2.037-Z1 and R2.037-Z2,
followed by the CO2 concentrations measured in R2.058-Z1 and R2.058-Z2. The Louvain

C1 C1

C1 C1

C1 C1 C1

C1 C2 C2

C2 C2 C2

C2 C2

C2

C3

C4

C5 C5

C5 C5

C2 C2

Figure 3: Carbon dioxide concentrations measured by 24 sensors on the 2nd floor of the USB.
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algorithm is used to detect the communities of sensors, the results of which are given in Table 1.
Besides, the community numbers are shown in the top right corner of each time series in Figure
3. The detected 5 communities make sense to a certain extent. For example, rooms R2.048
and R2.037 are open areas next to each other and therefore share similar CO2 concentration
readings. Same for the room R2.060 and the neighbouring zone R2.048-Z4. An interesting
phenomenon can be observed. Rooms like R.027 and R.060 are clustered into different groups
although showing a correlation in-between. This is because they are clustered based on their
proximity to the centroid of that cluster, rather than the ”distance” between them.

Figure 4: Partial correlation graph between the CO2 concentrations measured by 24 sensors.

Table 1
Communities of CO2 sensors based on the learned partial correlation graph

Community number Included sensors

1
R2.005, R2.026, R2.027, R2.038-Z1, R2.038-Z2, R2.048-Z5,
R2.058-Z1, R2.058-Z2

2
R2.014, R2.015, R2.019-Z1, R2.019-Z3, R2.020, R2.022-Z1,
R2.022-Z2, R2.048-Z1, R2.048-Z4, R2.060

3/4 R2.017/R2.021
5 R2.048-Z2, R2.048-Z3, R2.037-Z1, R2.037-Z2

The detected communities of sensors can help to identify the spare sensors deployed in near
spaces. In practice, the deployment of IoT sensors in smart buildings largely follows intuition.
In the case of USB, at least one CO2 sensor is deployed in each occupied space, and for large
open spaces, one CO2 sensor is responsible for monitoring an individual zone. The learned
partial correlation graph and the detected communities of sensors indicate that some sensors
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located in proximate locations basically provide the same piece of information. In such cases,
virtual sensors can be defined by fusing multivariate time series data from duplicated sensors,
which reduces the size of sensor data to be stored and processed.

5. Discussion

To deal with the massive time series data from smart buildings, a partial correlation graph-based
methodology is proposed in this paper. The partial correlation graph reflects the conditional
independence relationships among the multivariate time series data generated by multiple
sensors distributed in different spaces. However, the conditional independence relationship
does not necessarily correspond to the causality. This is why some distanced sensors can still
appear in the same community. In the case of USB, some sensors deployed near the corridors
emerge in the same community, probably because the CO2 concentrations are affected by
similar occupants’ activities. To bring the spatial information into the equation, the spatial
adjacency graph, which describes the spatial relationships among sensors, can be converted
from the semantic models using ontology such as the Building Topology Ontology (BOT) [23].
By integrating the partial correlation graph and the spatial adjacency graph, the detected
communities would be more physically interpretable. Furthermore, because the dependencies
between sensor data rely on human activities as well, a sliding window approach will be applied
to detect the changes in the sensor communities over time. The dynamic sensor communities
with weekday/weekend, season, and year patterns are expected.

Admittedly, the building semantic model can be enriched using the spatiotemporal features
extracted from the sensor data. But we reserve the opinion that the semantic model is not the
best repository for such spatiotemporal-wise knowledge considering the uncertainties and more
importantly dynamics. The learned graph in the case study only reflects the spatiotemporal
pattern of a specific day, and we expect weekly, monthly, seasonal or annual changes in
the acquired patterns. The semantic model, as it is, is not suitable for this type of dynamic
information, unless the objects and relations can be timestamped. Alternatively, these periodic
spatiotemporal patterns can be encoded in machine learning models. Further studies are needed
to tackle this challenge.

6. Conclusion

The emergence of the smart building concept brings great opportunities and challenges. One
of the main challenges is the massive data generated every minute and every second. For the
multivariate time series data from smart buildings, the partial correlation graph is learned using
the sparse partial correlation estimation method, which maps the dependencies among the
sensors in the smart building. Leveraging the learned partial correlation graph, the sensors are
clustered into different communities, in which the sensors are strongly tied. The urban science
building of Newcastle University is used as the case study. The results demonstrate that the
proposed methodology can uniquely identify spare sensors in a detected community of sensors
that barely provide extra information to smart building applications. It leads to a computationally
feasible approach to reduce the volume of sensor data with minimum information loss.
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