
OWL Paths: A library for processing SPARQL-like 
property paths over OWL classes  

Melissa D. Clarkson1 and Landon T. Detwiler2  

1 University of Kentucky, Lexington, Kentucky, USA  
2 Bend, Oregon, USA  

Abstract 
Ontologies representing knowledge of biomedical domains are often constructed primarily of classes, 
rather than individuals. Classes are related to one another using OWL property restrictions which 
represent the complex network of relationships that would hold between individuals. The SPARQL 
query language is limited in its ability to represent the complexity needed for some types of queries over 
ontology class structures. We present the OWL Paths library, which uses a grammar syntactically similar 
to SPARQL and allows the user to write path expressions in relation to OWLClass objects in the OWL 
API. We demonstrate the need for this library using an example from the Foundational Model of 
Anatomy (FMA) ontology. 

Keywords  
Ontology, Ontology pattern, Anatomy, Knowledge representation 1 

1. Introduction 

Ontologies are used to represent knowledge about biological and medical domains. These 
ontologies are built primarily or exclusively of classes (rather than individuals) and often make 
use of a large number of types of relations (object properties) between classes [1]. Examples of 
biomedical ontologies can be found at the Open Biological and Biomedical Ontologies (OBO) 
Foundry website [2] 

Our work is in the domain of human anatomy.  The Foundational Model of Anatomy (FMA) 
ontology is a representation of canonical human anatomy developed by the Structural 
Informatics Group at the University of Washington. The FMA asserts that anatomy can be 
represented using a series of organizing units at different levels of granularity. These units 
include “Cell”, “Portion of tissue”, “Organ”, and “Organ system”. The FMA serves as a reference 
ontology of canonical human anatomy and has been incorporated into the Unified Medical 
Language System (UMLS). It consists of over 100,000 classes and 130 types of relations between 
classes—making it one of the largest biomedical ontologies in existence and the most 
comprehensive ontology for adult human gross anatomy [3,4]. 

Our recent work with the FMA has focused on developing methods of auditing the FMA to 
detect incomplete content and inconsistencies in modeling [5,6]. Anatomical structures repeated 
throughout the body (such as joints, muscles, and bones) should be modeled in similar and 
predictable ways, but the changes in modeling schemes during the 20-year development of the 
FMA and inter-author variation have resulted in inconsistencies. Our goal is to remodel the FMA 
using a pattern-based strategy that will support the next generation of intelligent biomedical 
applications. 

Anatomical representation is a useful case for exploring how patterns can be applied within 
complex ontologies. The patterns in our work (which we refer to as “knowledge representation 
patterns”) are specific to the ontology content, rather than being generalizable patterns as those 
available through OntologyDesignPatterns.org.  

 
Proceedings Acronym: Proceedings Name, Month XX–XX, YYYY, City, Country 

 mclarkson@uky.edu (M. Clarkson); detwiler1@gmail.com (L. Detwiler) 

 0000-0001-9979-176X (M. Clarkson); 0000-0003-2699-2338 (L. Detwiler) 

 
© 2023 Copyright for this paper by its authors. 
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).  

 CEUR Workshop Proceedings (CEUR-WS.org)  
 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

http://ceur-ws.org/


The structure of the FMA is determined by both the naturally occurring structure of human 
anatomy and medical conventions for dividing anatomical structures into parts. The various 
organ systems of the body (including the musculoskeletal system, nervous system, lymphatic 
system) are represented as parts that are related to each other through sets of constraints. For 
example, each lymph node is continuous with at least one lymphatic vessel.  

We are working toward representing the anatomical structure of the human body as machine-
readable patterns to aid in authoring and curation of the next iteration of the FMA. To accomplish 
this work, we must query over classes using a method that is analogous to path expressions. In 
this paper we (1) demonstrate the need to query over ontologies using property path expressions 
and (2) present our work in developing OWL Paths, a library that enables SPARQL-like processing 
over ontology classes. We expect this work will be applicable to many large and complex 
biomedical ontologies. 

2. The need for SPARQL-like path expressions over OWL classes in 
ontologies 

We first introduce a fictional example of a medical records ontology to explain the rational for 
OWL Paths. We then show a more complex example using a representation of human anatomy 
from the FMA.  

2.1.  Representing an instance of a medical record and a medical record 
ontology 

Figure 1 shows a diagram of the graph representation of part of a fictional medical record for 
patient number 001. One of the subsections of “MedicalRecord_001” is “PersonalData_001”, and 
that section has subsections “DemographicData_001” and “ContactInfo_001”.   

Figure 1: Instance of a fictional medical record 
 
This data structure can be queried by SPARQL. For example, all subsections of the medical 
record would be retrieved (would bind to ?x) with the following path pattern tuple: 

 demo:MedicalRecord_001 demo:has_subsection+ ?x 

Figure 2 shows a diagram of the graph representation of the class structure of the ontology 
that specifies the structure of medical records in this system. This ontology tells us that each 
medical record has at least one “PersonalData” section, and each “PersonalData” section has at 
least one “DemographicData” section and one “ContactInfo” section. Notice that the 
representation of classes in Figure 2 is more complex than the instance shown in Figure 1 and 
requires the use of anonymous classes. Suppose we wanted to query the ontology to retrieve all 
classes that are reachable, recursively, from the class “MedicalRecord” via existential restrictions 
(owl:someValuesFrom) on the property demo:has_subsection. A SPARQL query can be written 
only if we know how many levels deep we need to follow the path of demo:has_subsection 
relations. SPARQL does not have a method of recursively searching a network of this complexity 
to an arbitrary depth. 
 



 
In practice, this limitation is often overcome by a method called punning, in which an example 

or model individual is created for each class of an ontology. These individuals can be directly 
connected via object properties such as demo:has_subsection, thereby simplifying the structure 
shown in Figure 2 to that in Figure 1. But this is a pre-processing step that that must be done 
across the entire ontology. The purpose of OWL Paths is to enable SPARQL-like path processing 
over the classes in an ontology as if the pun individuals were present, without the need for pre-
processing. 

2.2. Representing human anatomy 

Because the FMA represents only classes (not individuals), following paths for any relation 
other than owl:subClassOf requires following assertions that use anonymous classes.  For 
simplicity, the example in Figure 3 diagrams the relationships between a type of muscle (biceps 
brachii) and bones (scapula, radius) as an anatomist would conceptualize these paths.  

Figure 3: Example of anatomy represented in the FMA as conceptualized by an anatomist, with 
illustration of anatomy on the right. The generalized pattern is shown at the bottom.  

Figure 2: Ontology of a fictional medical record 
 



The example in Figure 3 shows that a tendon attaches to a region of a bone, and that region is 
transitively part of a bone. But the modeling has a variable number of “Region of bone organ” 
classes traversed between a class “Tendon” and class “Bone organ”. Therefore this path traverses 
a variable number of regional_part_of relations, and queries that traverse the paths between 
“Tendon” and “Bone organ” must account for this recursive path. The OWL Paths library was 
developed to provide the ability to perform this type of complex query. 

3. Development of the OWL Paths library 

Ontologies are often created or edited in GUI based development tools, such as the Protégé 
ontology editor and framework [7]. However, when ontologies are used to empower smarter 
tools there is often a need to consume them via APIs. The OWL API is an API and reference 
implementation of the OWL 2 standard [8,9]. The OWL Paths tool presented here is a Java library 
built on the OWL API for processing object property path expressions over OWL classes. 

Because most developers in ontology or semantic web fields are familiar with the SPARQL 
query language for RDF(S), the OWL Paths grammar is syntactically similar to SPARQL. At 
present, many but not all SPARQL constructs are supported in OWL Paths. OWL Paths also adds 
two additional expression types that are not a part of SPARQL. Table 1 is adapted from the 
SPARQL property path specification [10] and compares the expressivity of OWL Paths to that of 
SPARQL.  

 
Table 1 
Syntax of SPARQL path expressions and OWL Paths 

Syntax form Matches SPARQL 
OWL 
Paths 

uri A URI or a prefixed name. A path of length one. ✓ ✓ 

^elt Inverse path (object to subject). ✓  

(elt) A group path elt, brackets control precedence. ✓ ✓ 

elt1 / elt2 A sequence path of elt1, followed by elt2 ✓ ✓ 

elt1 ^ elt2 Shorthand for elt1 / ^elt2, that is elt1 followed by the 
inverse of elt2. 

✓  

elt1 | elt2 A alternative path of elt1, or elt2 (all possibilities are 
tried). 

✓ ✓ 

elt* A path of zero or more occurrences of elt. ✓ ✓ 

elt+ A path of one or more occurrences of elt. ✓ ✓ 

elt? A path of zero or one elt. ✓  

elt{n,m} A path between n and m occurrences of elt. ✓  

elt{n} Exactly n occurrences of elt. A fixed length path. ✓  

elt{n,} n or more occurrences of elt. ✓  

elt{,n} Between 0 and n occurrences of elt. ✓  

uri[INV=uri] A path constraint that the inverse path must also hold.  ✓ 

elt[SUP=uri] A path constraint on the superclass of all classes on the 
path. 

 ✓ 

uri is either a URI or a prefixed name and elt is a path element, which may itself be composed of path syntax constructs. 
 

 
The OWL Paths library supports programmatically processing path expressions in relation to 

OWLClass objects in the OWL API. The OWL Paths library adds a Java class PathExpression which 



has exactly one relevant method, processPath. processPath accepts two arguments: (1) a path 
expression which describes what sort of paths to follow, and (2) a list of subject classes to follow 
such paths from. Paths are followed, in OWL Paths, as though traversing a non-materialized 
network of punned (model or example) individuals. Presently these non-materialized puns are 
presumed to exist everywhere for which there is an existential restriction (owl:someValuesFrom) 
on an object property. Therefore, the owl:someValueFrom restrictions in Figure 2 are processed 
as if the graph in Figure 1 had already been generated. 

The code snippet in Figure 4 would return four OWLClass objects in the results, 
“demo:MedicalRecord”, “demo:PersonalData”, “demo:DemographicData”, and 
“demo:ContactInfo”. That is because, in the demo ontology, the class “demo:MedicalRecord” is 
connected via restriction on the property demo:has_subsection to each of those classes 
recursively (including itself as the ‘*’ operator indicates zero or more).  

 

Figure 4: Example of calling processPath. 

 
Like paths in SPARQL, path expressions in OWL Paths are compositional. Encapsulating a path 

expression in parenthesis results in a new path element, to which further operators can be 
applied. For example, consider the following path expression: 

 
  demo:has_subsection|demo:has_coding_system 

 
The above path expression matches paths that are either composed of a single 

demo:has_subsection property or a single demo:has_coding_system property. If we were to 
encapsulate the above expression in parenthesis, we could then apply additional operators, for 
example the unary operator ‘+’. It would then match paths with one or more edges all of which 
are either demo:has_subsection or demo:has_coding_system. That expression would look like 
this: 

 
 (demo:has_subsection|demo:has_coding_system)+ 

 
The source code for OWL Paths, as well as a pre-build archive, are available at 

https://gitlab.com/endless-forms-studio/owl_paths. 

3.1. Extensions 

Although we have compared OWL Paths to SPARQL, it is important to note that our path 
expressions need not be limited to the expressivity of SPARQL. In this section we describe two 
(beta) extensions to the path language that are not available in SPARQL property paths but have 
been implemented in OWL Paths.  

For property paths in SPARQL the types of the intervening nodes along the path are not 
considered, but when querying ontologies this information can be relevant. In SPARQL, 
demo:has_subsection* specifies that matching paths have zero or more such edges but it does not 
specify anything else about the nodes that are connected via those edges. In OWL Paths, one 
extension provides the ability to specify the type for nodes along a path, restricting to only nodes 



with a given superclass. The syntax for this constraint uses the suffix [SUP=<IRI>]. For example, 
the following expression would return results connected to the subject by a restriction on 
demo:has_contact_record only if the superclass of the connected class is “demo:PhoneRecord”: 

 demo:has_contact_record[SUP=demo:PhoneRecord] 

The other extension in OWL paths has a similar syntax, but it restricts results to those that 
have an additional property restriction in the other direction, from the target to the source: 

 
 demo:has_contact_record[INV=demo:contact_record_of] 

 

4. Conclusion 

This work introduces OWL Paths, a Java library built on the OWL API for processing object 
property path expressions over OWL classes. This was developed in response to our need to 
perform queries over the FMA to advance our work implementing patterns. We anticipate that 
this library will be of use to additional groups authoring and auditing other large ontologies that 
model complex domains. 

References 

[1] B. Smith, W. Ceusters, B. Klagges, et al. Relations in biomedical ontologies. Genome Biology 
66 (2005) R46. doi: 10.1186/gb-2005-6-5-r46. 

[2] Open Biological and Biomedical Ontology Foundry. URL: https://obofoundry.org/. 
[3] C. Rosse, J.L.V. Mejino, A reference ontology for biomedical informatics: The Foundational 

Model of Anatomy. Journal of Biomedical Informatics 6 (2003) 478–500. doi: 
10.1016/j.jbi.2003.11.007. 

[4] C. Rosse, J.L.V. Mejino, The Foundational Model of Anatomy ontology, in: A.G. Burger, D. 
Davidson, R. Baldock (Eds.), Anatomy Ontologies for Bioinformatics: Principles and practice, 
Springer, London, 2008, pp. 59–117. doi: 10.1007/978-1-84628-885-2_4  

[5] M.D. Clarkson, S. Roggenkamp, Employing knowledge patterns for auditing the Foundational 
Model of Anatomy, in: Proceedings of the 2nd International Workshop on Quality Assurance 
and Enrichment of Biological and Biomedical Ontologies and Terminologies at the 2019 IEEE 
International Conference on Bioinformatics and Biomedicine (IEEE BIBM 2019), SanDiego, 
CA, November 18–19, 2019. doi: 10.1109/BIBM47256.2019.8983410. 

[6] M.D. Clarkson, L.T. Detwiler, K.M. Platt, S. Roggenkamp, Assessing the consistency of 
modeling in complex ontologies: A study of the musculoskeletal system of the Foundational 
Model of Anatomy, in: Proceedings of the 2021 International Conference on Biomedical 
Ontologies (ICBO 2021), Bozen-Bolzano, Italy, September 16–18, 2021. URL: https://ceur-
ws.org/Vol-3073/paper2.pdf.  

[7] M.A. Musen, The Protégé project: A look back and a look forward. AI Matters (1) 2015: 4–12 
doi: 10.1145/2757001.2757003. 

[8] OWL API main repository. URL: https://github.com/owlcs/owlapi.  
[9] OWL 2 Web Ontology Language Structural Specification and Functional-Style Syntax (Second 

Edition), W3C Recommendation 11 December 2012. URL: https://www.w3.org/TR/owl2-
syntax/ 

[10] SPARQL 1.1 Query Language, W3C Recommendation 21 March 2013. Section 9, Property 
Paths. URL: https://www.w3.org/TR/sparql11-query/#propertypaths 

 


	1. Introduction
	2. The need for SPARQL-like path expressions over OWL classes in ontologies
	2.1.  Representing an instance of a medical record and a medical record ontology
	2.2. Representing human anatomy

	3. Development of the OWL Paths library
	3.1. Extensions

	demo:has_contact_record[SUP=demo:PhoneRecord]
	4. Conclusion
	References

