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Abstract
Top-level ontologies provide a set of foundational concepts that have a well-founded philosophical
meaning, being a useful tool in ontology engineering. However, in practice, few domain ontologies
integrate top-level concepts. One of the difficulties refers to the selection of appropriate top-level concepts.
This paper presents an analysis of top-level categories of a set of well-known domain ontologies from
ontology matching benchmarks. Our main hypothesis is that training classification models using only
concept comments (i.e., rdfs:comment) from top-level concepts can improve reported results in the
literature. We then consider the best classifiers to estimate the distribution of concepts from Ontology
Alignment Evaluation Initiative (OAEI) ontologies aligned to DOLCE top-level concepts.
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1. Introduction

Top-level ontologies provide a set of foundational concepts that have a well-founded philosoph-
ical meaning, being a useful tool in ontology engineering [1]. They play an essential role in
different tasks, such as ontology matching, providing a bridge for different ontologies [2, 3].
However, not all ontologies were built using top-level ontologies as a foundation and some
existing ones are too large to be manually annotated. In this sense, the use of automatic top-level
classifiers can help to establish a link between domain and foundational ontologies. In order to
train these classifiers, a large amount of labeled data aligned with top-level concepts is required.
One relevant source of such data is OntoWordNet [4] which aligns WordNet [5] synsets to
DOLCE [6] concepts.

A recent effort in such direction has been done in [7], where a training dataset was constructed
using labels and comments associated with the entities in OntoWordNet, which are aligned with
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top-level DOLCE concepts. Using this data, several classifiers were evaluated for predicting
top-level concepts of entities. Based on that previous work, in this paper, we evaluate the
performance of a set of classification models and the impact of using comments as features in
the classification task. We address the cases of multi-inheritance, which may lead to different
top-level concepts in DOLCE, in a different manner from this previous work by disambiguating
cases that lead to a unique top-level concept and filtering those that lead to multiple concepts.
We then select the best classifier to study the distribution of top-level concepts in well-known
domain ontologies from benchmarks used for evaluating matching systems. Our study analyses
the distribution of the concepts of the ontologies from each track from the Ontology Alignment
Evaluation Initiative (OAEI) [8]. This is the first effort in such direction and our intuition is that
concepts in ontology correspondences (a correspondence is a triple involving a source concept
in the source ontology and a target concept from the target ontology, together with a relation
between them).

The remainder of this paper is structured as follows: in Section 2 related work is presented.
In Section 3 the multi-inheritance is discussed along with the approaches adopted. Section 4
presents an evaluation of the performance of the models. Section 5 presents the analysis of
OAEI ontologies and, finally, in Section 6 the conclusion and future work are discussed.

2. Related Work

Previous work has shown the importance of associating concepts from top-level to domain
ontologies. In [9], correspondences between DBPedia ontology and DOLCE-Zero [10] have been
used to identify inconsistent statements in DBPedia. In [11] an alignment between a foundational
ontology (BFO) and a biomedical ontology (GO) is used for filtering out correspondences at the
domain level that relate two different kinds of ontology entities.

Analyzing the impact of using top ontologies as semantic bridges in ontology matching
have been done in [12], where a set of algorithms exploiting such bridges are applied and the
circumstances under which foundational ontologies improve matching approaches are studied.
They propose algorithms that use structural and mixed information and show that different
combinations have different impacts on precision and recall. In [13], where OAEI ontologies
were manually aligned to UFO, adopting a set of patterns grounded by UFO ontology. In [14],
a domain ontology describing web services (OWL-S) has been manually aligned to DOLCE-
Lite-Plus, in order to overcome conceptual ambiguity, poor axiomatization, loose design, and
narrow scope of the domain ontology. The difficulties of such a manual alignment have also
been addressed in [15], where the authors evaluate the performance of manual classification of
entities in top-level concepts. The experiment was conducted by asking experts to manually
classify a set of entities into top-level concepts. They showed a high level of disagreement
between experts and that a methodological framework for this integration is needed.

In order to automate this process, in [16], word sense disambiguation and word embedding
models have been used to automatically align top and domain concepts. The evaluation has been
conducted with the task of associating DOLCE and SUMO top-level concepts to ontologies from
three different domains. Automatisation has been also addressed in [7]. The authors organize
two datasets based on OntoWordNet with the goal of training top-level concept classifiers of



ontology entities. The first dataset contains OntoWordNet entities with their respective DOLCE
concepts. The second dataset contains the same entities but is classified into 5 top-level concepts
(Endurant, Perdurant, Quality, Situation, and Abstract). Along with the datasets, the authors
evaluate several models that predict the top-level concept based on entity labels and comments.
In their following work [17], they propose a method to extract two datasets from OntoWordNet
that have target concepts from DOLCE Lite and DOLCE Lite Plus. Different language models
are evaluated in the task of predicting the top-level concept from the textual comments, the
BERT base achieves the best results in predicting the concept from comments. Their models
were not available at the time we conducted our study.

3. Materials and Methods

3.1. Training Datasets

This section describes the characteristics of the datasets from [7] and how they have been rebuilt
and extended in order to deal with multi-inheritance cases1.

Dataset Lopes22-5c This is the original dataset from [7], which is used to train models for
top-level concept prediction. The dataset is built from OntoWordNet containing 116838 entities.
It provides links for each concept of OntoWordNet to one of the 5 top concepts of DOLCE
(Endurant, Perdurant, Quality, Situation, and Abstract). This dataset is composed of 3 columns
(Table 1): Concept (DOLCE top-level concept), Label (OntoWordNet entity label, rdfs:label,
and Comment (OntoWordNet entity comment, rdfs:comment).

Table 1: Example of the Lopes22-5c dataset.

Concepts Label Comment
endurant order established customary state esp. of society. ’order

ruled in the streets’. ’law and order’
endurant ritual the prescribed procedure for conducting religious

ceremonies
endurant celebration the public performance of a sacrament or solemn

ceremony with all appropriate ritual. ’the celebra-
tion of marriage’

endurant ritual stereotyped behavior

Dataset Sousa23-5c The Sousa23-5c rebuilds the Lopes22-5c dataset while taking into
account the problem of multi-inheritance, which is further detailed in Section 3.1.1. Hence,
the resulting dataset Sousa23-5c differs from Lopes22-5c since the strategy of dealing with
multi-inheritance filters ambiguous entities, while in Lopes23-5c, the entity is inserted multiple
times with each possible top-level concept.

1The source code used in dataset generation and experiments can be found at https://gitlab.irit.fr/melodi/
ontology-matching/top-level. For the rebuild of the dataset, the version of OntoWordNet used was downloaded
from http://www.loa.istc.cnr.it/ontologies/OWN/OWN.owl(on 01/04/23) having 66065 entities

https://gitlab.irit.fr/melodi/ontology-matching/top-level
https://gitlab.irit.fr/melodi/ontology-matching/top-level
http://www.loa.istc.cnr.it/ontologies/OWN/OWN.owl


Dataset Sousa23-6c Another characteristic of Lopes22-5c dataset is its highly imbalance
concept distribution (Endurant 76%, Perdurant 10%, Quality 4%, Situation 6%, Abstract 3%). Our
proposal to deal with this problem is to break Endurant into two groups of concepts, generating
a more balanced dataset with 6 concepts. This dataset was built from Sousa23-5c by following
the hierarchy of entities until reaching one of the 5 top-level concepts (Endurant, Perdurant,
Quality, Situation, Abstract), and in the case that the type Endurant is found, it is replaced by
the immediate child in the path (Physical-endurant or Non-physical-endurant).

The concept distribution of the 3 datasets is presented in Table 2.

Table 2: Concept distribution of the datasets. Sousa-5c deals with multi-inheritance and
Sousa23-6c does not have the Endurant concept. The number of perdurants can
vary since Spatio-temporal-particular is the super concept of both Endurant and Per-
durant and due to the path selection method used, different types can be reached by
varying the number of perdurants in the two datasets.

concept Lopes22-5c Sousa23-5c Sousa23-6c
Endurant 88410 (75.7%) 27900 (53.0%) -

Physical-endurant - - 44553 (41.7%)
Non-physical-endurant - - 35853 (33.5%)

Perdurant 11683 (10.0%) 9045 (17.2%) 10847 (10.1%)
Quality 4948 (4.2%) 4245 (8.1%) 4245 (4.0%)

Situation 7763 (6.6%) 7157 (13.6%) 7157 (6.7%)
Abstract 4035 (3.5%) 4268 (8.1%) 4268 (4.0%)

3.1.1. Dealing with Multi-Inheritance in DOLCE and OntoWordNet

In order to deal with the case of multiple paths to the top-level concepts, we consider two distinct
scenarios: one when the multi-inheritance occurs in the Wordnet part of OntoWordNet, and the
other when it is present in the DOLCE hierarchy. If an entity in WordNet has multi-inheritance,
many paths are traversed, and if they all lead to the same type, the entity is added to the dataset.
If the paths diverge, the entity is ignored.

In DOLCE, one example of a concept without a direct path to the proposed top-level concepts
is Physical-realization that is a sub-concept of Spatio-temporal-particular and which in turn is the
super concept of Endurant, Perdurant, and Quality causing ambiguity. To deal with these cases,
when multi-inheritance occurs in the DOLCE hierarchy, a breadth-first search is performed until
one of the defined top-level concepts is found. If the concept found is Spatio-temporal-particular,
then the WordNet entity is not added to the dataset.

From the total of 66065 entities present in OntoWordNet, 889 entities in the WordNet hierarchy
have multi-inheritance. However, 5023 entities in the DOLCE hierarchy remain ambiguous even
after applying the strategy mentioned above. To solve this problem, for DOLCE concepts that
do not have a direct superclass, a breadth-first search is performed by traversing the predicates
RDFS.subClassOf, OWL.equivalentClass, OWL.intersectionOf, OWL.unionOf, RDF.first, RDF.rest in
decreasing order priority, adding the resulting objects to the priority queue used for the search.
Using this approach, the distribution of concepts remained deterministic over several runs.



After this disambiguation process, entities are post-processed, in which labels are selected
from the entity name in the WordNet part and rdfs:comment as comments. comments are
then converted to lowercase. Both newline characters and quotes are removed, and semicolons
are replaced with periods. Labels having synonyms separated by two underscores (‘__‘) are
split and generate new rows in the dataset. For example, SOFTHEARTEDNESS__TENDERNESS
is split and generates two entries in the dataset SOFTHEARTEDNESS and TENDERNESS.

3.1.2. Test Dataset

For the purpose of evaluating the performance of the classification models, 2 testing datasets
based on OAEI Conference track ontologies2 were created. The top-level concepts are assigned
using an existing reference alignment provided in [18] that aligns the highest concepts in
Conference to DOLCE. The Conference dataset contains 70 correspondences between the
concepts in Conference with concepts in DOLCE-Lite-Plus (DLP). The sub-concepts of top-
concepts in Conference are aligned, by transitivity, to the top-level concepts in DOLCE. From
the 70 alignments present in the initial reference alignment, 1 has multiple paths leading to
the same top-level concept, whereas 34 were ambiguous and were manually assigned with
the concept Endurant. The resulting datasets have 5 concepts (Conference-5c) and 6 concepts
(Conference-6c) and their respective distributions are shown in Table 3.

Table 3: Distribution of concepts in the alignment between Conference and DOLCE with 5
concepts.

Endurant Perdurant Situation Abstract Quality
473 (77.8%)

95 (15.6%) 34 (5.6%) 6 (1.0%) 0 (0.0%)Physical-endurant Non-physical-endurant
0 473 (77.8%)

3.2. Learning Models

In [7], the prediction model relies on the use of labels and comments. The system is composed of
two parts as can be seen in Figure 1 a). The first Feed-Forward Neural Network (FNN) part has
as input the average of the embeddings of the words contained in the labels, whereas the second
part consists of a BiLSTM [19] neural architecture that contextualizes learned embeddings for
each word in the dataset comment. After passing through the BiLSTM, an average pooling is
applied to generate the embedding representation of the whole comment. The BiLSTM part of
this architecture has the same setting as ELMO [20] one.

However, using more robust architectures like BERT [21] may achieve improved results in
this task as also reported in [17]. One of the reasons is that BERT can generate better natural
language text representations due to its capacity of managing context. Another point is that
some entities have the same label while being assigned to different top concepts in the dataset
Lopes22-5c. This can hamper the model’s ability to distinguish among the different concepts

2https://oaei.ontologymatching.org/2022/conference/index.html (on 01/07/23)

https://oaei.ontologymatching.org/2022/conference/index.html


Figure 1: a) The proposed model in [7]. b) The BERT model.

while giving less importance to the label part of the input. Another issue is that, while comments
can impact the training step, ontologies often contain a low amount of comments. Since the
model makes a distinction between labels and comments, its capacity for generalization in the
test phase can be reduced.

In this way, unifying the model’s input between labels and comments can improve the model’s
performance since it will be able to take advantage of the information from comments during
training while being able to work only with labels when comments are not present. Based on
those assumptions, for better generalization, we used BERT with a classification head to predict
the top-level concept that accepts a single text input that can be both labels or comments. The
architecture using BERT is present in Figure1 b).



4. Experimental Evaluation

4.1. Performance of the Classification Models

In order to verify the hypothesis that the use of comment improves the baseline model results in
BERT and in the model proposed in [7], the 3 datasets (Lopes22-5c, Sousa23-5c, and Sousa23-6c)
were split using 10-fold cross-validation. Before training, the majority concept instances are
reduced to match the number of instances in the minority concept using downsampling [22].
The exceeding entities are added to the test folds.

In [7], different word embeddings are tested, however, here we selected Glove 6B [23] because
it provides a good balance between performance and model size. It also provides a more
straightforward implementation compared to fastText [24] which is trained using character n-
grams and needs a further tokenization procedure. Other baseline models were tested including
Bernoulli Naive Bayes (BNB), Feed Forward Neural Network (FNN), Gaussian Naive Bayes
(GNB), Decision Tree (DT), Random Forest (RF), Logistic Regression (LR), Feed-forward Neural
Network (FNN), and Support Vector Machine (SVM). The proposed model is [7] Model-Lopes
and the FNN was trained using the Adam [25] optimizer with a learning rate of 0.001 for 10
epochs with a batch size of 64. The BERT model was also trained with Adam optimizer, with a
learning rate of 0.00003, employing 1 epoch with a batch size of 64. The models are evaluated
using the micro-F1 metric. For each model, we tested the following alternatives of input: using
the comment only, the label only, and the label+comment. The results of the evaluation on the
datasets Lopes22-5c, Sousa23-5c, and Sousa23-6c are presented in Table 4.

Table 4: Results of all models in terms of micro F1 score evaluated in the datasets Lopes22-5c,
Sousa23-5c, Sousa23-6c.

Lopes22-5c Sousa23-5c Sousa23-6c
model c l l+c c l l+c c l l+c
BERT 0.87 0.71 0.88 0.88 0.71 0.88 0.87 0.69 0.87

Model-Lopes 0.75 0.36 0.73 0.76 0.37 0.75 0.74 0.35 0.74
SVM 0.68 0.36 0.43 0.68 0.38 0.45 0.64 0.37 0.43
RF 0.64 0.38 0.37 0.65 0.38 0.38 0.58 0.36 0.36

FNN 0.59 0.33 0.39 0.58 0.34 0.39 0.57 0.32 0.38
LR 0.52 0.26 0.37 0.53 0.25 0.37 0.49 0.24 0.35

BNB 0.49 0.26 0.35 0.5 0.25 0.34 0.40 0.23 0.31
DT 0.40 0.27 0.25 0.41 0.27 0.25 0.40 0.25 0.23

GNB 0.31 0.43 0.43 0.30 0.44 0.44 0.46 0.33 0.37

One can notice that all classifiers achieved higher results using only comment as input, except
the Gaussian Naive Bayes in the datasets Lopes22-5c and Sousa23-5c. The BERT model achieved
the highest performance in all categories. And, in some cases, the BERT model obtained the same
results even using label+comment input. One possible reason for that result is that the model
can make better use of label information when appropriate due to the attention mechanism.

The confusion matrix for the BERT model in the 3 datasets can be seen in Tables 5, 6, and
7. One can see that, in the dataset Lopes22-5c, the model tends to misclassify a considerable



amount of Perdurants into Situation (16%), and Situations into Perdurant (17%). In the dataset
Sousa23-5c, this misclassification is between Perdurant and Quality 21%. In the Sousa23-6c
dataset, the model also misclassifies 13% of Perdurants into Situation and 23% of situations into
Perdurant. Similar misclassification in Situation concept is found in [7], and these results may
have a relation to the fact that Situation is nondisjoint with the other classes. In that sense, it is
not an appropriate class for a top-level classification model if a single class is required for the
task.

Table 5: BERT confusion matrix evaluated in (Lopes22-5c).

concept Endurant Perdurant Quality Abstract Situation
Endurant 753515

(88.9%)
22208
(2.6%)

19023
(2.2%)

21977
(2.6%)

31062
(3.7%)

Perdurant 1584
(2.0%)

62592
(77.7%)

2220
(2.8%)

895 (1.1%) 13224
(16.4%)

Quality 116 (0.9%) 381 (2.9%) 11666
(88.7%)

397 (3.0%) 595 (4.5%)

Abstract 142 (3.5%) 31 (0.8%) 44 (1.1%) 3795
(94.1%)

23 (0.6%)

Situation 718 (1.7%) 7017
(17.0%)

1449
(3.5%)

230 (0.6%) 31901
(77.2%)

Table 6: BERT confusion matrix evaluated in (Sousa23-5c)

concept Endurant Perdurant Quality Abstract Situation
Endurant 682031

(89.1%)
22033
(2.9%)

20942
(2.7%)

24965
(3.3%)

15884
(2.1%)

Perdurant 1410
(2.0%)

54861
(78.1%)

10339
(14.7%)

995 (1.4%) 2660
(3.8%)

Quality 571 (1.7%) 7052
(21.1%)

24064
(72.1%)

326 (1.0%) 1352
(4.1%)

Abstract 94 (2.1%) 59 (1.3%) 20 (0.4%) 4047
(90.4%)

255 (5.7%)

Situation 49 (1.2%) 130 (3.1%) 112 (2.6%) 99 (2.3%) 3855
(90.8%)

4.2. Evaluation on the OAEI Conference Datasets

The models trained on Sousa23-5c and Sousa23-6c were tested on Conference-5c and Conference-
6c, respectively. Since the downsampling technique used for balancing the training datasets
generates different dataset partitions, the results are evaluated in 150 steps to account for
possible variations. In this evaluation phase, all the models receive as input only the labels of
the entities, while the BERT model was trained only with comments. Model-Lopes is trained



Table 7: BERT confusion matrix evaluated in (Sousa23-6c)

concept Physical-
endurant

Non-
physical-
endurant

Perdurant Quality Abstract Situation

Physical-endurant 377547
(92.7%)

12629
(3.1%)

2422
(0.6%)

2062
(0.5%)

10657
(2.6%)

2008
(0.5%)

Non-physical-endurant 9329
(2.9%)

264356
(82.5%)

13729
(4.3%)

8926
(2.8%)

11090
(3.5%)

12895
(4.0%)

Perdurant 437 (0.6%) 1145
(1.6%)

55421
(78.9%)

2430
(3.5%)

1412
(2.0%)

9420
(13.4%)

Quality 21 (0.5%) 27 (0.6%) 122 (2.9%) 3688
(86.9%)

218 (5.1%) 169 (4.0%)

Abstract 90 (2.0%) 26 (0.6%) 29 (0.6%) 144 (3.2%) 4168
(93.1%)

18 (0.4%)

Situation 203 (0.6%) 1001
(3.0%)

7693
(23.1%)

1308
(3.9%)

290 (0.9%) 22870
(68.5%)

and tested in different cases. Case 1: the model was trained only with labels and the test input
is fed into the label input of the model. Case 2: the model was trained only with comments and
the test input is fed into the comment input of the model. Case 3: the model was trained with
both labels and comments and the test input is fed into the label input of the model. And Case
4: the model was trained only with both labels and comments and the test input is fed into the
comment input of the model. The results are present in Table 8.

In the results, the BERT model trained with the adopted hyperparameter settings is unstable
and has the highest standard deviation. This model collapses in some cases, giving the same
output for every input, causing it to have values ranging between 0 and 0.78 F-measure. The
model achieves 0.00 F-1 when it outputs Quality for every input, as the test dataset does not
have any element labeled as Quality. On the other hand, it achieves the highest F-1 (0.78) when
the model predicts Endurant for every input as, in the test dataset, 0.78% of the entities are
Endurant. The BERT model had the highest scores in Conference-5c when considering the 75%
percentile results, excluding instances of collapse. In Conference-6c, the BERT model and the
model trained and tested with comments had the best and nearly equal results. Since the BERT
model achieves the highest scores on Conference test datasets, it was selected to analyze the
OAEI datasets described in Section 5.

5. Applying the Best Classifier: An Evaluation on the OAEI
Tracks

This section presents an analysis of the top-level concepts in different OAEI tracks (Conference,
Anatomy, Complex, Food, BioML, BioDiv, MSE, and KG3 along with the characteristics of

3These tracks are described on https://oaei.ontologymatching.org/2022/ (on 01/07/23)

https://oaei.ontologymatching.org/2022/


Table 8: Results of the models in the Conference test dataset.

model mean std min 25% 50% 75% max
BERT (Sousa23-5c) 0.45 0.25 0.0 0.17 0.54 0.66 0.78
BERT (Sousa23-6c) 0.41 0.23 0.0 0.29 0.48 0.6 0.78

Model-Lopes (l) (Sousa23-5c) 0.37 0.03 0.29 0.35 0.37 0.4 0.46
Model-Lopes (l) (Sousa23-6c) 0.19 0.03 0.12 0.17 0.19 0.21 0.25
Model-Lopes (c) (Sousa23-5c) 0.5 0.08 0.27 0.45 0.49 0.54 0.72
Model-Lopes (c) (Sousa23-6c) 0.55 0.07 0.38 0.51 0.56 0.61 0.71

Model-Lopes (l+c test l) (Sousa23-5c) 0.13 0.04 0.05 0.11 0.13 0.15 0.27
Model-Lopes (l+c test l) (Sousa23-6c) 0.2 0.08 0.07 0.15 0.2 0.25 0.52
Model-Lopes (l+c test c) (Sousa23-5c) 0.56 0.07 0.38 0.52 0.57 0.61 0.72
Model-Lopes (l+c test c) (Sousa23-6c) 0.38 0.07 0.22 0.34 0.38 0.43 0.58

comments present in ontology entities. In the first subsection, an analysis of the distribution of
top concepts in the ontologies is provided. The second subsection evaluates the consistency of
the reference alignments in terms of their top-level concepts. The third subsection evaluates
the distribution of label length compared to the comments present in the training datasets.

5.1. Distribution of Top Concepts

Using the best model (BERT), the distribution of the top-level types of the concepts in the
ontologies from schema alignment tracks is estimated. The distribution concerns the entities
of each ontology present in the tracks, excluding blank nodes, and properties. For each entity,
one label is collected searching for label predicates rdfs.label, skos.prefLabel, skos.altLabel, or if
no label is found the label is retrieved from the resource identifier. As can be seen in Figure
2, the distribution of concepts for each track is distinct. The estimation by the model trained
in Sousa23-5c shows that Complex, Food, and BioDiv have a high concentration of Endurants
while the others are more distributed.

The distribution by the model trained on Sousa23-6c is presented in Figure 3 as well as
its estimation. The Anatomy, Food, BioML, and KG ontologies have a high concentration of
entities in one concept. For BioDiv, the majority of entities concentrate on Physical-endurant
and Non-physical-endurant. The two models disagree with the distribution of Quality entities
between tracks. The model trained on Sousa23-5c tends to classify some Endurant as Quality
compared to the model trained on Sousa23-6c. The two models achieve similar distributions of
Perdurant and Abstract types.

5.2. Alignment Consistency across Correspondence Entities

We analyzed the number of correspondences having entities associated with the same top-
level types (a correspondence is composed of a source and a target ontology entities). The
proportion can be seen in Table 9 for the estimations given by the model trained on Sousa23-5c
and Sousa23-6c. The distribution of correspondences that have the same type is similar for the
two models in Conference, MSE, CommonKG, BioML, and KG. The difference in scores for the
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Figure 2: OAEI tracks distribution with 5 concepts.

Anatomy track is related to the distribution given by each model. For the model Sousa23-5c, the
majority of entities are distributed as Endurant and Quality. In contrast, as the model Sousa23-6c
yielded a high concentration of entities in the same concept, the reference alignments also
follow the same tendency. In BioDiv, the model trained on Sousa23-6c achieves only 9.65% of
the alignments with the same type for the alignment between Agrovoc and Nat ontologies as
the majority of the difference between them is that the model gives physical-endurant for one
entity, and non-physical-endurant for the other. This problem does not happen with the model
trained on Sousa23-5c since both will be classified as Endurant and so, the alignments will have
the same type.

Table 9: Number of reference alignments with the same type in source and target ontologies
using both models.

BERT Sousa23-5c BERT Sousa23-6c
Track Same Total % Same Total %

Conference 213 258 82.56 197 258 76.36
Anatomy 908 1516 59.89 1248 1516 82.32

MSE 159 388 40.98 162 388 41.75
CommonKG 268 304 88.16 264 304 86.84

BioDiv 83427 96483 86.47 42807 96483 44.37
BioML 18007 25270 71.26 18158 25270 71.86

KG 13627 15359 88.72 13452 15359 87.58

Both models trained in 5 and 6 classes yielded a few correspondences with the same types
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Figure 3: OAEI tracks distribution with 6 concepts.

in the MSE track. The main reason resides in the lack of information in the entities, such as
acronyms for chemical elements, in which the model has enough information to give the correct
classification. A similar problem appears in the Conference datasets, for instance, between the
alignments of PaperAbstract and Abstract or Country and State. Without further information,
the label State is ambiguous, and the model can yield an incorrect classification based on it. As
can be seen in these examples, a dataset containing entities along with its contained subgraphs
could lead to better results for this task, as the model should have more information to deal
with the ambiguous labels.

Table 10: Some examples where the model predicts different types for the reference alignments
in Conference and MSE test data.

Track Source Target
Conference PaperAbstract (Endurant) Abstract (Situation)

Country (Situation) State (Quality)
Attendee (Quality) Listener (Situation)

MSE Mt (Endurant) MeitneriumAtom (Perdurant)
Dy (Situation) DysprosiumAtom (Endurant)
Ag (Endurant) Silver (Situation)

5.3. Discussion of Terminological Distribution

As entity comments are equivalent to ontology comments, the models are expected to have the
best results when evaluated on them. However, comments are rare in the ontologies present in



all tracks, and in this case, the labels need to be used to predict the top level. The distribution of
labels and comments in all ontologies for schema matching is analyzed to verify the relation to
the distribution of the proposed datasets. The number of labels and comments in all tracks are
present in Table 11. Among all tracks, Anatomy, Food, and BioDiv have no comments. BioML
(MONDO), BioML (UMLS) and BioDiv have less than 1% of comments. Conference and Complex
have less than 5% and KGh while MSE have respectively 13.49% and 36.17%. Since the number
of comments is low, the labels need to be used to predict the top-level types. However, as most
machine learning models suffer from the well-known Out-of-Distribution Generalization (OOD)
[26] problem, they are hampered by both the labels that do not have a similar syntactic structure
of their comments and their length distribution differs.

Table 11: Count of labels and comments in the analyzed tracks.

track entities rdfs.label skos.prefLabel skos.altLabel rdfs.comment
Conference 1020 0 (0.00%) 0 (0.00%) 0 (0.00%) 32 (3.14%)
Anatomy 12498 12017 (96.15%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
Complex 32620 9565 (29.32%) 0 (0.00%) 0 (0.00%) 434 (1.33%)
Food NC 11737 0 (0.00%) 9396 (80.05%) 0 (0.00%) 0 (0.00%)

BioML (MONDO) 34872 33755 (96.80%) 0 (0.00%) 0 (0.00%) 60 (0.17%)
BioML (UMLS) 145486 145093 (99.73%) 55312 (38.02%) 23948 (16.46%) 43 (0.03%)

BioDiv (ncbitaxon) 233776 233746 (99.99%) 0 (0.00%) 5861 (2.51%) 0 (0.00%)
BioDiv 3599317 2582980 (71.76%) 359314 (9.98%) 155987 (4.33%) 882 (0.02%)
MSE 2411 953 (39.53%) 451 (18.71%) 47 (1.95%) 872 (36.17%)
KG 2050682 808385 (39.42%) 321695 (15.69%) 708059 (34.53%) 276631 (13.49%)

The frequency of the lengths of labels and comments for each entity in all ontologies of
all tracks is compared to the distribution of the comment lengths in the Sousa23-5c dataset.
As can be seen in Figure 4, the average length of the comments in the training datasets is 50
characters, however, it was noticed that the majority of the labels are shorter. Furthermore,
comments, which are relatively rare, have a high standard deviation. Also, the differences in the
distribution of text length between labels and comments hinder the capacity for generalization
of the models.

6. Conclusion and Future Work

In this work, we investigated the task of top-level concept prediction. We generated one dataset
with 5 top-level concepts (Sousa23-5c) and one with 6 concepts (Sousa23-6c) based on OntoWord-
Net. In this generation, we discussed the multi-inheritance problem and proposed procedures to
obtain top-level concepts for entities in unambiguous cases. In addition, classifier models were
then trained and tested varying between the use of only labels, comments, and labels+comments.
The yielded results show that the use of rdfs:comment improves the prediction performance
of classification models. These results show the importance of rdfs:comment for automated
system understanding of concepts. We selected the best-generated model to estimate the dis-
tribution of concepts in ontologies from well-known ontology matching benchmarks (OAEI).



Figure 4: Distribution between labels and comments in the analyzed tracks compared with the
Sousa23-5c comments. The x-axis represents the length of the text and the y-axis is
the number of labels or comments in each length. The visualization is limited to texts
ranging from 0 to 400 characters long.

The results show that tracks have different distributions among top-level types. The performed
analysis of the reference alignments showed that a high number of correspondences, as expected,
are of the same type. We consider that this gives us an estimation of the accuracy of the trained
classifiers.

In future work, we intend to conduct experiments with new deep-learning architectures that
should improve the results reported in this paper. Dynamically predicting the top-level types
for each concept of an ontology should help in downstream tasks such as ontology matching.
Therefore, as different ontologies have distinct top-level distributions, we expect that our present
analysis could be used for generating better classification models in the near future. Since the
labels of entities are ambiguous in some cases, including the ontology structure as contextual
information for the classification models may improve the prediction of top-level concept types.
Also, the high number of correspondences that have the same type in some OAEI tracks shows
that using these tools could help increase matching systems performance by increasing the
similarity of entities with the same top-level type.
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