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Abstract
Times series, namely data characterized by temporal information, are a common feature of industrial use
cases, especially when considering sensor-based technology. The work presented in this paper focuses
on traffic time series collected from stationary cameras, and preprocessed through machine learning
algorithms. We introduce the notion of traffic scene, which is central to an ontology of the traffic domain
and instrumental to instantiate a knowledge graph for such domain. We then define the formal syntax
and semantics of a new language for querying knowledge graphs that is capable of handling temporal
information beyond SPARQL expressivity. Finally, we illustrate examples of advanced temporal queries
for intelligent traffic monitoring applications.
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1. Introduction

In this work, we aim to address the limitations of current knowledge graph (KG) approaches
in representing and reasoning over dynamic information. In particular, we designed a query
language called Temporal Query Language (TQL), which extends SPARQL. The article provides a
detailed description of the TQL primitives, clarifying the notion of time assumed in the language,
and illustrates an intelligent traffic monitoring application.

2. Problem Description and Setup

Query 11 shows a KG excerpt related to traffic objects and their properties. In particular, Line 2
and 3 are asserting that there are two entities of type Car, whereas Line 4 and 5 are describing
their speeds (the implicit unit of measure adopted is miles per hour ).
The instant at which a given information holds can be easily represented in RDF. As an

example, we can state that ”car 1 has a speed of 22.0 on July 27, 2021 at 14:21”. One way of
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Query 1: Virtualization query example
1 ...
2 tmo:car_1 rdf:type tmo:Car .
3 tmo:car_2 rdf:type tmo:Car .
4 tmo:car_1 tmo:speed 22.0 .
5 tmo:car_2 tmo:speed 25.0 .
6 ...

Query 2: Querying information with time
1 SELECT ?car
2 WHERE
3 {
4 tmo:car_1 rdf:type tmo:Car .
5 tmo:car_1 tmo:associatedWith ?x .
6 ?x tmo:hasSpeed ?speed .
7 ?x tmo:time ?time .
8 FILTER(?speed>22.0)
9 FILTER(?time<”2021-06-27T09:00:00” && ?time>”2021-06-27T21:00:00”)

10 }

representing this information in RDF is to use reification2, whereas tmo:associatedWith is
just an auxiliary predicate and _:x is called a blank node. Blank nodes are auxiliary nodes for
connecting different entities in a KG.

tmo:car_1 tmo:associatedWith _:x .
_:x tmo:hasSpeed 22.0 .
_:x tmo:time ”2021-06-27T14:21:00”^^xsd:dateTime

Alternatively, we can use RDF-star3 and represent the same information as following:
<<tmo:car_1 tmo:hasSpeed 22.0>>

tmo:time ”2021-06-27T14:21:00”^^xsd:dateTime

Regardless of the way we represent temporal information, the question is how to effectively
query such information and extract salient dynamic properties from it. When treating time
like any other property in RDF, we can use standard query language such as SPARQL. For
example, Query 2 asks for all cars with speed greater than 20.0 between 9:00AM to 9:00PM on
July 27, 2021. This is a usual interpretation of time. Filters like the one shown in Line 9, allow to
query for data that satisfy certain restrictions on the associated time point. In other words, the
way we can filter time-associated data is to compare the time points using the usual operators
like , <, =, ! = etc. But how to conceptualize and generalize events from time points is left to
the human. In case of traffic situations, sometimes we are interested in relating information
at different time points and beyond the simple semantics of the aforementioned comparison
operators. As an example, suppose we want to check if there is a car idling until a police patrol
car arrives at the scene. Such query cannot be formalized in SPARQL, as it would require some
sort of a while-loop in order to traverse time-indexed KG triples unless certain conditions are

2https://www.w3.org/wiki/RdfReification. Note that we are not using the usual reification approach of associating a
triple to a blank node.

3https://w3c.github.io/rdf-star/cg-spec/2021-07-01.html
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satisfied (appearance of a police vehicle in this example). Query languages like SPARQL lack
such a capability. Even though some queries about information over time could be expressed in
SPARQL, such queries usually end up to be too complex and prone to error. In this work, our
goal is to devise a query language to address these issues. We call the language temporal query
language (TQL). TQL basically allows us to query about information while constraining them
over time. A detailed description will be provided in upcoming sections. For this language, we
take certain assumptions about the notion of time in the target knowledge graph, as described
below.

2.1. KG Requirements

The query language we present in this work takes the following assumptions about the target
knowledge graph.

Universality of Schema The schema or the ontology part of a given KG graph is assumed to
be universal. i.e., we do not allow time to be associated with ontological axioms. In other words,
the schema is true at all time points i.e., the axioms or knowledge about a particular domain
are not time dependent. Further, we want to avoid computational issues like undecidability of
query answering [1].

Temporal Data Not all data need to be temporal. But the parts of the data with temporal
information need to be associated with some notion of time. In the previous section, we
have seen example how a timestamp can be associated to a triple using the usual datatype
xsd:dateTime. Nevertheless, this is not a hard requirement in our case. All we need is some
way of ordering information. Further, we need this ordering to be linear i.e., give a time point 𝑇
in this order, there is at most one successor 𝑇 ′ time point of 𝑇. A KG 𝒢 thus can be perceived
as a union of 𝒢𝑆, 𝒢𝑇1 , … , 𝒢𝑇𝑛 where 𝒢𝑆 represents the schema part of 𝒢 along with the triples
which are not associated to some time and hence contain no temporal information, whereas 𝐺𝑇𝑖
represents the set of triples which are associated with time point 𝑇𝑖 for 1 ≤ 𝑖 ≤ 𝑛. Without loss
of generality, we associate time to a set of triples onward.

3. Use-case

In this work, we apply TQL to improve the analysis of traffic video feeds: the goal is to infer
complex behavior from object classes, positions, trajectories recognized by state-of-the-art
machine vision systems running on top of stationary cameras. A traffic monitoring ontology
has been created, to represent the semantic content or scene of each video frame, and to generate
a knowledge graph with the annotated data.

3.1. Traffic Monitoring Ontology

Videos collected from different cameras are analyzed frame by frame. For each frame we get
information about the objects and their characteristics in it. We describe this information in a
KG using different classes and relationships. Note that each frame is recorded at a particular



Query 3: Triples describing an observation about a car in a frame
1 tmo:atomicScene1 tmo:composedOf tmo:position1.
2 tso:TimeStamp ”2021-03-03T07:30:44”^^xsd:dateTime;
3 tmo:position1 rdf:type tso:Position;
4 tmo::hasParticipant tmo:car1;
5 tmo::hasProperty ?speedProperty1.
6 ?speedProperty1 rdf:type tso:Speed;
7 tmo:hasValue 20.0.

time point. For our use-case, we consider these time points when dealing with dynamic aspect
of the domain. The notion of time will be explained in Section 5.

Figure 1: Traffic Monitoring Ontology

Figure 1 shows a snippet of the traffic monotoring ontology (TMO). We next go through the
classes and relations in TMO.

AtomicScene and Observation The class AtomicScene is a composition of the class Ob-
servation. The elements of Observation represent different types of observations made in a
given frame. In our case, the only observations we have are of type Position, which describes a
traffic object using some spatial coordinates4. However, as an example, if there is a car observed
in a frame, triples describing all the relevant information about the car are shown in Query 3.
As shown on line 4, Position (Observation) is used to accumulate information about a traffic
object (tmo:car1 in this case). What we are describing is that in the given frame we make an
observation (of type Position) in which we have a participant (tmo:car1), a property (tmo:Speed)
for which we have a value of 20.0. Finally, note that that Line 3 associates a single time point
to tmo:atomicScene1. We could actually associate the same time to every triple in Query 3.
But since all the triples carry the same time point, we can group them using an instance of
AtomicScene.

ComplexScene A complex scene is a composition of atomic scenes. Which atomic scenes
constitute a complex scene depends on the pertinent interpretations derived by the use case
(see Event) or external constraints.

4Including geo-spatial coordinates, bounding boxes and Cartesian coordinates, etc. Note that Figure 1 is only
showing a partial view of the ontology, focused on temporal aspects.



Figure 2: Event as Interpretation

Event Previously we mentioned that complex scenes are composition of atomic scenes. We
do not enforce any condition on which atomic scene can be composed into a complex scene. In
practice however, we are not interested in random aggregates of atomic scenes. To this end,
we use the class Event to represent scenes in a meaningful manner. Events thus can be seen
as semantic tags we put on scenes (atomic or complex). Figure 3.1 outlines this idea. As an
example, a scene can be interpreted as a congestion in, say, a village, while it can be interpreted
as a rush hour in a city. Pictorially, we see in Figure 3.1 the relationship between atomic scenes,
complex scenes and events. Different interpretations (events) can be associated to the same
complex scene.

Figure 3: Event Interpretation Examples

After presenting an overview of the relevant part of our KG, we next describe the need for
a temporal query language. In the next section, we will see why standard querying is not
sufficient in use-cases like traffic monitoring where the data is inherently dynamic and thus
involves time as an aspect.

4. Query Languages Limitations

In this section, we describe why standard query languages like SPARQL are not sufficient when
dealing with data, such as from traffic monitoring domain, which involves dynamic aspects. This
will advocate the idea of devising a more expressive query language which we will introduce in
Section 5. To this end, we present the following example scenarios.



Query 4: query checking for accelerating car
1 ASK
2 WHERE
3 {
4 ...
5 tmo:atomicScene_i tmo:composedOf tmo:position_i.
6 tso:TimeStamp ?t_i.
7 tmo:position_i rdf:type tso:Position;
8 tmo::hasParticipant tmo:car;
9 tmo::hasProperty ?speedProperty.

10 ?speedProperty rdf:type tso:Speed;
11 tmo:hasValue ?speed_i.
12 tmo:atomicScene_j tmo:composedOf tmo:position_j.
13 tso:TimeStamp ?t_j.
14 tmo:position_j rdf:type tso:Position;
15 tmo::hasParticipant tmo:car;
16 tmo::hasProperty ?speedProperty.
17 ?speedProperty rdf:type tso:Speed;
18 tmo:hasValue ?speed_j.
19 ...
20 FILTER(speed_1<speed_2 && speed_2<speed_3 && ... && speed_19<speed_20)
21 }

Accelerating car: Suppose we are interested in finding out if 𝑄1 ∶ a video (from a traffic
camera) contains an accelerating car. For simplicity we imagine that there is only one car (and
the same one) in each of the video frames. Suppose there is a video with 20 frames and that
these frames are represented as atomic scenes: 𝐴1, … , 𝐴20 in a KG 𝒢. Let 𝑇1, … , 𝑇20 be the time
point associated with 𝐴1, … , 𝐴20 respectively in the order 𝑇1 < 𝑇2 < ⋯ < 𝑇19 < 𝑇20. Note that
each atomic scene 𝐴𝑖 can be represented in 𝒢 in the same fashion as in in Query 3. We, thus, are
only interested in the speed property of the position for each of the atomic scenes. The given
video is a candidate answer to our query if we observe that the speed of the car is increasing
as we go from atomic scene 𝐴1 all the way to 𝐴20. Retrieving such video from our knoweldge
graph can be formalized as a SPARQL query even though it is temporal in nature. All we need
to do is to compare the speed corresponding to the position in the atomic scene5 (frame) at time
𝑇𝑖 to speed corresponding to the position in the atomic scene at 𝑇𝑖+1 where 1 ≤ 𝑖 < 20. That
is, we compare ever consecutive pair of scenes for the speed value. Query 4 shows a snippet
of such a query. In general, such queries can be very long and non-trivial. As in our example
query, we see that we have to get speed for all the 20 atomic scenes.

Note that not all queries dealing with temporal data can be translated into a SPARQL query
(or at least to a single SPARQL query). We call the queries that can be translated into some
equivalent SPARQL representation, simple temporal queries; we refer to the other queries as
complex temporal queries. The next example illustrates the latter type.

Congestion ending in an accident: Suppose we are interested in videos where we en-
counter traffic congestion ending up in an accident. Let’s assume by congestion we mean that
the cars are not moving at all for at least 10 time points6. Further, we identify an accident if two

5Frames are represented as instances of the class AtomicScene
6We can assume any number of seconds to be one time point.



cars share the same geo-spatial space. In other words, they have overlapping bounding boxes.
A video is an answer to this query if (i) there are atomic scenes 𝑆𝑇0 , 𝑆𝑇1 , … 𝑆𝑇𝑛 with time points
𝑇1, 𝑇2, … , 𝑇𝑛 respectively such that all cars have the same position at least in atomic scenes 𝑆𝑇𝑖
for 0 ≤ 𝑖 ≤ 10, (ii) no two cars have overlapping position in none of the atomic scenes 𝑆𝑇𝑖 for
0 ≤ 𝑖 ≤ 10, and (iii) there is a time point 𝑇𝑘 with 10 < 𝑘 ≤ 𝑛 such that there are at least two cars
with overlapping positions in the atomic scene 𝑆𝑇𝑘 . Further, none of the car changes position
nor two car’s position overlaps in the scenes 𝑆𝑇𝑖 for 10 < 𝑖 < 𝑘. Note how Condition (i) and (ii)
check for a congestion (10 time points) and not happening of an accident. Whereas, Condition
(iii) checks for the earliest time point where we encounter an accident. Unlike Condition (i)
and (ii), the last condition cannot be translated into a single SPARQL query as we do not know
prior how many frames we need to check. This requires some sort of a while-loop which keeps
running till the condition is satisfied.
The goal of this work is to answer queries as shown in the above examples. Note that even

though the accelerating car example (simple temporal query) can be translated into a SPARQL
query, but such queries are large and complex, and thus are prone to error. Next we present a
query language which allows expressing simple as well as complex temporal queries.

5. Towards a Formal Query Language

In this section, we define the formal syntax and semantics for the temporal query language we
mentioned in the previous section. We first start with some basic notions.

5.1. Preliminaries

All the knowledge graphs we consider here are assumed to be OWL based knowledge graphs7

which roots in Description Logics (DLs) [3]. We now present some preliminary definitions.

Definition 5.1 (Assertional Triples). A class assertion triple is a triple of the following form

[individual] rdf:type [class].

A data property assertion triple is a triple of the following form

[individual] [data property] [data value].

An object property assertion triple is a triple of the following form

[individual] [object property] [individual].

Based on these notions, we next define what we mean by a temporal knowledge graph.

Definition 5.2 (Temporal Knowledge Graph). Let 𝕋 be a non-empty set and < be a strict partial
order on 𝕋 . Further, let 𝒯 be a set of triples. Then, a temporal knowledge graph (or TKG in

7OWL is an acronym for Web Ontology Language a W3C standard for describing ontologies [2]. Here we assume
basic familarity to RDF, RDFS and OWL.



short) based on (𝕋 , <) and 𝒯 is a knowledge graph if there is a set 𝒟 of assertional RDF triples
with 𝒟 ⊆ 𝒯 such that

𝒟 = 𝒟𝑇1 ∪ 𝒟𝑇2 ∪ ⋯ ∪ 𝒟𝑇𝑛

where 𝑇𝑖 ∈ 𝕋 for 1 ≤ 𝑖 ≤ 𝑛. We represent the knowledge graph by 𝒯(𝕋,<).

The intuition behind this definition is that the set of all assertional triples in a temporal
knowledge graph can be partitioned into subsets 𝒟𝑇𝑖 based on some order given by <. In
practice, we can take 𝕋 to be a set of xsd:dateTime literals and < is such that 𝑇𝑖 < 𝑇𝑗 if 𝑇𝑖 is
before 𝑇𝑗 for two distinct xsd:dateTime times 𝑇𝑖 and 𝑇𝑗 in 𝕋 . Note that by definition, we do not
require 𝕋 to be a set of xsd:dateTime always. All we need is to have a strict partial order < on 𝕋
. Hence, 𝕋 can be set of integers or even strings so far we can establish < amongst its elements8.
To this end, we define a partial function time ∶ 𝒯 ↦ 𝕋 called the time association function such
that for any triple 𝜉 ∈ 𝒟𝑇𝑖 we have time(𝜉 ) = 𝑇𝑖.

Definition 5.2 describes our notion of time. In fact, by time we mean just an order as required
by < in the definition of the temporal knowledge graphs. We differ with the usual notion of
time (or the natural time) represented by xsd:dateTime. Our definition doesn’t restrict us to
xsd:dateTime only. In fact, (𝕋 , <) is the only requirement in our definition i.e., all we need
is some way of ordering. At first glance, these requirements seem to be a bit confusing for
use-cases in practice. However, a knowledge graph where assertional triples can be grouped
based on some order is a temporal knowledge graph according to our definition. We will see
later why these requirements suffice when we define temporal operators. From now onward,
by time we mean an element from some set on which a strict partial order is defined.

Representation of Temporal Knowledge Graph: The representation of time can be a
part of the temporal knowledge graph itself. To elaborate this, suppose we have a temporal
knowledge graph 𝒯(𝕋,<) and 𝒟 is the subset of all assertional triples in 𝒯 with

𝐷 =
𝑛
⋃
𝑖=1

𝒟𝑇𝑖

then the two possible representations of time in a temporal knowledge graph are either
associating each triple in 𝒟𝑇𝑖 is to 𝑇𝑖 using techniques like reification [4] or grouping all the
triples in 𝒟𝑇𝑖 in a set and the set is associated to 𝑇𝑖. Without loss of generality we assume the
second representation.

5.2. Temporal Query Language (TQL)

As mentioned in the previous section, we restrict the association of time to class assertions, data
property assertions and object property assertions only. This restriction allows us to simplify
TQL without compromising its expressivity. Further, we avoid issues with computational
decidability, which otherwise would be highly probable when dealing with such languages [5].

8This ordering can be implicit as well in the sense that we can relate different sets of assertional triples using, say, a
property next or successor etc.



Before defining the syntax of TQL, we define some further notions. Here we assume some
familiarity with SPARQL query language. We refer the interested reader to [4]. In SPARQL,
basic graph patterns (BGPs) are the building blocks of the language. A BGP is an RDF triple
where variables are allowed at the position of subject, predicate as well as object. Similar to
this, we have the following definitions.

Definition 5.3 (Assertional Basic Graph Pattern). An assertional basic graph pattern or (ABGP
in short) is an assertional RDF triple of one of the following forms:

• [individual |variable] rdf:type [class].

• [individual] [data property] [data value |variable].

• [individual |variable] [object property] [individual |variable].

By definition, every assertional triple is an assertional basic graph pattern (without variables)
as well as a standard basic graph pattern. ABGPs simply restricts the occurrence of variables at
certain positions compared to the standard ones. Hence, each ABGP can be queried against a
knowledge using any SPARQL engine.

Definition 5.4 (ABGP Solution). Let 𝛾 be an ABGP with var(𝛾 ) representing the set of all
variables occuring in 𝛾. Then a solution for 𝛾 in given a knowledge graph 𝒢 is a partial function
𝜇 from var(𝛾 ) to RDF terms in 𝒢 such that the assertional triple obtained by simultaneously
replacing each variable 𝑥 ∈ var(𝛾 ) by 𝜇(𝑥), can be found in 𝒢 i.e., 𝜇(𝑥) ∈ 𝒢.

The notion of solutions can be extended to set of AGBPs in an obvious way: for a set of
ABGPs Γ, we say 𝜇 is a solution for Γ if and only if 𝜇 is a solution for each 𝛾 ∈ Γ.

Note that as shown in ’accelerating car’ example in Section 4, a temporal query checks
whether a certain relation holds over time. In other words, we want certain facts to hold when
traversing from one time point to another. We call such a requirement as a temporal constraint.
Hence, a temporal constraint is a condition that need to be satisfied between sets of ABGPs
representing factual information where each set corresponds to a time point. In fact, constraints
can be applied to the variables occurring in ABGPs due to the fact that variables can represent
different values (RDF terms) in a temporal KG at different time points. Hence, a class ABGP can
be constrained at the subject position only whereas data and obejct ABGPs can be constrained
at both subject as well as object positions. We will see later how the notion of ABGP solutions
can be applied to ABGPs with constrained variable.

In practice, we can have different temporal constraints depending on the required conditions.

Variable constrained under constraint ℭ is a variable which need to satisfy the conditions
enforced by 𝒞. ℭ(?𝑥) represents a variable ?𝑥 constrained under ℭ.



Constrained ABGP is an ABGP such that at least one variable is constrained under exactly
one constraint. If the variable is constrained under ℭ, we say the ABGP is constrained under
ℭ. A constrained ABGP is written as an ABGP except that we write ℭ(𝑥) for the constrained
variable 𝑥. For example, the following is a constrained ABGP where ?𝑝𝑜𝑠𝑖𝑡 𝑖𝑜𝑛 is constrained
under rigidity (defined below).

tmo:car_1 tmo:position ℜ(?position).

We define two temporal constraints of interest that we use in this work. To this end, let
𝒯(𝕋,<) be a temporal KG9 with 𝒯 = 𝒢 ∪ 𝒟 where

𝒟 = 𝒟𝑇1 ∪ 𝒟𝑇2 ∪ ⋯ ∪ 𝒟𝑇𝑛

and 𝑇𝑖 ∈ 𝕋 for 1 ≤ 𝑖 ≤ 𝑛. Then,

Definition 5.5. (Rigidity) The Rigidity constraint is represented by ℜ and requires the values
of the variables not to change when moving from one time point to another. Formally, we
say rigidity is existentially satisfied for a constrained ABGP 𝜒 in the temporal knowledge graph
𝒯(𝕋,<) for time 𝑇 to 𝑇 ′ if and only if there is a solution 𝜇 for 𝜒 in 𝒢 ∪ 𝒟𝑇 and a solution 𝜇′ for 𝜒
in 𝒢 ∪ 𝒟𝑇 ′ such that for each 𝑥 ∈ var(𝜒) constrained under rigidity we have that 𝜇(𝑥) = 𝜇′(𝑥).
We represent existential rigidity by ℜ𝐸.

We say rigidity is universally satisfied for 𝜒 in the temporal knowledge graph 𝒯(𝕋,<) for time 𝑇
to 𝑇 ′ if and only if for every solution 𝜇 for 𝜒 in 𝒢 ∪𝒟𝑇, there is a solution 𝜇′ for 𝜒 in 𝒢 ∪𝒟𝑇 ′ such
that for each 𝑥 ∈ var(𝜒) constrained under rigidity we have that 𝜇(𝑥) = 𝜇′(𝑥). We represent
universal rigidity by ℜ𝑈.

Note that rigidity requires both mappings 𝜇 and 𝜇′ to be solutions for 𝜒 with the additional
requirement that the constrained variable (under rigidity) in 𝜒 is mapped to the same value by
both mappings. The intuition behind rigidity constraint is that when moving from time 𝑇 to 𝑇 ′,
the value for the constrained variable does not change and interprets the triple rigidly for the
variables constrained under rigidity. Sometimes we intend to allow for minor changes in the
values of variables. We define the so-called likelihood constraint. Note that such a constraint
makes sense in case of data property assertional triples as we can enforce likelihood on the
values of the data property only. The amount of change for data values can be measured using
some threshold function i.e., the satisfaction of likelihood constraint relies on certain threshold.
We would like to mention here that the definition of threshold functions as well as threshold
values can be defined as per use-case. This adds a great flexibility in controlling change over
time.

Definition 5.6 (Likelihood). Let 𝜉 be a data property ABGPs and let D be the range of the data
property in 𝜉. In other words, the object position in 𝜉 is either a variable or a value from D.
Further let 𝑥 ∈ var(𝜉 ) be the variable at object position. Let 𝜏 be a threshold function on D i.e.,
𝜏 ∶ D × D ↦ {true, false}. We say likelihood is satisfied for 𝜉 in 𝒯(𝕋,<) given 𝜏 for time 𝑇 to 𝑇 ′
if and only if there is a solution 𝜇 for 𝜉 in 𝒢 ∪ 𝒟𝑇 and a solution 𝜇′ for 𝜉 in 𝒢 ∪ 𝒟𝑇 ′ such that
𝜏(𝜇(𝑥), 𝜇′(𝑥)) = true. In other words, 𝑥 is mapped to two values, say, 𝑣1 and 𝑣2 by 𝜇 and 𝜇′
respectively such that 𝜏 (𝑣1, 𝑣2) yields true.
9Here 𝒢 represents the non-temporal part of the knowledge graph. This will be our assumption onward.



From now onward we assume there is always a given threshold function when we consider
constrained ABGP where the variable is constrained under likelihood, unless stated otherwise.
Note that the notion of universality and existentiality does not make sense in case of likelihood
constrained.

Example of Constrained ABGPs: Consider the following ABGP:

𝜒 ∶ tmo:car_1 tmo:Speed 𝔏(?speed).

Here we suppose that the following threshold function is given for 𝔏(?speed)

𝜏 (𝑛, 𝑛′) = {
true if 𝑛′ − 𝑛 ≤ 1.5
false otherwise

Let 𝜇 and 𝜇′ be solutions for 𝜒 in 𝒢 ∪ 𝒟𝑇 and 𝒢 ∪ 𝒟𝑇 ′ respectively such that 𝜇(?speed) = 15
and 𝜇′(?speed) = 18. We thus see that likelihood (with the given threshold function) is satisfied
for 𝜒 in 𝒯(𝕋,<) for 𝑇 to 𝑇 ′ as both 𝜇 and 𝜇′ are solutions as well as 𝜏 (18, 17) = true since
18 − 15 = 3 ≤ 1.5.

The notion of temporal constraint allows us to enforce certain conditions to be met by
solutions when moving over time in a knowledge graph. In other words, temporal constraints
are ways to monitor how information in knowledge alters over time. However, temporal
operators allow us to traverse over time points. There can be different temporal operators.
While temporal constraints enforces conditions that need to be satisfied over time, the temporal
operators govern what time points need to be considered when applying these constraints.

5.2.1. Syntax

Standard temporal logic allows for different temporal operators. We, however, we define two
temporal operators namely, N𝑛 and U for defining TQL.

Definition 5.7 (Syntax of TQL). Let 𝒯(𝕋,<) be a temporal knowledge graph with 𝒯 = 𝒢 ∪ 𝒟
where𝒟 = 𝒟𝑇1 ∪𝒟𝑇2 ∪⋯∪𝒟𝑇𝑛 . Let𝒳 be a set of ABGPs and𝒳ℭ be a set of constrained ABGPs.
Then,

I. any subset of 𝒳 is a temporal query.

II. if Λ ⊆ 𝒳, Γ ⊆ 𝒳 ∪ 𝒳ℭ such that no variable in Γ is constrained under more than one
constraint and Λ′ is non-empty set with Λ′ ⊆ 𝒳 , then

• Λ N𝑛(Γ) for 𝑛 ≥ 1 is a temporal query called N𝑛 temporal query.

• Λ.ΓUΛ′ is a temporal query called U query.

• ΛN𝑛(Γ)UΛ′ is a temporal query where 𝑛 ≥ 1. We call such query as N𝑛U query.

Note how constrained ABGPs are used along with the temporal operators. For simplic-
ity, we restrict to non-recursive occurrences of the temporal operators in temporal queries.
Nevertheless, the language can easily be extended to cover more complex queries.



5.2.2. Semantics

In Definition 5.3, we have mentioned that assertional basic graph patterns (ABGPs) are by very
definition basic graph patterns as in SPARQL. Also, in Definition 5.4, we have seen the notion of
ABGP solution which again is what we have in standard SPARQL. Note that, similar to SPARQL,
a set of ABGPs can be seen as a query. Thus, for a given set of ABGPs Φ and a knowledge graph
𝒯, a solution for Φ in 𝒯 is simply answer to Φ. Based on this, we next define the notion of TQL
query answers.

Definition 5.8. Suppose𝒯(𝕋,<) is a temporal KGwith𝒯 = 𝒢 ∪𝒟where𝒟 = 𝒟𝑇1∪𝒟𝑇2∪⋯∪𝒟𝑇𝑛
and 𝑇𝑖 ∈ 𝕋 for 1 ≤ 𝑖 ≤ 𝑛. Further, Let𝒳 be a set of ABGPs and𝒳ℭ be a set of constrained ABGPs.
An answer/solution to 𝑞 in 𝒯(𝕋,<) is defined as following:

• 𝑞 = {𝜒1, … , 𝜒𝑘} ⊆ 𝒳
a mapping 𝜇 from var(𝜒) to RDF terms is a solution or an answer to 𝑞 in 𝒯(𝕋,<) if and
only if 𝜇(𝜒𝑖) is a match in 𝒯(𝕋,<) for 1 ≤ 𝑖 ≤ 𝑘. We say 𝜇 is a solution or an answer for 𝑞
in 𝒯(𝕋,<). Note that in this case, we have no constraint nor time to consider as the query
is just a set of ABGPs. It, thus can be seen as a SPARQL query.

• 𝑞 = Λ N𝑛(Γ) for Λ ⊆ 𝒳, Γ ⊆ 𝒳 ∪ 𝒳ℭ for 𝑛 ≥ 1
there are time points 𝑇0, … 𝑇𝑛 and mappings 𝜇0, … , 𝜇𝑛 such that: 𝜇0 is a solution for Λ in
𝒢 ∪ 𝒟𝑇0 , 𝜇𝑖 is a solution for Γ in 𝒢 ∪ 𝒟𝑇𝑖 for 0 ≤ 𝑖 ≤ 𝑛, and the constraints in 𝜉 ∈ Γ are
satisfied for 𝜉 in 𝒯(𝕋,<) for 𝑇𝑖 to 𝑇𝑖+1 where 0 ≤ 𝑖 < 𝑛.
The solution to 𝜇 for 𝑞 is obtained by combining all above 𝜇𝑖 while replacing in constrained
variable 𝑥 by 𝑥(𝑖) i.e., if 𝑥 is a non-constrained variable in 𝑞 and 𝑥 ↦ 𝜇𝑖(𝑥) is in 𝜇𝑖 then it
is replaced by 𝑥(𝑖) ↦ 𝜇𝑖(𝑥) in 𝜇. In simple words, we create copies of the non-constrained
variables for each time point.

• Λ.ΓUΛ′ for Λ ⊆ 𝒳, Γ ⊆ 𝒳 ∪ 𝒳ℭ and a non-emtpy set Λ′ ∈ 𝒳
there are time points 𝑇0, 𝑇1, … and mappings 𝜇0, 𝜇1, 𝑑𝑜𝑡𝑠, and there exists 𝑙 ≥ 0 such that:
𝜇0 is a solution forΛ in𝒢 ∪𝒟𝑇0 , 𝜇𝑖 is a solution for Γ in𝒢 ∪𝒟𝑇𝑖 for 0 ≤ 𝑖 < 𝑙, each constraint
in constrained ABGP 𝜉 ∈ Γ is satisfied for 𝜉 in 𝒯(𝕋,<) for 𝑇𝑖 to 𝑇𝑖+1 for 0 ≤ 𝑖 < 𝑙 − 1, there
is no solution for Λ′ in 𝒢 ∪ 𝒟𝑇𝑖 for 0 ≤ 𝑖 < 𝑙, and 𝜇𝑙 is a solution for Λ′ in 𝒢 ∪ 𝒟𝑇𝑙 .

• ΛN𝑛(Γ)UΛ′ for Λ ⊆ 𝒳, Γ ⊆ 𝒳 ∪ 𝒳ℭ and a non-emtpy set Λ′ ∈ 𝒳
there are time points 𝑇0, … , 𝑇𝑛, 𝑇𝑛+1, … and mappings 𝜇0, … , 𝜇𝑛, 𝜇𝑛+1, … such that: 𝜇0 is a
solution for Λ in 𝒢 ∪ 𝒟𝑇0 , 𝜇𝑖 is a solution for Γ in 𝒢 ∪ 𝒟𝑇𝑖 for 0 ≤ 𝑖 ≤ 𝑛, the constraints in
𝜉 ∈ Γ are satisfied for 𝜉 in 𝒯(𝕋,<) for 𝑇𝑖 to 𝑇𝑖+1 where 0 ≤ 𝑖 < 𝑛, there is a time point 𝑙 ≥ 𝑛
such that 𝜇𝑖 is a solution for Γ in 𝒢 ∪𝒟𝑇𝑖 for 𝑛 ≤ 𝑖 < 𝑙, the constraints in 𝜉 ∈ Γ are satisfied
for 𝜉 in 𝒯(𝕋,<) for 𝑇𝑖 to 𝑇𝑖+1 where 𝑛 ≤ 𝑖 < 𝑙 − 1, there is no solution 𝜇′ for Λ′ in 𝒢 ∪ 𝒟𝑇𝑖
for 𝑛 ≤ 𝑖 ≤ 𝑙 − 1, and 𝜇𝑙 is a solution for Λ′ in 𝒢 ∪ 𝒟𝑇𝑙 .

Note that the temporal operator N𝑛 allows us to iterate over a fix number of time points 𝑛
and check whether a temporal constraint is satisfied or not. Meanwhile, the temporal operator
U checks the validity of a temporal constraint for as long as certain condition is satisfied. In
our case, this condition corresponds to the origination of some new facts represented by the set
Λ′. Let’s consider an example of a temporal query from traffic monitoring domain.



An Accelerating Car Ending in an Accident Suppose a car encounters an accident if it’s
bounding box overlaps with that of another car. Then, the query can be formalized as

{?scene rdf:type tmo:Scene. ℜ𝐸(?car) rdf:type tmo:Car.
?car tmo:hasSpeed 𝔏(?speed).}

U
{?car tmo:hasPosition ?position. car2 rdf:type tmo:car.

?car2 tmo:hasPosition ?position2. ?position tmo:overlaps ?position2.}

We assume that the threshold function for 𝔏(?speed) is as: 𝜏 (𝑛, 𝑛′) = true if 𝑛′ > 𝑛 and
𝜏 (𝑛, 𝑛′) = true otherwise. Note the likelihood constraint with threshold function 𝜏 on the
variable ?speed makes sure that the value of ?speed increases as we move over time. This way
we capture the notion of acceleration for the car. Further, the above query is of the form Λ.ΓUΛ′

with Λ = ∅. Further,ℜ𝐸(?car) constraints the existence of a car over all time points unless there
is a time point 𝑇 where we we find a second car with position of the first car overlapping that of
the second one in the knowledge graph 𝒢 ∪ 𝒟𝑇.

6. Related Work

Incorporating time into RDF has been investigated in prior work [6, 7, 8, 9, 10, 11]. By and
large, these studies differ in aspects like treatment of the notion of time and expressivity of the
query language. Contributions like [6] extend the idea of TSQL2 [12] in traditional databases to
RDF. The treatment of time there is different from the usual notion of time in classical temporal
logic like LTL [13]. Nevertheless, works like [11] extends SPARQL with constructs provided
in LTL. A thorough comparison of our approach to the state-of-the-art is beyond the scope
of this paper. However, the treatment of time in our work exhibits some similarities to the
one presented in [6]. What distinguishes TQL is that it considers only one dimension for time,
as our definition of temporal KG is based on a linear order (T, <) unlike N-dimensional time
𝒯 = 𝒯1 × 𝒯2 × ⋯ × 𝒯𝑛 in [6, 7], where the focus is ontology versioning. When it comes to our
query language, our work is somewhat similar to SPARQL-LTL presented in [11]. However, the
focus in [11] when it comes to the notion of time is more on versioning of RDF data. Hence, the
defined semantics consider different named graphs where each graph represents one version
of the data. As pointed out by the authors, it is not a limitation per se. We believe this is
comparable to our definition of temporal knowledge graph (Definition 5.2), where without loss
of generality, we assume a set of triples to be associated with a time point.
Besides all similarities to the existing approaches, the notion of temporal constraint, to the

best of our knowledge, adds new expressivity to SPARQL extended with the temporal operators.
Even though such constraints are translated into SPARQL checks, the succinctness they add to
the query language is of great advantage, as it helps to reduce complex queries to simpler and
more compact ones (as shown in the examples in the traffic monitoring domain).



7. Conclusion and Future Work

We have discussed the benefit of temporal queries in knowledge graphs. We then presented
a formal query language for formalizing temporal queries. We called it as Temporal Query
Language (TQL). We have precisely defined syntax and semantics of TQL, where we considered
different types of temporal queries. We have seen how temporal constraints adds further
expressivity to the query language. We have already a first implementation of a query engine
for answering temporal queries. A description of the engine, along with a report on experiments
and evaluation conducted, is beyond the scope of this paper. In future work, we would like to
analyze what other types of temporal queries can be of interest for different use-cases and, in
parallel, developing an advanced query editor for TQL.
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