
Conceptual Scaling of RDFS Ontologies
Jens Kötters1, Peter W. Eklund2 and Stefan E. Schmidt1

1Technische Universität Dresden, Germany
2Deakin University, Australia

Abstract
Conceptual scaling is a method, developed in the framework of Formal Concept Analysis (FCA), that
transforms a many-valued context (a collection of objects, described by attributes with values, such as
name, size or color) into a formal context (a binary schema from which formal concepts are derived).
Relational scaling extends conceptual scaling, by taking relations between objects into account. Previous
work applies relational scaling to a relational database, transforming the relational database into a
relational structure. Relational structures play the role of formal contexts in a relational variant of FCA.
In this paper, we present a similar approach, which applies relational scaling to RDFS ontologies.

Keywords
Conceptual Scaling, Formal Concept Analysis, Mediated Queries, RDFS

1. Introduction

Conceptual scaling is a method of preparing data for use with Formal Concept Analysis [1]
(FCA), a mathematical theory of concepts. Originally defined for simple object-attribute data,
the theory has been further developed to deal with relational data. We present a companion
paper for an earlier paper [2], which describes scaling a relational database in the setting of a
particular FCA variant [3] that connects FCA with database theory, adapted to the terminology
of a classical paper [4] on FCA with relations. Nonetheless, this paper is self-contained; it
presents a similar approach for the scaling of RDFS ontologies. Before we describe scaling
for RDFS ontologies (Sect. 6) and its connection with querying RDF (Sect. 7), we provide an
overview of Formal Concept Analysis (FCA) (Sect. 2), conceptual scaling (Sect. 3), FCA with
relations (Sect. 4) and relational scaling (Sect. 5).

2. Formal Concept Analysis

Any introduction to Formal Concept Analysis (FCA) [1] would likely start with the definition of
a formal context. A formal context is a triple (𝐺,𝑀, 𝐼), consisting of a set 𝐺 of objects, a set 𝑀
of attributes, and an incidence relation 𝐼 ⊆ 𝐺×𝑀 , where (𝑔,𝑚) ∈ 𝐼 means that the object 𝑔
has the attribute 𝑚. Formal contexts are conventionally drawn as cross tables, like the “Addams
Family” context in Figure 1, which describes a fictional family originally introduced in a TV
series of 1964. The object set 𝐺 = {Wednesday,Gomez,Pugsley,Morticia, Fester} contains

CAOS VII: Cognition and Ontologies, 9th Joint Ontology Workshops (JOWO 2023), co-located with FOIS 2023, 19–20
July, 2023, Sherbrooke, Québec, Canada

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Addams Family

m
al

e

fe
m

al
e

bl
ac

k
ha

ir

ps
yc

hi
c

vi
si

on
s

el
ec

tr
ok

in
es

is

Wednesday × × ×
Gomez × ×
Pugsley ×
Morticia × × ×
Fester × ×

Figure 1: Example: Formal Context.

Pugsley

Fester Wednesday
Morticia

Gomez

male

psychic visions
female

black hair

electrokinesis

Figure 2: The concept lattice of the
“Addams Family” context.

some of the family members; each is represented by a table row. The attributes, collected
in the set 𝑀 = {male, female, black hair, psychic visions, electrokinesis}, are represented by
the table columns. A cross in the table indicates that the respective family member has the
respective trait.

We summarize the basic definitions in Formal Concept Analysis (FCA) (cf. [1]). With any
formal context there are two associated operations (·)↑ : P(𝐺) → P(𝑀) and (·)↓ : P(𝑀) →
P(𝐺), defined by,

𝐴↑ := {𝑚 ∈ 𝑀 | (𝑔,𝑚) ∈ 𝐼 for all 𝑔 ∈ 𝐴} , (1)

𝐵↓ := {𝑔 ∈ 𝐺 | (𝑔,𝑚) ∈ 𝐼 for all 𝑚 ∈ 𝐵} . (2)

The set 𝐴↑ contains the attributes which are shared by all objects in 𝐴, and 𝐵↓ contains
the objects which have all attributes in 𝐵. A formal concept of a context (𝐺,𝑀, 𝐼) is a pair
(𝐴,𝐵) ∈ P(𝐺) × P(𝑀) with 𝐴↑ = 𝐵 and 𝐵↓ = 𝐴. The set 𝐴 is the extent of the concept
(𝐴,𝐵), i.e. the set of objects which belong to the concept; the set 𝐵 is the intent of (𝐴,𝐵), i.e.
the set of attributes which describe the concept. A concept (𝐴,𝐵) is a subconcept of a concept
(𝐶,𝐷), written (𝐴,𝐵) ≤ (𝐶,𝐷), if 𝐴 ⊆ 𝐶 , or equivalently 𝐷 ⊆ 𝐵. The set of all concepts of
(𝐺,𝑀, 𝐼) is denoted by ℬ(𝐺,𝑀, 𝐼), and the ordered set ℬ(𝐺,𝑀, 𝐼) := (ℬ(𝐺,𝑀, 𝐼),≤) is a
complete lattice, called the concept lattice of (𝐺,𝑀, 𝐼).

Figure 2 shows the concept lattice of the “Addams Family” context. The seven nodes rep-
resent the concepts. The subconcepts of a concept are those concepts which lie below that
concept, i.e. which can be reached by following the edges downward. Dually, by following
the edges upward, we reach the superconcepts of a concept. For every object 𝑔 ∈ 𝐺, the
concept 𝛾(𝑔) := ({𝑔}↑↓, {𝑔}↑) is the object concept of 𝑔; it is the smallest concept which has
𝑔 in its extent. In Figure 2, the concept with the label 𝑔 drawn below it is the object con-
cept 𝛾(𝑔). Dually, for every attribute 𝑚 ∈ 𝑀 , the concept 𝜇(𝑚) := ({𝑚}↓, {𝑚}↓↑) is the
attribute concept of 𝑚; it is the largest concept which has 𝑚 in its intent. In Figure 2, the
concept with the label 𝑚 drawn above it is the attribute concept 𝜇(𝑚). A concept has 𝑔 in
its extent iff it is a superconcept of 𝛾(𝑔), and it has 𝑚 in its intent iff it is a subconcept of
𝜇(𝑚). So Figure 2 shows the following concepts: the bottom concept is (∅,𝑀); the three con-
cepts directly above it are ({Fester}, {male, electrokinesis}), (Gomez, {male, black hair}) and
({Wednesday,Morticia}, {female, black hair, psychic visions}); the two concepts directly below
the top concept are ({Fester,Gomez,Pugsley}, {male}) and ({Gomez,Wednesday,Morticia},

nationality date_of_birth
Lewis Carroll GB 1832-01-27

Virginia Woolf GB 1882-01-25
Douglas Adams GB 1952-03-11

Neil Gaiman GB 1960-11-10
J. K. Rowling GB 1965-07-31
Stephen King US 1947-09-21
Dan Brown US 1964-06-22

Figure 3: Example: Many-valued context.

{black hair}); finally, the top concept is (𝐺, ∅). The diagram in Figure 2 is called a line diagram
(or Hasse diagram) with reduced labeling (cf. [1, p.23]).

Formal Concept Analysis (FCA) supports a diverse range of applications. If the context is small
enough, the concept lattice provides a visualization of the data, which may provide some insights;
this is arguably the most straightforward application of FCA [5]. Concept lattices have been
used as a data model for document browsing and navigation, pioneered by Godin et al. [6] and
further elaborated by others [7]. The theory of attribute implications [1] supports data analysis
and knowledge discovery; for example, the attribute implications psychic visions → female,
psychic visions → black hair and electrokinesis → male hold in the “Addams Family” context.
Association rules, considered in data mining, may be considered a probabilistic variant of
attribute implications, described by the measures of support and confidence; Pasquier et al. [8]
describe association rule mining in an FCA context. Stumme and Maedche have applied FCA to
merge ontologies [9].

3. Conceptual Scaling

Formal Concept Analysis (FCA) also defines another type of context, called a many-valued
context [1, Sect. 1.3]. A many-valued context can be compared to a single table in a database
(with no foreign keys); correspondingly, the attributes in a many-valued context take values,
and are thus called many-valued attributes. Figure 3 shows the many-valued context “Authors”
(adapted from [2]). Its object set 𝐺 consists of the seven authors, listed in the first row, and
it has the attribute set 𝑀 = {nationality, date_of_birth}. A concept lattice is not defined on a
many-valued context directly; instead, in FCA there is a procedure, called conceptual scaling,
which transforms a many-valued context into a formal context, and a concept lattice is then
obtained from that formal context.

We illustrate conceptual scaling by the example of the “Authors” context. First, we associate
a conceptual scale with each many-valued attribute, i.e. a formal context whose objects are the
possible values of that attribute. For example, the “Regions” scale in Figure 4 can be chosen for
the nationality attribute, because its objects are ISO 3166 country codes, and the “Centuries”
scale in Figure 5 can be chosen for the date_of_birth attribute, because its objects are ISO 8601
dates. Figure 5 only indicates the date range, because there are obviously too many dates to
be listed. Each scale attribute represents a subset of the values. For example, the attributes
19C, 20C and 21C of the “Centuries” represent certain date intervals (namely the 19th, 20th and

Regions

U
S

G
B

FR D
E

Eu
ro

pe

US ×
GB × ×
FR × ×
DE × ×

Figure 4: Regions Scale.

Centuries 19
C

20
C

21
C

1800-01-01 ×
1800-01-02 ×
...
2099-12-30 ×
2099-12-31 ×

Figure 5: Centuries Scale.

U
S

G
B

FR D
E

Eu
ro

pe

Lewis Carroll × ×
Virginia Woolf × ×
Douglas Adams × ×
Neil Gaiman × ×
J.K. Rowling × ×
Stephen King ×
Dan Brown ×

19
C

20
C

21
C

Lewis Carroll ×
Virginia Woolf ×
Douglas Adams ×
Neil Gaiman ×
J.K. Rowling ×
Stephen King ×
Dan Brown ×

Figure 6: Realized Scales.

Authors

U
S

G
B

FR D
E

Eu
ro

pe

19
C

20
C

21
C

Lewis Carroll × × ×
Virginia Woolf × × ×
Douglas Adams × × ×
Neil Gaiman × × ×
J.K. Rowling × × ×
Stephen King × ×
Dan Brown × ×

Figure 7: Scaled Context.

21st century). The scale attributes US, GB, FR and DE represent the corresponding singleton
sets of values. A scale which identifies precisely the singleton sets of values is called a nominal
scale (cf. [1, p.42]). However, to make the example more interesting, we have added a Europe
attribute, which identifies the European countries.

As we have seen, each scale attribute 𝑎 identifies a subset 𝑉 (𝑎) of the possible values. When
the scale is associated with a many valued attribute 𝑚, the scale attributes also apply to the
objects of the many-valued context: we say that an object 𝑔 has the attribute 𝑎 if and only if
the value of 𝑔 in 𝑚 lies in 𝑉 (𝑎). This means, in our example, an author has the attribute 19C
if they were born in the 19th century, and the attribute Europe if they have some European
nationality. In this way, each conceptual scale translates to a realized scale (which has the same
attributes), as shown in Figure 6. Note that each object’s row is identical to its value’s row in
the conceptual scale. The scaled context (see Figure 7) is obtained by placing the realized scales
side-by-side (this is called an apposition of contexts [1]).

K1

m
al

e

fe
m

al
e

bl
ac

k
ha

ir

ps
yc

hi
c

vi
si

on
s

el
ec

tr
ok

in
es

is

Wednesday × × ×
Gomez × ×
Pugsley ×
Morticia × × ×
Fester × ×

K2

m
ot

he
rO

f

fa
th

er
O

f

pa
re

nt
O

f

br
ot

he
rO

f

(Morticia,Wednesday) × ×
(Morticia,Pugsley) × ×
(Gomez,Wednesday) × ×
(Gomez,Pugsley) × ×
(Gomez,Fester) ×
(Fester,Gomez) ×

Figure 8: Extending the "Addams Family" context to a power context family.

4. Formal Concept Analysis with Relations

The Addams Family context in Figure 1 describes individual family members by their traits, but
despite the title, the context provides no information about the family relations. This hints at a
limitation of formal contexts as a data model: they only support a limited sentence structure
(“object has attribute”). A milestone paper by Wille [4] introduces power context families as
a means to model relational data in Formal Concept Analysis (FCA): a power context family
is there defined as a sequence K⃗ = (K1, . . . ,K𝑛) such that, if 𝐺 denotes the object set of K1,
the object set of K𝑘 is a subset of 𝐺𝑘 for all 2 ≤ 𝑘 ≤ 𝑛. For example, Figure 8 shows a power
context family (K1,K2) for the Addams family, where K1 is the same context as in Figure 1.
The context K2 states that Morticia is the mother of Wednesday and Pugsley, Gomez is their
father, and Gomez and Fester are brothers.

In the same way we have obtained a concept lattice ℬ(K1) for the context K1 (cf. Figure 2),
we can also obtain a concept lattice ℬ(K2) for the context K2. Its concepts are called relation
concepts, because their extents are (binary) relations over 𝐺. The stated goal of Wille’s approach
was the formalization of traditional philosophical logic, and its notions of concepts, judgments
and conclusions. With concepts already formalized by FCA, Wille introduced concept graphs
for the formalization of judgments (i.e. “statements”); concept graphs are a variant of Sowa’s
conceptual graphs [10], where two maps 𝜅 and 𝜚 identify each node 𝑣 with a concept 𝜅(𝑣) and
also with a non-empty set 𝜚(𝑣) of objects (or tuples, for relation concepts) from the extent of
𝜅(𝑣). The map 𝜚 is called a realization; it ensures that the statement holds in the given power
context family.

In a concept graph, formal concepts are placed side-by-side, but they are not combined to
form new concepts. For example, we can build a concept graph which states that Fester is a
brother of Gomez, and Gomez is a parent of Wednesday and Pugsley, but we do not obtain a
relational concept uncle, with an extent of {(Fester,Wednesday), (Fester,Pugsley)}. Huchard
et al. [11] introduced Relational Concept Analysis (RCA), which defines concepts over a relational
context family (similar to a power context family, but with different formal contexts for objects
of different sorts). With RCA, the concepts uncle and nibling (the generalization of niece and
nephew) can be obtained, but only as unary concepts (i.e. the extents are the sets of all uncles
and niblings, respectively). Such concepts can also be obtained using a comparable approach by
Baader and Molitor [12], which combines Relational Concept Analysis with Description Logics;
the approach uses pattern concepts in the sense of Ganter and Kuznetsov [13], i.e. it is based on

a variant of FCA where concept intents are not represented by sets of attributes, but e.g. by
graphs.

Kötters [3] defines concept lattices over a relational structure using pattern concepts with
conjunctive queries as intents. Both Relational Concept Analysis and Formal Concept Analysis
with Description Logics allow more expressive intents (using e.g. universal quantification); but
the limitation to conjunctive queries allows one to obtain, not only unary concepts, but relational
concepts of any arity. A subsequent paper [14] rephrases the approach in the terminology of
Wille, using a power context family instead of a relational structure, and formalizing conjunctive
queries by “windowed intension graphs”, which are modeled after concept graphs. More
precisely, windowed intension graphs are a kind of abstract concept graph, a term introduced by
Wille [4] but seldom used thereafter, for concept graphs that are independent from any data
(in particular, they lack the realization 𝜚), which makes them suitable to formalize queries; we
discuss querying in Sect. 7. In summary, every power context family K⃗ is associated with a
concept lattice 𝐵(K), and for the power context family in Figure 8, this concept lattice contains
for example the (binary) uncle concept.

5. Relational Scaling

The term relational scaling was coined by Prediger and Wille [15], as an extension of conceptual
scaling, which transforms a many-valued context with relational data into a power context
family. Hereth [16] describes relational scaling of relational databases. The Formal Concept
Analysis (FCA) variant of Kötters [3] (cf. Sect. 4) establishes a connection between FCA and
database theory; Kötters and Eklund [2] revisit the topic of scaling a relational database in light
of this connection, which complements the theoretical results with some practical concerns.
Figure 9 illustrates the idea of using the same concept model with differents kinds of relational
data, using the power context family as a kind of interface. This requires one to specify, for
each kind of relational data, how it is transformed into a power context family, i.e. to devise a
method of relational scaling. In Sect. 6, we describe a possible way of scaling an RDFS ontology,
which corresponds to the upper right arrow in Figure 9. This approach is more elegant and
economic than a similar previous attempt [17], which defines concepts over an RDFS ontology
directly.

The scaling affects subsequent applications, which have been developed in the context of
Formal Concept Analysis (FCA), and the brief overview at the end of Sect. 2 may serve as an
example. It is the basis for the definition of concepts, i.e. it determines how we conceptualize
the data. Similarly, it defines the language, within which attribute implications (or pattern
implications, in the case of pattern concepts) are expressed, and the same holds for association
rules. As described by Priss [18], the scales correspond to facets in a faceted navigation approach
(see e.g. [2]).

6. RDFS Ontologies

According to the RDF 1.1 “Concepts and Abstract Syntax specification” [19], an RDF graph is a set
of RDF triples, where each triple consists of a subject, a predicate and an object. The predicate is an

Relational
Database

RDFS
Ontology

Power Context
Family

Concept Lattice and Applications

Scaling Scaling

Figure 9: Power context families as an interface between relational data and Formal Concept Analysis
applications.

internationalized resource identifier (IRI), such as <http://schema.org/knows>, recognizable
by the angular brackets. The subject is either an IRI or a blank node; a blank node represents
some unspecified entity. In the Turtle notation [20] (which we use in this paper), blank nodes
are written _ :𝑥, where 𝑥 is an identifier for the blank node. Finally, an object is either an IRI or
a blank node or a literal, such as “14”<http://www.w3.org/2001/XMLSchema#integer>,
where the quoted part is the lexical form, followed by a double caret and a datatype IRI (i.e. an
IRI which refers to a datatype); additionally, certain literals can have a language tag; for those,
we refer to the specification [19].

Figure 10 shows an excerpt of an RDF document, which describes an RDF graph in Turtle
notation [20]. The @base and @prefix directives at the beginning allow some shorthand
notations for IRI’s. In particular, the RDF terms with a prefix, such as rdf:type, denote IRI’s;
literals which lack a datatype IRI are assigned the string datatype; and if a triple ends with a
semicolon (instead of a period), the next triple has the same subject (so the subject is omitted).

In this section, we describe conceptual scaling for RDF graphs that use the RDF Schema [21]
vocabulary (i.e. RDFS ontologies). As the RDF Primer [22] states, the main modeling con-
structs for RDFS ontologies are the classes rdfs:Class and rdf:Property, and the properties
rdf:type, rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain and rdfs:range (us-
ing the prefix notation for these IRI’s, where the prefixes rdf and rdfs are resolved as usual,
cf. [19, Sect. 1.4]). Every IRI that is used as a predicate denotes a property, so it belongs to the class
rdf:Property. The property rdf:type is used to state that an entity belongs to a certain class;
e.g. the triple <#AliceInWonderland> rdf:type <#Book> in Figure 10 states that the entity
<#AliceInWonderland>, which we can see is Lewis Carroll’s “Alice in Wonderland”, belongs
to the class <#Book>. The properties rdfs:subClassOf and rdfs:subPropertyOf are used
to define the hierarchies of classes and properties, respectively. The class rdfs:Resource is
at the top of the class hierarchy; it contains all entities (the term resource is used as a synonym
for entity). The properties rdfs:domain and rdfs:range state, for a given property, what
classes the entities in the subject and object positions are expected to belong to, respectively.

We now describe how an RDFS ontology is converted into a power context family. For this
purpose, we imagine that the schema part of the ontology is represented in the fashion of an
API specification as e.g. generated by Javadoc for the Java programming language (where each
class is described by its own page, along with its attributes and methods, defined on the class
itself, or inherited from a superclass). Indeed, the popular Schema.org ontology comes with
a similar documentation (cf. https://schema.org/docs/schemas.html). Evidently, the classes of
the ontology are the entities of type rdfs:Class, and the class hierarchy is described by the

https://schema.org/docs/schemas.html

<#Author> rdf:type rdfs:Class .
<#Book> rdf:type rdfs:Class .
<#AliceInWonderland> rdf:type <#Book> ; dcterms:creator <#LewisCarroll> ;

dcterms:issued "1865-11-26"^^xsd:date .
<#ToTheLighthouse> rdf:type <#Book> ; dcterms:creator <#VirginiaWoolf> ;

dcterms:issued "1927-05-05"^^xsd:date .
<#HitchhikersGuide> rdf:type <#Book> ; dcterms:creator <#DouglasAdams> ;

dcterms:issued "1979-10-12"^^xsd:date .
<#TriggerWarning> rdf:type <#Book> ; dcterms:creator <#NeilGaiman> ;

dcterms:issued "2015-02-03"^^xsd:date .
<#HarryPotter7> rdf:type <#Book> ; dcterms:creator <#JKRowling> ;

dcterms:issued "2007-07-21"^^xsd:date .
<#TheCasualVacancy> rdf:type <#Book> ; dcterms:creator <#JKRowling> ;

dcterms:issued "2012-09-27"^^xsd:date .
<#TheShining> rdf:type <#Book> ; dcterms:creator <#StephenKing> ;

dcterms:issued "1977-01-28"^^xsd:date .
<#DoctorSleep> rdf:type <#Book> ; dcterms:creator <#StephenKing> ;

dcterms:issued "2013-09-24"^^xsd:date .
<#TheDaVinciCode> rdf:type <#Book> ; dcterms:creator <#DanBrown> ;

dcterms:issued "2003-03-18"^^xsd:date .
<#Inferno> rdf:type <#Book> ; dcterms:creator <#DanBrown> ;

dcterms:issued "2013-03-14"^^xsd:date .
<#LewisCarroll> rdf:type <#Author> ; schema:nationality "GB" ;

schema:birthDate "1832-01-27"^^xsd:date .
<#VirginiaWoolf> rdf:type <#Author> ; schema:nationality "GB" ;

schema:birthDate "1882-01-25"^^xsd:date .
<#DouglasAdams> rdf:type <#Author> ; schema:nationality "GB" ;

schema:birthDate "1952-03-11"^^xsd:date .
<#NeilGaiman> rdf:type <#Author> ; schema:nationality "GB" ;

schema:birthDate "1960-11-10"^^xsd:date .
<#JKRowling> rdf:type <#Author> ; schema:nationality "GB";

schema:birthDate "1965-07-31"^^xsd:date .
<#StephenKing> rdf:type <#Author> ; schema:nationality "US" ;

schema:birthDate "1947-09-21"^^xsd:date .
<#DanBrown> rdf:type <#Author> ; schema:nationality "US";

schema:birthDate "1964-06-22"^^xsd:date .

Figure 10: Sample ontology "library.ttl"

rdfs:subClassOf property. We divide the properties of the ontology (i.e. the entities of type
rdf:property) into two classes, which correspond roughly to attributes and methods in Java:
if the rdfs:range of a property is a datatype (i.e. an entity of type rdfs:Datatype), we call
the property a many-valued attribute (in line with FCA terminology), otherwise we call it a
relation. Naturally, the IRI’s in the data are considered objects (in line with FCA terminology),
and the RDF literals are considered values. A many-valued attribute then associates values to
the objects in its rdfs:domain, and a relation links objects in its rdfs:domain to objects
in its rdfs:range. Blank nodes are treated as values if they occur in the rdfs:range of a
many-valued attribute, otherwise they are treated as objects.

In practice, ontologies may prove inconsistent with respect to our strong typing assumptions.
In this case, we try to apply workarounds; e.g. if a property is used as a many-valued attribute
in one place, and as a relation in another, we may treat it as two distinct properties. Conceptual
scaling can be done interactively, by the use of a program, which presents an API-like view of
classes, where individual classes, and properties on them, can be toggled on (enabled) and off

K0: Classes

<
#
A
u
t
h
o
r
>

<
#
B
o
o
k
>

<#LewisCarroll> ×
<#VirginiaWoolf> ×
<#DouglasAdams> ×
<#NeilGaiman> ×
<#JKRowling> ×
<#StephenKing> ×
<#DanBrown> ×
<#AliceInWonderland> ×
<#ToTheLighthouse> ×
<#HitchhikersGuide> ×
<#TriggerWarning> ×
<#HarryPotter7> ×
<#TheCasualVacancy> ×
<#TheShining> ×
<#DoctorSleep> ×
<#TheDaVinciCode> ×
<#Inferno> ×

K2: Relations

dc
te

rm
s:

cr
ea

to
r

(<#AliceInWonderland>,<#LewisCarroll>) ×
(<#ToTheLighthouse>,<#VirginiaWoolf>) ×
(<#HitchhikersGuide>,<#DouglasAdams>) ×
(<#TriggerWarning>,<#NeilGaiman>) ×
(<#HarryPotter7>,<#JKRowling>) ×
(<#TheCasualVacancy>,<#JKRowling>) ×
(<#TheShining>,<#StephenKing>) ×
(<#DoctorSleep>,<#StephenKing>) ×
(<#TheDaVinciCode>,<#DanBrown>) ×
(<#TheDaVinciCode>,<#DanBrown>) ×

Figure 11: The contexts K0 and K2 of the scaled RDFS ontology.

(disabled); disabled classes and properties are treated as not present. The number of classes and
properties can be overwhelming, so disabled will be the default. Any edits or workarounds in
case of inconsistencies, as described above, need only be applied to enabled classes and properties.
If a property is enabled, its rdfs:domain and rdfs:range are enabled automatically.

We translate an RDF graph into a power context family (K0,K1,K2), and setK𝑘 =: (𝐺𝑘,𝑀𝑘, 𝐼𝑘)
for 𝑘 ∈ {0, 1, 2}. The attributes of K0 and K2 are the enabled classes and relations, respectively.
The objects of K0 are the IRIs and blank nodes which belong to at least one enabled class. Each
triple subj rdf:type obj in the ontology produces a pair (subj, obj) ∈ 𝐼0. Further pairs
are added to 𝐼0 where the class membership can be inferred via rdfs:subClassOf. Likewise,
each triple subj, pred, obj in the ontology produces an instance (subj, obj) ∈ 𝐺2 and a
pair ((subj, obj), pred) ∈ 𝐼2. Further pairs are added to 𝐼2 where the property can be inferred
via rdfs:subPropertyOf. Figure 11 shows the contexts K0 and K2 for the RDFS ontology in
Figure 10.

It now remains to produce realized scales for the IRI’s classified as many-valued attributes; the
context K1 is then obtained as the apposition of the realized scales (cf. Figures 6 and 7). However,
using conceptual scales, like those in Figures 4 and 5, does not seem practical. As we have
mentioned, each scale attribute identifies a subset of the values, and if we can specify this subset
by other means, we effectively represent the conceptual scale. Logical scaling [23] is a variant of
conceptual scaling, where the subset of values is represented by a formal expression. For RDFS
ontologies, suitable formal expressions are FILTER expressions, which can be used in SPARQL
queries [24]. For example, the range of values identified by the 20C attribute of the “Cen-
turies” scale is represented by the expression FILTER(?value >= "1900-01-01"xsd:date
&& ?value < "2000-01-01"xsd:date), where the prefix xsd is resolved, as usual, to
http://www.w3.org/2001/XMLSchema# (cf. [19, Sect. 1.4]). The FILTER condition for each
attribute is then substituted into a SPARQL query

dcterms:issued 19
C

20
C

21
C

<#LewisCarroll>
<#VirginiaWoolf>
<#DouglasAdams>
<#NeilGaiman>
<#JKRowling>
<#StephenKing>
<#DanBrown>
<#AliceInWonderland> ×
<#ToTheLighthouse> ×
<#HitchhikersGuide> ×
<#TriggerWarning> ×
<#HarryPotter7> ×
<#TheCasualVacancy> ×
<#TheShining> ×
<#DoctorSleep> ×
<#TheDaVinciCode> ×
<#Inferno> ×

schema:birthDate 19
C

20
C

21
C

<#LewisCarroll> ×
<#VirginiaWoolf> ×
<#DouglasAdams> ×
<#NeilGaiman> ×
<#JKRowling> ×
<#StephenKing> ×
<#DanBrown> ×
<#AliceInWonderland>
<#ToTheLighthouse>
<#HitchhikersGuide>
<#TriggerWarning>
<#HarryPotter7>
<#TheCasualVacancy>
<#TheShining>
<#DoctorSleep>
<#TheDaVinciCode>
<#Inferno>

Figure 12: Realized Scales.

SELECT DISTINCT ?subj
WHERE { ?subj prefix:mva ?value . FILTER(...) }

which determines the column for that attribute in the realized scale (a cross indicates that the
object is in the query’s result set). Figure 12 shows the realized scales for the many-valued
attributes dcterms:issued and schema:birthDate, which are both scaled with the (logical)
“Centuries” scale. Similarly, a realized scale is obtained for the schema:nationality attribute
(where the Europe column represents a union), and the apposition of realized scales produces
the context K1 in Figure 13.

7. Navigation

In this section, we discuss the practical significance of conceptual scaling, in the context of a
navigation application. More specifically, we plan to extend the Granada application [25], which
allows scaling and navigating in relational databases, to RDFS ontologies. The functionality
can be compared with the OpenLink Faceted Browser, which is accessible via the "Browse
using" menu on any DBpedia page (e.g. https://dbpedia.org/page/Berlin). At the core, such an
application processes SPARQL queries, and presents the results. OpenLink’s Faceted Browser
uses a text representation of queries, whereas Granada has so far used a graph representation
that corresponds to abstract concept graphs (cf. Sect. 4). Figure 14 shows an example for such a
graph query; it was originally presented in [2], and it is shown there how it translates into an
SQL query. We now show how it translates into a SPARQL query.

The rectangular nodes represent variables, say ?z1 (left node) and ?z2 (right node). The class
labels on the nodes are attributes from K0. The rounded nodes carry attributes from K1 (one
outgoing edge) or from K2 (two outgoing edges). A rectangular node is colored if it represents a
subject of the query; i.e. in Fig. 14, we are asking about the authors, not about the books. Every
subject is associated with an output variable (i.e. a column header in the result table), separated

https://dbpedia.org/page/Berlin

K1: RealizedScales

dc
te

rm
s:

is
su

ed
:1

9C

dc
te

rm
s:

is
su

ed
:2

0C

dc
te

rm
s:

is
su

ed
:2

1C

sc
he

m
a:

bi
rt

hD
at

e:
19

C

sc
he

m
a:

bi
rt

hD
at

e:
20

C

sc
he

m
a:

bi
rt

hD
at

e:
21

C

sc
he

m
a:

na
ti

on
al

it
y:

G
B

sc
he

m
a:

na
ti

on
al

it
y:

U
S

sc
he

m
a:

na
ti

on
al

it
y:

FR

sc
he

m
a:

na
ti

on
al

it
y:

D
E

sc
he

m
a:

na
ti

on
al

it
y:

Eu
ro

pe

<#LewisCarroll> × × ×
<#VirginiaWoolf> × × ×
<#DouglasAdams> × × ×
<#NeilGaiman> × × ×
<#JKRowling> × × ×
<#StephenKing> × ×
<#DanBrown> × ×
<#AliceInWonderland> ×
<#ToTheLighthouse> ×
<#HitchhikersGuide> ×
<#TriggerWarning> ×
<#HarryPotter7> ×
<#TheCasualVacancy> ×
<#TheShining> ×
<#DoctorSleep> ×
<#TheDaVinciCode> ×
<#Inferno> ×

Figure 13: The context K1 of the scaled RDFS ontology.

<#Author>/x1 <#Book>dcterms:creator

schema:nationality:GB schema:birthDate:20C dcterms:issued:21C

1 1

2 1

1

Figure 14: Graph query “20th-century-born British authors who published in the 21st century”.

from the class label by a slash; so ?x1 is an output variable for the author node. The graph thus
corresponds to the following query:

SELECT DISTINCT (?z1 AS ?x1)
WHERE {

?z1 rdf:type <#Author> .
?z2 rdf:type <#Book> .
?z2 dcterms:creator ?z1 .
?z1 schema:birthDate ?z3 . FILTER(

?z3 >= "1900-01-01"^^xsd:date && ?z3 < "2000-01-01"^^xsd:date)
?z1 schema:nationality ?z4 . FILTER(?z4 = "GB")
?z2 dcterms:issued ?z5 . FILTER(

?z5 >= "2000-01-01"^^xsd:date && ?z5 < "2100-01-01"^^xsd:date)
} .

Every attribute in K0, K1 or K2 contributes to one statement in the query’s WHERE-clause;

<#Author>/x2<#Book>/x1

dcterms:creator

dcterms:issued:21C

21

1

?x1 ?x2
<#NeilGaiman> <#TriggerWarning>
<#JKRowling> <#HarryPotter7>
<#JKRowling> <#TheCasualVacancy>
<#StephenKing> <#DoctorSleep>
<#DanBrown> <#TheDaVinciCode>
<#DanBrown> <#Inferno>

Figure 15: Graph query “21st-century books and their authors” and its result table.

additionally, each attributes in K1 is related to a FILTER-expression, cf. Sect. 6. Obviously, the
renaming of ?z1 to ?x1, in the first line of the query, could have been avoided if we had chosen
?x1 instead of ?z1 in the first place; the present form of the query is slightly more generic,
since it allows to associate several output variables with the same node (which seems useless in
practice, but has some theoretical significance).

As the example shows, the attributes of K0, K1 and K2, hence the power context family,
determine the query language. The power context family thus defines an abstraction from the
underlying query language (be it SQL or SPARQL), limiting the possible queries on the one
hand, but providing a discrete set of options on the other hand, which should allow for a quicker
and more user-friendly way of navigation; comparable to how users access a library catalogue
through a search mask, rather than typing queries directly. Essentially, the choice of conceptual
scales determines the available fields in the search mask.

As in the OpenLink Faceted Browser, query building is interactive, i.e. the user would start
with a single graph node (one of the rectangular nodes, say the author node), and the system
provides suggestions how the graph can be extended (by many-valued attributes, or relations
to other nodes), while still allowing a non-empty result set. But the use of the power context
family, and the connection to FCA it provides, allows for another feature: the computation of
commonalities. Mathematically, the power context family associates every query 𝑄 to a formal
concept (𝑄↓, 𝑄↓↑), where 𝑄↓ is the result table for 𝑄, and 𝑄↓↑ is the graph closure of 𝑄, a graph
that shows what the tuples in 𝑄↓ have in common; it thus provides additional information. In
theory, this information could be computed and presented alongside the result table. In practice,
this is not generally possible, because the graph closures are far too complex to compute, or to
be read and understood by a user. However, it is possible to compute a weaker form of closure.
Specifically, the node closure computes closures on a per-facet basis, i.e. individually for each
realized scale. An example should make this clear. Consider the query in Fig. 15, and its result ta-
ble. For the set 𝐴 := {<#NeilGaiman>, <#JKRowling>, <#StephenKing>, <#DanBrown>}
of objects in the first column, and the realized scale schema:birthDate in Fig. 12, we obtain
𝐴↑ = {20𝐶} (cf. Sect. 2). In other words, all authors in the result table were born in the 20th
century. This information can be presented alongside with the result table. Doing so for all table
columns and all realized scales amounts to computing the node closure. Other weaker forms of
closure may take the graph structure (i.e. relations) into account (cf. pattern projections in [13]).
The power context family can be virtual, i.e. it need not be computed in memory, although of
course, obtaining commonalities involves some computational overhead.

8. Conclusion

Figure 9 illustrates an idea how FCA can be applied to different kinds of relational data, using the
power context family as an intermediary representation. The idea involves to specify, for each
kind of relational data, a method of conceptual scaling, which explains how the power context
family is derived. In a previous paper [2], this has been shown for relational databases, and in
this paper, we have shown this for RDFS ontologies. The practical use has been demonstrated for
the particular case of navigation. On this basis, we can extend Granada [25] to RDFS ontologies.

References

[1] B. Ganter, R. Wille, Formal concept analysis: mathematical foundations, Springer, Berlin,
1999.

[2] J. Kötters, P. W. Eklund, The theory and practice of coupling formal concept analysis
to relational databases, in: S. O. Kuznetsov, A. Napoli, S. Rudolph (Eds.), Proceedings of
FCA4AI 2018, volume 2149 of CEUR Workshop Proceedings, CEUR-WS.org, 2018, pp. 69–80.

[3] J. Kötters, Concept lattices of a relational structure, in: H. D. Pfeiffer, D. I. Ignatov,
J. Poelmans, N. Gadiraju (Eds.), Proceedings of ICCS 2013, volume 7735 of LNCS, Springer,
2013, pp. 301–310.

[4] R. Wille, Conceptual graphs and formal concept analysis, in: D. Lukose, H. S. Delugach,
M. Keeler, L. Searle, J. F. Sowa (Eds.), Proceedings of ICCS 1997, 5th Intl. Conf. on Conceptual
Structures, volume 1257 of LNCS, Springer, Heidelberg, 1997, pp. 290–303.

[5] P. Eklund, J. Ducrou, P. Brawn, Concept lattices for information visualization: Can novices
read line-diagrams?, in: International Conference on Formal Concept Analysis, Springer,
2004, p. 57–73.

[6] R. Godin, E. Saunders, J. Gecsei, Lattice model of browsable data spaces, Inf. Sci. 40 (1986)
89–116.

[7] R. Cole, P. Eklund, Browsing semi-structured web texts using formal concept analysis, in:
H. S. Delugach, G. Stumme (Eds.), Conceptual Structures: Broadening the Base, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 319–332.

[8] N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, Efficient mining of association rules using
closed itemset lattices, Information Systems 24 (1999) 25–46.

[9] G. Stumme, A. Maedche, FCA-Merge: Bottom-up merging of ontologies, in: B. Nebel (Ed.),
Proceedings of IJCAI 2001, Morgan Kaufmann, 2001, pp. 225–230.

[10] J. F. Sowa, Conceptual Structures: Information Processing in Mind and Machine, Addison-
Wesley, Reading, MA, 1984.

[11] M. Huchard, C. Roume, P. Valtchev, When concepts point at other concepts: the case
of UML diagram reconstruction, in: Proceedings of the 2nd Workshop on Advances in
Formal Concept Analysis for Knowledge Discovery in Databases (FCAKDD 2002), 2002,
pp. 32–43.

[12] F. Baader, R. Molitor, Building and structuring description logic knowledge bases using least
common subsumers and concept analysis, in: B. Ganter, G. W. Mineau (Eds.), Proceedings
of ICCS 2000, volume 1867 of LNCS, Springer, Berlin, Heidelberg, 2000, pp. 292–305.

[13] B. Ganter, S. O. Kuznetsov, Pattern structures and their projections, in: H. S. Delugach,
G. Stumme (Eds.), Proceedings of ICCS 2001, volume 2120 of LNCS, Springer, 2001, pp.
129–142.

[14] J. Kötters, Intension graphs as patterns over power context families, in: M. Huchard,
S. Kuznetsov (Eds.), Proceedings of CLA 2016, volume 1624 of CEUR Workshop Proceedings,
CEUR-WS.org, 2016, pp. 203–216.

[15] S. Prediger, R. Wille, The lattice of concept graphs of a relationally scaled context, in:
W. R. C. William M. Tepfenhart (Ed.), Proceedings of ICCS 1999, volume 1640 of LNAI,
Springer, 1999, pp. 401–414.

[16] J. Hereth, Relational scaling and databases, in: U. Priss, D. Corbett, G. Angelova (Eds.),
Proceedings of ICCS 2002, volume 2393 of LNAI, Springer, Heidelberg, 2002, pp. 62–76.

[17] J. Kötters, Concept lattices of RDF graphs, in: M. Ojeda-Aciego, J. Baixeries, C. Sacarea
(Eds.), Proceedings of the International Workshop on Formal Concept Analysis and Appli-
cations 2015, volume 1434 of CEUR Workshop Proceedings, CEUR-WS.org, 2015, pp. 81–91.
URL: http://ceur-ws.org/Vol-1434.

[18] U. Priss, Lattice-based information retrieval, Knowledge Organization 27 (2000) 132–142.
[19] RDF 1.1 Concepts and Abstract Syntax, Technical Report, W3C, 2014. URL: http://www.

w3.org/TR/2014/REC-rdf11-concepts-20140225/.
[20] D. Beckett, T. Berners-Lee, E. Prud’hommeaux, G. Carothers, RDF 1.1 Turtle, Technical

Report, W3C, 2014. URL: http://www.w3.org/TR/2014/REC-turtle-20140225/.
[21] RDF Schema 1.1, Technical Report, W3C, 2014. URL: http://www.w3.org/TR/2014/

REC-rdf-schema-20140225/.
[22] RDF 1.1 Primer, Technical Report, W3C, 2014. URL: http://www.w3.org/TR/2014/

NOTE-rdf11-primer-20140624/.
[23] S. Prediger, Logical scaling in formal concept analysis, in: D. Lukose, H. S. Delugach,

M. Keeler, L. Searle, J. F. Sowa (Eds.), Proceedings of ICCS 1997, volume 1257 of LNAI,
Springer, 1997, pp. 332–341.

[24] SPARQL 1.1 Query Language, Technical Report, W3C, 2013. URL: http://www.w3.org/TR/
2013/REC-sparql11-query-20130321/.

[25] J. Kötters, P. W. Eklund, Granada: Relational database navigation and scaling, in: D. Cristea,
F. L. Ber, R. Missaoui, L. Kwuida, B. Sertkaya (Eds.), Supplementary Proceedings of ICFCA
2019, volume 2378 of CEUR Workshop Proceedings, CEUR-WS.org, 2019, pp. 76–81.

http://ceur-ws.org/Vol-1434
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-turtle-20140225/
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

	1 Introduction
	2 Formal Concept Analysis
	3 Conceptual Scaling
	4 Formal Concept Analysis with Relations
	5 Relational Scaling
	6 RDFS Ontologies
	7 Navigation
	8 Conclusion

