
Integrating Information Systems Components:
A Situation-Driven Approach1

Nicolas Arni-Bloch, Jolita Ralyté, Michel Léonard

University of Geneva, CUI, 24 rue General Dufour,
CH-1205 Geneva, Switzerland

{Nicolas.Arni-Bloch, Jolita.Ralyte, Michel.Leonard}@cui.unige.ch

Abstract. Integration of new components into existing information systems (IS)
is a challenging problem mainly because of the data sharing. In this paper we
propose a situation-driven approach for IS components (IS-COTS) integration
into existing IS. We claim that such an approach has to take into account a large
number of situations and therefore has to be built by applying situational
method engineering principals and defined as a collection of reusable method
chunks. The main contribution of this work consists of the metamodel for IS-
COTS definition, the specification of the requirements for the proposed
approach and the illustration of our approach with three method chunks.

1 Introduction

Enterprise-wide Information Systems (IS) are very often built of several more or less
autonomous IS components. Besides, constant changes and evolution of enterprise
organisation and business require for new IS components that have to be integrated
with the legacy ones. This situation leads to fragmented IS and therefore to the
redundancy between different IS components which introduces the need for a
permanent data, process and rules consistency validation. The common part of
different IS components represents the interoperability area of the enterprise IS. If no
integration is done between these IS components, the interoperability challenge is left
to the human using this IS, i.e. the human have to validate “by hand” the consistency
between different IS components. Such a human intervention generates extra cost and
leads to a poor data quality.

To reduce this interoperability cost and to support the extension of existing IS with
new components we aim to develop a new approach for IS components, that we call
IS-COTS, integration into legacy IS. It is evident that such an interoperability
challenge leads to a large range of situations to be considered and resolved. As
consequence, we build our approach following situational method engineering [9]
principals which focus on formalising methods in terms of collections of reusable
method components and reusing these components according to the situation at hand.

1 This work was partially supported by the Swiss National Science Foundation. N° 200021-

103826

The main objective of this paper is to define the notion of IS-COTS and to specify the
requirements for an approach supporting IS-COTS integration into existing IS.

The remainder of this paper is in five sections. In section 2 we analyse the domain
of component-based IS engineering and explore how COTS-based software
engineering principles can be adapted to IS engineering. Section 3 provides the
metamodel of IS-COTS while section 4 specifies requirements for an approach
supporting IS-COTS integration in a situation-driven manner. To illustrate our
approach we propose three examples of method chunks in section 5. The paper ends
with a review of this work and its future perspectives.

2 Component-Based Engineering of Information Systems

IS engineering methods must continuously consider the new forms of technology to
support business activities. Introduction of Enterprise Resource Planning (ERP)
systems modify deeply IS engineering in the enterprises; even if not all IS domains
are covered by ERPs. But, despite the increase of flexibility of such systems, often the
organization of the enterprise and/or its business practices have to be considerably
transformed to be adequate with the selected ERP. Sometimes this transformation
fails. Nevertheless, the ERP approach has success and the main reason of that is the
integrated approach for all the data that the ERP system manages.

Another approach of component-based IS engineering is based on the use of
generic components, generally called Component off-the-shelf (COTS). The slogan of
this approach is “not to reinvent the wheel”. The developers of software and/or
information systems are invited to go to the hyper market of COTS (of course it is a
virtual one as Capterra [2], CXP [4], KnowledgeStorm [8], ComponentSource [3],
etc.), to select the appropriate products, and finally to integrate them into systems. Of
course, the integration of COTS into systems requires some glue, mediators,
exchanges of messages, controls, adaptors, translators, wrapper, etc. Generally
speaking, a COTS is like a black box: the internal part of a COTS is considered as
irrelevant during its selection and integration process. Therefore, developers working
with COTS know their interface and their functionalities but nothing relative to their
internal parts. These COTS are intensively used in software engineering but less in IS
engineering. Any system developed with COTS embeds a kind of flexibility; it is
relatively easy to replace one COTS by another if the first one is not satisfactory or
become obsolete. But in the case of IS development, a COTS can manipulate data
which is also part of the IS and which can be shared by various applications. In order
to ensure the integrity and the coherence of this shared data, the architecture of the IS
should forbid its storage as an internal part of a COTS and should support data
integration.

Therefore, we claim that COTS for information systems, that we call IS-COTS,
should be white boxes. Due to the fact that IS-COTS share data previously stored in
the IS when they are integrated and executed in this IS, the process of integration of
IS-COTS into an IS is more sophisticated than the process of integrating traditional
software COTS. It must take into account the fact that the IS-COTS and the IS have
an overlap of data and this overlap must be overcome. Besides, it is not only a

technical question but also a question of business rules, sharing of responsibilities and
transformation of schemata at the static and the dynamic level. Insertion of IS-COTS
into a legacy IS is in fact an extension of the IS application domain. Moreover, this
extension is at the origin of a lot of new situations relative to the sharing of objects of
classes, compatibility between constraints and coordination between transactions but
also the emergence of new human roles, new human activities, new business rules and
new levels of human coordination.

We claim that IS engineering based on IS-COTS integration can combine the real
strength of the ERP approach relative to the integration of data and the real strength of
the COTS approach relative to flexibility. Definition of an IS-COTS as a white box
allow us to clearly identify the overlap between the IS-COTS and the IS under
consideration. This overlap specification is necessary to evaluate the impact of the IS-
COTS integration and to identify elements that serve as a basis in the integration
process. In the next section we provide the definition and the metamodel of an IS-
COTS. This metamodel is as a basis for the overlap specification and represents the
product part of the methodology for IS-COTS integration.

3 Information System Component – IS-COTS

Traditional object-oriented methods propose two categories of models, static and
dynamic, to specify software and information systems. Static models deal with data
structure and system architecture definition while dynamic models define system
functionalities, activities, states and behaviour. In our opinion, these two modelling
perspectives are not sufficient to completely specify an IS. We identify a third
perspective, which is specific to the IS engineering, the specification of rules
governing the IS and ensuring the integrity of its data. Therefore, from the conceptual
point of view the specification of an IS is a triplet <static space, dynamic space, rules
space> [16]. The static space represents the structure of the information, the dynamic
space captures the manipulations that the information can undergo and finally the
rules space represents the constraints that the static space must satisfy.

As defined in [16] an Information System Component (IS-COTS) is a particular IS
and can be considered through the same three spaces. In the following we present the
metamodel and an example of an IS-COTS.

3.1 Metamodel of an IS-COTS

Fig. 1 represents the metamodel of an IS-COTS illustrating the three spaces: static,
dynamic and rules.

Static space (SS). We use an object-oriented approach to represents the structure of
the information. As shown in Fig. 1, the main concepts of this space are well known:
class, attribute, key, specialization/generalization relationship, and method.
Relationships between classes are limited to existential dependencies and are captured
in the attributes. To be able to better represent the domain of the IS and to support its
evolution, we extend the object-oriented approach with the notion of a Hyperclass. “A

Hyperclass is a large class, composed of a subset of conceptual classes of the IS
schema, forming a unit with a precise semantic” [15]. Generally speaking, a
hyperclass is associated to a specific function inside the IS and each IS-COTS is built
on one hyperclass.

Fig. 1. Simplified metamodel of an IS-COTS

Dynamic space (DS). There are several ways to express the dynamic specifications of
an IS such as state-diagrams, object life cycles described with state charts (UML),
Petri nets or bipartite nets. We use a bipartite net where one type of nodes represents
classes and the other type represents transactions. A transaction is a complete cycle of
data processing which changes the state of one or more objects. It is a sequence of
operations considered as a single unit. These operations can be the predefined
elementary ones such as Create, Retrieve, Update and Delete or the invocations of
class methods (Turki2003).

Rules Space (RS). The objective of this space is to preserve the coherence,
correctness and consistency of the IS during its exploitation. The main type of rules to
be considered here is the integrity rules [16] the role of which is to ensure the
integrity of the IS data. Besides, business rules are also included in the RS space.

3.2 Example of an IS-COTS

To illustrate the notion of an IS-COTS and its integration into an existing IS, we use a
simplified version of the IS of our University, the part which is in charge of courses
and students management. This IS was designed to support courses and students
related to the Bachelor diploma (in the terms of the Bologna declaration). The static
space of this IS is shown in Fig. 2 (a). It provides support to describe and organize

Bachelor courses. It allows to allocate students to the courses corresponding to the
followed Bachelor and to store their examination results, to associate teachers to their
courses, and to generate several documents like examination reports, Bachelor
diplomas, etc. Each person (student or teacher) belongs to an institution that can be
either a University or a department of a University or another kind of organisation
(e.g. a teacher from an industrial company).

(a)
(b)

Fig. 2. Static spaces of (a) the IS for Bachelor Diploma management and (b) the IS-COTS for
Master Diploma management, (simplified versions)

In order to support the management of the Master diploma in the same manner as
the Bachelor diploma, the initial IS has to be extended with a new IS-COTS. The
static space of this IS-COTS is shown in Fig. 2 (b). We can already see from this
figure that the overlap between these two static spaces is quite important and their
integration requires a well guided methodological support. In the next section we
specify requirements for a method supporting IS-COTS integration into an IS.

4 Situational Approach for Integrating IS-COTS

According to several authors [6, 10, 11], Method Engineering (ME) is organized in
three main phases: method requirements specification, method design and method
construction and implementation. We follow this way of thinking to define our
approach for IS-COTS integration. In addition to the traditional metamodelling
technique, we apply situational method engineering principals such as modularity,
reusability and flexibility. The principle of reusability invites to reuse parts of existing
methods in the construction of new ones while the principle of modularity provides
means to define these parts of methods as method engineering building blocks
generally called method fragments [1], method components [5, 17] or method chunks
[10, 11]. All these ME building blocks have to be cohesive, autonomous and
interoperable [10, 17]. Finally, the principle of flexibility deals with situation-specific
method adaptation and/or construction ‘on the fly’. According to the situational
method spectrum proposed by Harmsen et al. in [7], modular methods are the most
flexible ones and modular ME is the most flexible technique to construct new
methods ‘on the fly’.

In our case, the step of method design is based on the notion of reusable method
chunk while the step of method construction uses the assembly technique in order to
combine method chunks into a situation-driven and flexible process. Instead of
providing one universal methodology for IS-COTS integration we propose to define it
as a collection of inter-related and reusable method chunks each of them addressing
some specific activity in the IS-COTS integration process. Some chunks can be
extracted from existing methods [11] other have to be defined ad-hoc or by using
other method engineering techniques such as, abstraction, instantiation, adaptation,
etc. [13].

The main contribution of this work is the specification of the requirements for a
situational method supporting IS-COTS integration and illustration of a few method
chunks to be included in this method.

4.1 Requirement specification for IS-COTS integration

Integration of an IS-COTS into an existing IS has to be considered in two levels:
conceptual and system level. The former deals with the integration of conceptual
models representing data schemas, integrity rules and transactions while the later aims
to ensure compliance with existing data and applications. In this paper we present the
part of our approach dealing with the integration at the conceptual level.

Supposing that the required IS-COTS have been selected, we consider that the
process of its integration into the IS should be based on five main steps:

1. The adaptation of the selected IS-COTS,
2. The identification of the overlap between the IS-COTS and the IS,
3. The unification of overlap situations if necessary,
4. The construction of the integrated specifications by applying the appropriate

integration operators on the identified overlap elements, and
5. The consolidation of the obtained specifications.

During the first step the selected IS-COTS have to be adapted to the system
requirements. It can be reduced if its scope is too large, for example, it contains some
inadequate classes, transactions or rules. Or in the contrary, it can be necessary to
extend the component with some additional elements (classes, attributes, rules, etc.) in
order to better prepare it for the integration into the IS. Besides, it can undergo
different kind of modifications as renaming, restructuring or reattribution of roles.

The second step consists in identifying overlap situations in the specifications of
the selected IS-COTS and the considered IS, analysing these situations, identifying
elements for the integration (e.g. classes to be merged) and detecting elements that
need to be unified before their integration.

During the third step the overlap situations requiring some unification have to be
settled by applying the appropriate unification and transformation operators. We
distinguish three types of unification: semantic, structural and functional. Semantic
unification mainly concerns concepts naming. For example, if the same name is used
for different things or, in the contrary, the same thing is named differently in the two
schemas, one of the names have to be modified. Structural unifications deal with
structural representation of the information. For example, a concept can be

represented by a class in one schema and by an attribute in the other. In this case, the
attribute can be transformed into a class. Finally, functional unification mainly
appears in the dynamic space of the specifications and concerns the modification of
transactions. It is evident that modifications have to be avoided as much as possible in
the IS specification and the most of the transformations have to be done on the IS-
COTS specification in order to preserve the integrity of the already existing data and
running processes.

The fourth step consists in selecting the appropriate integration operator for each
overlap situation and to apply it.

Finally, the integrated specification has to be consolidated. The integration of an
IS-COTS into an IS can create new situations which didn’t exist neither in the initial
IS nor in the IS-COTS. The new integrated system is more than simple addition of
two applications. It can provide additional information or functionalities and impose
additional rules that have sense only in the new integrated system. Therefore, it can be
necessary to add new integrity rules or new transactions in order to guarantee the
completeness and the coherence of the integrated specification.

Integrate
Specifications

Stop

Reduce Semantic

Structural

Extend
Functional

Modify

Validation
Semantic

Semantic

Structural

Functional

Structural

Validation

Functional

Start

Adapt IS-COTS

With appropriate
integration operator

Validation

With appropriate
integration
operator

Unify
OverlapConsolidate

Specifications

Identify
Overlap

Conflict

Completeness
validation

By adding
new elements

Fig. 3. Requirements Map for the approach supporting IS-COTS integration

Based on this reasoning, we specify requirements for the approach supporting IS-
COTS integration as shown in Fig. 3. As advised in [10, 12], we use a strategic
process modelling formalism called a MAP [14] to represent the requirement for our
approach. MAP provides a representation system based on a non-deterministic
ordering of intentions and strategies to achieve the intentions. It is a labelled directed
graph where intentions are nodes and strategies are edges between intentions. Since,
many strategies can be used for achieving an intention, MAP allows to represent
complex, flexible and situational process models including multiple techniques to
achieve the intentions.

Based on the discussion above, the requirements map (Fig. 3) for IS-COTS
integration contains five main intentions namely Adapt IS-COTS, Identify overlap,

Unify overlap, Integrate specifications and Consolidate specifications and foresee
several strategies to achieve each intention. The process model for IS-COTS
integration should provide one or several method chunks for each section (a triplet
<source intention, target intention, strategy>) of this map. The method design step
consists in defining these method chunks, each of them being more or less complex,
atomic or compound, depending on the complexity of the guideline it have to provide.
The metamodel of method chunk was already presented in [10, 11]. In the next
section we propose three examples of method chunks to be included in the situational
method for IS-COTS integration into IS.

5 Examples of Method Chunks for IS-COTS Integration

In this section we propose three examples of method chunks: the first is related to the
overlap identification between the IS-COTS and the IS specifications, the second
deals with the integration of specifications and the third one helps to consolidate
integrated specifications.

Identify Overlap. The overlap between the IS and the IS-COTS specifications have to
be considered in the three spaces: static, dynamic and rules. The method chunk
presented in Table 1 helps to identify and describe the semantic overlap in the static
space. This identification leads to an overlap report that describes all semantic
relationships between the IS and the IS-COTS static space specifications. For each
couple of classes having similar semantics in the IS and the IS-COTS specification a
relationship descriptor is provided.

Integrate Specifications. Based on the overlap report several integration situations
can be identified. We propose a method chunk (see Table 2) that aims to realize one
of them: the integration of two classes where their objects are in the situation of
intersection. The guideline of this chunk specifies operations that must be realized in
order to fulfil the goal of this chunk. For some of them the notion of common
attributes, methods, transactions, and integrity rules are used. The identification of
such common elements is the role of method chunks supporting the Identify Overlap
phase but which are not presented in this paper due to the lack of space. Another
notion used in the guideline of this method chunk is the Product Requirements. This
notion is used to specify some additional requirements on the product part. For
example, in this chunk some evolution primitives must be enabled in order to realize
the guideline operations. These requirements also play a role during method chunks
selection process. Indeed, if the IS is not able to support these evolution primitives,
this method chunk cannot be selected.

Consolidate Integrated Specifications. The method chunk presented in Table 3 helps
to consolidate the integrated specifications. It is mainly helpful after the application of
the method chunk presented in the previous section. Indeed, the integration of two
classes via a common superclass generates a new situation: the integrated
specifications have to support object transfer from one subclass to another and
requires for new integrity rules and new transactions supporting such a transfer.

Table 1. Method chunk supporting semantic overlap identification and description between
similar classes of the IS and IS-COTS

Chunk ID: MC01 Name: Semantic Overlap of Similar Classes
Objective: To identify and specify the semantic overlap between similar classes
Interface:

Situation: Static space specifications of the IS and the IS-COTS
Intention: To produce an overlap report that specifies the semantic relationships between the classes
of the IS specification and the similar classes of the IS-COTS specification

Body:
Product Part: The IS-COTS metamodel (Fig. 1). The overlap report metamodel (figure below).

Guideline:
For each classe from the IS specification that have a semantic relationship with a class of the IS-COTS,
to create an overlap item in the overlap report and to define the relationship descriptor. There are five
types of descriptor. Each of them is based on the set of objects (**Clis) of the IS class Clis and on the set
of potential objects (**Clis-cots) (objects that will be stored after the integration) of the IS-COTS class
Clis-cots.
1. **Clis = **Clis-cots: all objects of the IS class are included in the IS-COTS class and vice versa.
2. **Clis **Clis-cots: all objects of the IS class are included in the IS-COTS class.
3. **Clis **Clis-cot : all objects of the IS-COTS class are included in the IS class.
4. **Clis **Clis-cots : some objects are common to the IS and the IS-COTS class and some are

not.
5. **Clis **Clis-cots = : the IS and the IS-COTS classes have no common objects.

Application Example:
Let us take the example introduced in section 3.2. The overlap between the University IS and the IS-
COTS for Master diploma can be analysed as follow:

**IS.Person = **IS-COTS.Person
**IS.Teacher = **IS-COTS.Teacher
**IS.Student **IS-COTS.Student : Students of the IS are at the Bachelor level while those of
the IS-COTS are at the Master level. Therefore, there are three categories of students: (1) those that
are only known as Bachelor students, (2) those that have not done their Bachelor in this University
and are only known as Master students and finally (3) those that have finished their Bachelor in this
University and now are Master students.
**IS.Course **IS-COTS.Course = : Courses from the IS represent Bachelor courses while
those from the IS-COTS represent Master courses. As a course can be only a Bachelor or a Master
course, the intersection of the objects is empty.
**IS.Diploma **IS-COTS.Diploma = : Diplomas from the IS represent Bachelor diplomas,
those from the IS-COTS represent Master diplomas. As a diploma can be only a Bachelor or a
Master one, the intersection of the objects is empty.

Table 2. Method chunk supporting the integration of two classes via generalization operation

Chunk ID: MC02 Name: Integration of two classes by creating a common super class
Objective: To integrate two classes via generalization operation
Interface:

Situation: Class Clis from the IS specification and class Clis-cots from the IS-COTS specification
Intention: To integrate two classes by creating a third class that is a generalization of the two initial
ones

Body:
Product Part: The IS-COTS metamodel (Fig. 1).

 Product requirements (P.Req.):
addSuperClass: The integrity of the objects must be guaranteed when a superclass is added to a class.
moveAttributeToSuperClass: The integrity of the objects must be guaranteed when moving attributes
form a subclass to its superclass.
moveMethodToSuperClass: It is possible to move a method from a subclass to its superclass.
moveTransactionToSuperClass: It is possible to move a transaction from a subclass to its superclass.
moveIRToSuperClass: It is possible to move an IR from a subclass to its superclass.

Guideline:
In the IS:

1. Add a common class Cl’ as a generalization of Clis and Clis-cots.
2. Change the IS spec: to make Cl’ a superclass of Clsi (P.Req. addSuperClass).
3. Move all attributes that are common with Clis-cots from Clis to Cl’ (P.Req.

moveAttributeToSuperClass).
4. Move all methods that are common with Clis-cots from Clis to Cl’ (P.Req

moveMethodToSuperClass).
5. Move all transactions that are common with Clis-cots from Clis to Cl’ (P.Req.

moveTransactionToSuperClass).
6. Move all integrity rules that are common with Clis-cots from Clis to Cl’ (P.Req.

moveIRToSuperClass).
In the IS-COTS:

1. Delete from the Clis-cots all attributes that are common with Clis.
2. Delete from the Clis-cots all methods that are common with Clis.
3. Delete from the Clis-cots all transactions that are common with Clis.
4. Delete from the Clis-cots all integrity rules that are common with Clis.
5. Change the IS-COTS spec: to make Cl’ a superclass of Clis.
Application Example: Figure below shows the integrated static space of the University IS and the
Master IS-COTS.

Table 3. Method chunk supporting the consolidation of the integrated specification

Chunk ID: MC03 Name: Consolidate integration made via superclass creation
Objective: To consolidate the integrated specification that has been obtained by creating a common
superclass.
Interface:

Situation: Class Clis from the IS specification, class Clis-cots from the IS-COTS specification and
class Cl’ - common super class to Clis and Clis-cots

Intention: To consolidate the integrated specification by adding new transactions and integrity rules
Body:

Product Part: The IS-COTS metamodel (Fig. 1). The overlap report model (see chunk MC01).
Guideline:

If the relation descriptor between integrated classes is **Clis **Clis-cots = then add a consistency rule
ensuring that each object can be only an object of Clis or of Clis-cots.
If the relation descriptor between integrated classes is **Clis **Clis-cots then determine if a new
rule is needed between Clis and Clis-cots and add one or more transactions for objects transfer from one
class to another.
Application Example:

In our example, the integrated IS has to manage two kinds of student: Bachelor and Master. As defined
in the overlap report, a student object can belong to both the BachelorStudent class and the
MasterStudent class. Therefore, we need to add a new transaction allowing a Bachelor student to
become a Master student. Besides, a new rule has to be added in order to ensure that a Bachelor student
has finished his Bachelor degree before beginning Master studies. This rule is expressed as follows:
 ON ENTER in MasterStudent : obj exist in BachelorStudent AND obj.hasBachelor == True
 where obj represent a student.

5 Conclusion

While the use of IS is growing in all areas of our society, the diversity of their
application domains increases as well. To address this diversity, ERP systems and
Components of-the-shelf, also named COTS, are proposed as building blocks to
compose new IS and to evolve the existing ones. In this paper we claim that, in the
contrary to the software engineering, COTS for IS engineering cannot be proposed as
black boxes and a simple plug-in process is not sufficient to integrate COTS into
existing IS due to the data, processes and rules overlap. Therefore, in the domain of IS
engineering we need a new kind of COTS provided as white boxes as well as we need
a new kind of approaches to deal with the complexity of their integration. In this
perspective we see the following contributions of this paper:

The notion of IS component that we call IS-COTS and its metamodel.
The requirements specification for a situation-driven approach supporting IS-
COTS integration into existing IS. The MAP formalism used for requirements
representation as a strategic process model enables their evolution. Indeed, it is
quite simple to add new strategies and intentions into the requirements map.

The examples of method chunks to be integrated into our approach. We claim that
such an approach should be based on situational method engineering principals, i.e.
it has to be modular, reusable and flexible. Therefore, we aim to define this
approach as a collection of inter-related method chunks dealing with a huge
number of IS-COTS integration situations. This kind of flexibility and adaptability
to a specific situation lead us to a new kind of approach for IS engineering.

Currently we focus our effort on identifying and evaluating different situations that
can occur in the IS-COTS integration process and defining method chunks satisfying
these situations. A tool support is also under development.

References

1. Brinkkemper S, Saeki, M. and Harmsen, F. (1999) Meta-Modelling Based Assembly
Techniques for Situational Method Engineering, Information Systems, 24(3), pp. 209–228.

2. CAPTERA: http://www.capterra.com/, last visit 23 February 2006.
3. Componentsource: http://www.componentsource.com/, last visit 23 February 2006.
4. CXP: http://www.cxp.fr/cxp/, last visit 23 February 2006.
5. Firesmith, D.G. and Henderson-Sellers, B., 2002, The OPEN Process Framework – An

Introduction. Addison-Wesley, Harlow, UK.
6. Gupta, D. and Prakash, N. (2001) Engineering Methods from Method Requirements

Specifications, Requirements Engineering, 6(3), pp. 135–160.
7. Harmsen, A.F., Brinkkemper, S. and Oei, H. (1994) Situational Method Engineering for

Information System Projects. In Olle T. W. and A. A. Verrijn Stuart (Eds.), Methods and
Associated Tools for the Information Systems Life Cycle, North-Holland, pp. 169-194.

8. KnowledgeStorm: http://www.knowledgestorm.com/ , last visit 23 February 2006
9. Kumar, K. and Wellke, R. J. (1992) Methodology Engineering: A Proposal for Situation

Specific Methodology Construction, In Challenges and Strategies for Research in Systems
Development, (Eds, Cotterman W.W. and Senn J.A.), John Wiley & Sons, pp. 257–269.

10. Mirbel, I. and Ralyté, J. (2006) Situational Method Engineering: Combining Assembly-
Based and Roadmap-Driven Approaches, Requirements Engineering, 11(1), pp. 58–78.

11. Ralyté, J. and Rolland, C. (2001) An Approach for Method Reengineering. Proc. of the 20th

Int. Conf. on Conceptual Modeling (ER2001), Springer-Verlag, LNCS 2224, pp.471-484.
12. Ralyté, J. and Rolland, C. (2001) An Assembly Process Model for Method Engineering.

Proceedings of the 13th Conference on Advanced Information Systems Engineering
(CAISE’01),Springer-Verlag, LNCS 2068, pp. 267-283.

13. Ralyté, J., Rolland, C. and Deneckère, R. (2004). Towards a Meta-Tool for Change-Centric
Method Engineering: a Typology of Generic Operators. Proc. of the 16th Conf. on Advanced
Information Systems Engineering (CAISE’04), LNCS 3084, Springer-Verlag, pp.202-218.

14. Rolland, C., Prakash, N. and Benjamen, A. (1999) A Multi-Model View of Process
Modelling, Requirements Engineering, 4(4), pp. 169–187.

15. Turki, S. and Léonard, M. (2002) Hyperclasses: towards a new kind of independence of the
methods from the schema. Proceedings of the 4th Int. Conference on Enterprise Information
Systems, ICEIS'2002, Vol.2, pp. 788-794, ISBN: 972-98050-6-7. Ciudad Real, Spain.

16. Turki, S., Léonard, M. and Arni-Bloch, N. (2003) From Hyperclasses to IS Components.
Proc. of the 10th Int. Conference on Concurrent Engineering (CE'2003), Madeira, Portugal.
R. Jardim-Goncalves, H. Cha, A. Steiger-Garcao (eds.), Balkema Publishers. pp. 235-242.

17. Wistrand, K., and Karlsson, F. (2004) Method Components – Rationale Revealed. Proc. of
the 16th International Conference on Advanced Information Systems Engineering
(CAiSE’04), Riga, Latvia, Springer LNCS 3084, pp. 189-204.

