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Abstract
Keyword search is an intuitive method to access knowledge graphs without requiring technical expertise
or knowledge of the underlying data schema. In this context, various methods for keyword search over
knowledge graphs have been developed. However, only few evaluation datasets have been created,
mostly based on a time-consuming manual generation. We present KeySearchWiki, an automatically
generated dataset for keyword search over Wikidata, containing over 16 thousand queries and their
relevant results. It is based on Wikidata and Wikipedia set categories which are refined and combined
to derive more complex queries. We explain the dataset generation workflow, highlight some dataset
characteristics, present experiments using baseline retrieval methods, and evaluate the accuracy of
relevant results.
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1. Introduction

Knowledge graphs (KGs) have become an undisputed source of semantic knowledge for various
tasks, e.g., Question Answering (QA) or Entity Linking [1, 2]. Hence, techniques that simplify
access for end-users are in great demand. Keyword Search over Knowledge Graphs (KSKG) is a
familiar method enabling information retrieval. KSKG systems generally attempt to answer a
user query by retrieving graph connections between query keywords. In general, the output
of interest of KSKG systems is a set of uniquely identified relevant entities. Recently, KSKG
research resulted in a wide range of methods developed [3, 4, 5, 6, 7, 8, 9, 10].

Benchmarks for effectiveness evaluation play a key role in enhancing systems and enabling
inter-system comparison. They provide a target KG, user queries, and corresponding results
together with their relevance judgments (RJs), e.g., using binary1 or 3-point scales. Queries are
often either manually crafted [11] or manually selected from search engine query logs [12],
which results in small datasets. Relevant results are generally provided by pooling a subset
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of system’s top results and judged via crowd-sourcing [13, 11, 14]. This approach is time-
consuming and depends on systems’ results. To the best of our knowledge, there is only one
dataset specifically for KSKG [15]. Its focus was not on creating queries, but on mapping relevant
results from previous evaluation campaigns to DBpedia [16] entities.

In this paper, we present KeySearchWiki, an automatically generated dataset for keyword
search over Wikidata [17]. We focus on Type Search (TS) [18] with queries retrieving entities of
a specific type (target), e.g., Paul Auster novels with novels as a target. This relates to common
real-world scenarios: (1) users explicitly mentioning the target in traditional search engines, (2)
users selecting a target category, e.g., books in an online shop, or (3) search systems providing
access to only a single type of results, e.g., portals offering access to datasets. To the best of
our knowledge, this is the first automatically generated, large-scale, and diverse dataset that
also includes complex queries. The general idea is to leverage Wikipedia set categories2 that
are mapped to Wikidata (e.g., Category:American television directors (Q8032156)) as a source of
queries and their members as relevant entities. KeySearchWiki is more closely related to human-
curated datasets than purely synthetic ones. The queries represent an actual information need
as witnessed by the manually maintained, corresponding Wikipedia categories. Furthermore,
Our approach is both multilingual (all Wikipedia languages are considered) and hierarchical
(exploiting the Wikipedia category hierarchy). We summarize the key contributions as follows:

• We present a workflow for the automatic generation of the KeySearchWiki dataset. The
source code for the dataset generation is publicly available.

• We introduce KeySearchWiki, a diverse dataset consisting of 16, 605 queries of different
complexity levels together with their relevant entities.

• We provide for each query an annotated version that tags each query term with its
corresponding Wikidata identifier. Mappings between natural language queries and
corresponding Wikidata entities can, e.g., be used to evaluate entity linking systems.

2. Related Work

In addition to challenges, several datasets have been created to support the evaluation of KSKG
approaches and related topics such as QA. Table 1 summarizes major existing datasets/challenges.
They vary with respect to the task, the target data and its format, size, query creation method,
source of relevant entities, RJs types, and RJs source. We distinguish between four types of
tasks:

• Entity Search (ES) [18]: finding a specific entity, e.g., University of Phoenix in SemSearch
Challenge 2010’s Entity Search Track (SemSearch2010 ES).

• Type Search (TS) [18]: finding a (ranked) list of entities having a specific type, e.g., Paul
Auster novels from the Entity Ranking Task of The INitiative for the Evaluation of XML
retrieval (INEX2009 ER).

• Ad-Hoc Search (AHS): finding a (ranked) list of entities that are described with a set of
random keywords (could include ES and TS style queries but also other random ones),

2https://en.wikipedia.org/wiki/Wikipedia:Categorization#Set_categories
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Table 1
Overview of existing datasets/challenges. (QC: Query Creation, RE
source: Relevant Entities source, MH: multi-hop, Anot.: Annotation of query
terms with KG entities, WP: Wikipedia, WD: Wikidata, DBp: DBpedia,
WPLOD: Wikipedia-LOD v1.1, sem. XML: semantically annotated XML, rel.: present only rele-
vant entities, collec.: collected)

Dataset Year Task Data Format QC #Queries RE source RJs type RJs source MH Anot.

INEX2009 ER [19] 2009 TS WP/YAGO sem. XML collec. 55 runs binary participant - N
SemSearch2010 ES [12] 2010 ES BTC2009 [20] RDF log 92 runs 3-point crowd - N
SemSearch2011 LS [13] 2011 TS BTC2009 RDF log 50 runs 3-point crowd - N

INEX2012 LD [11] 2012 AHS WPLOD sem. XML manual 140 runs - crowd - N
INEX2013 LD [14] 2013 AHS WP/DBp XML/RDF manual 144 runs - crowd - N

DBpedia-Entity v2 [15] 2017 all DBp RDF collec. 467 runs/SPARQL 3-point crowd - N
QALD-9 [21] 2018 QA DBp RDF log/collec. 558 SPARQL (manual) rel. - Y N

LC-QuAD 2.0 [22] 2019 QA DBp/WD RDF semi-auto 30, 000 SPARQL (auto) rel. - Y N
KeySearchWiki 2022 TS WD RDF auto 16, 605 WP (auto) rel. - Y Y

e.g., invented telescope from the Ad-Hoc Search Task of the INEX2012 Linked Data track
(INEX2012 LD).

• QA: finding entities that answer a natural language question, e.g., Which people were born
in Heraklion? from Question Answering over Linked Data challenge 9 (QALD-9).

ES, TS, and AHS are directly related to KSKG. We include datasets for QA over KGs, as they
share characteristics with KSKG datasets and have been adapted to evaluate KSKG systems
(e.g., in [3]). KSKG systems require a target KG represented as triples. Most of the described
datasets (cf. Table 1) provide underlying data in RDF format. INEX campaigns usually focus
on XML retrieval, but organized a Linked Data (LD) Track to close the gap with the Semantic
Web. The target data provided by INEX2012 LD was in a semantically annotated XML format:
Wikipedia-LOD v1.13 using DBpedia and YAGO [23] annotations. In INEX2013 LD different
dataset collections allowed for various retrieval techniques: XML + RDF (English Wikipedia +
DBpedia and YAGO), semantically annotated XML (Wikipedia-LOD v2.04), and text (extracted
from Wikipedia-LOD v2.0). However, INEX LD tracks mainly target textual data, while KSKG
systems work on data represented by KGs.

Queries are often either manually crafted by humans [11] or collected from previous cam-
paigns where source queries were also manually created [15]. The manual approach is time-
consuming and requires effort not only for query creation but also for finding interested
volunteers. This impacts the size of the dataset, since it results in a small number of queries,
usually fifty5 to one hundred queries per dataset. Furthermore, if the dataset is created in
the context of a project that also aims at developing a KSKG system, manual query creation
increases the risk of designing biased queries that favor ones own approach, especially if this
is done by researchers directly related to the project. Other works select queries manually
from search engine query logs [12]. They argue that log queries are more realistic and rep-
resentative to user needs. However, users often try to overcome the limitations of a search
engine by adapting to its capabilities and by avoiding complex queries that involve relations
between different entities [24]. On the other hand, query logs are often not in-line with the

3https://inex.mmci.uni-saarland.de/tracks/lod/2012/
4https://inex.mmci.uni-saarland.de/tracks/lod/2013/
5Established minimum for evaluating retrieval systems [24].
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specified underlying data (e.g., KGs). This shortcoming requires additional efforts for selecting
queries to have at least some answers within the considered data. Datasets should also contain
queries with unambiguous intentions. This is important for judging whether a potential entity
is relevant to the query or not. Thus, another step is the selection of queries whose intentions
could be derived. LC-QuAD 2.0 [22] is, to the best of our knowledge, the only dataset that
applies a semi-automatic approach for query creation and thus has the largest size (30, 000
queries). SPARQL queries are automatically generated, transformed to template questions,
and finally verbalized into natural language questions. However, QA datasets are not initially
geared towards KSKG tasks. Hence, their usage requires pre-processing and selection of suitable
queries. Another approach to evaluate KSKG systems is the use of randomly generated queries
(arbitrary combinations of keywords appearing in the data source). This is generally not a good
practice, since resulting queries would not reflect real information needs [25].

All challenges (besides QA) use runs6 submitted by participants as source of relevant entities.
They pool a subset of top results and assess them either via crowd-sourcing (e.g., MTurk7)
or by the participants themselves [19]. This depends on the participating systems, though,
and provides no independent list of relevant entities. QA datasets use either automatically or
manually created SPARQL queries to generate the list of relevant entities. Here, results do not
need to be judged, and only relevant entities are presented. However, we believe that relevant
entities could originate from different SPARQL queries depending on the underlying KG. Using
a single SPARQL query may omit some potentially relevant entities.

KSKG datasets should also contain complex queries. We distinguish between two degrees of
complexity. Multi-keyword: queries that contain more than one keyword, and multi-hop (for TS):
there is no direct relation between target and keywords8. Most of the listed datasets contain
multi-keyword queries. However, none of them explicitly claims to provide multi-hop queries.
For QA datasets this could be verified since SPARQL queries are provided.

All datasets provide queries as mere strings. Systems thus have to deal with keyword/target
to knowledge graph entity mapping. Providing semantically annotated queries is also useful and
allows for using the queries also to evaluate entity linking systems. Another significant quality
for such datasets is diversity, which means avoiding similar queries (e.g., cities in Germany and
cities in France). It is difficult to programmatically verify the diversity of a dataset, so researches
have to rely on the claims made by its creators (e.g., LC-QuAD [26] claims to avoid generating
similar queries). Methods for constructing synthetic benchmarks are proposed in [27, 28]. They
follow exactly the steps that a KSKG/QA system would perform to solve the task. In our view,
this self-reference (evaluating one system with the output of another) defeats the idea of an
objective evaluation and is not based on human judgment.

We conclude that there is a lack of established evaluation datasets dedicated to KSKG. We
overcome the previously described shortcomings by proposing the first (1) automatically gen-
erated, (2) complex, (3) large-scale, (4) diverse dataset to evaluate KSKG systems on the TS
Task over Wikidata, and providing semantically annotated queries. We propose an innovative
approach by using Wikidata/Wikipedia set categories, existing human-edited sources of relevant

6Output (ranked) list of relevant entities produced by the participating systems.
7https://www.mturk.com/
8The corresponding SPARQL query consists of two connected triples (e.g., ?target ns:relation1 ?iri2 . ?iri2

ns:relation2 ?keyword).

https://www.mturk.com/
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Figure 2: Dataset generation workflow.

entities and TS queries. We leverage the multilingual and hierarchical nature of Wikipedia set
category pages to improve the completeness of relevant entities. Our automated approach does
not mirror the steps of KSKG systems, but automatically extracts and combines information
from manually curated resources to reduce the additional manual effort. Consequently, we
consider KeySearchWiki more closely related to human-curated datasets than purely synthetic
ones.

3. Dataset Generation Workflow

KeySearchWiki specifically focuses on the TS Task. Our primary goal is to lower manual
effort and propose a fully automated workflow for dataset generation. A further goal is the
creation of complex and diverse queries. We notice that Wikidata set categories exhibit TS-like
characteristics (cf. Figure 1). Most set categories have a property category contains (P4224)
providing the type (target) of entities contained and additional qualifiers (keywords). This
provides the building blocks to construct TS-like queries. Links to corresponding Wikipedia
pages can provide relevant entities, as they represent human-curated collections of Wikipedia
articles (Wikidata entities) for these categories. Figure 2 depicts the dataset generation workflow
whose details will be described in the following.
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Figure 3: Example pipeline for multi-keyword entries generation.

3.1. Candidate Generation and Cleaning

The pipeline starts by generating candidate entries (queries and their relevant entities). Set
categories are retrieved from Wikidata in one of two ways: (1) sending SPARQL queries to
the Wikidata public endpoint9 or (2) parsing a Wikidata JSON dump10. Both options retrieve
set categories with additional information such as category contains (P4224) and its qualifiers
used to determine target and keywords respectively. Next, for each available language, the
Wikipedia subcategory hierarchy is explored in a Breadth-First-Search-manner to retrieve
member pages and their corresponding Wikidata entities. Again, these may be retrieved online
using the MediaWiki API11 or offline from a local database built from SQL Dumps for all needed
languages12. For each subcategory, we perform a type check: if fewer than 50% of its members
are instances of the target or any of its subclasses13, traversal in this branch will be stopped. The
output of this phase is a list of raw entries. In a cleaning phase, we then remove entries without
target or keywords, with more than one keyword/target (ambiguous), without relevant entities,
or with a keyword having either an unknown value or no label. The resulting intermediate
entries act as input for the two following branches.

3.2. Native Query Generation

This phase contains a single operation, Intermediate Entry Filtering. We define two criteria: (1)
number of relevant entities (#RE) of intermediate entries and (2) number of keywords/target
(#Concepts) of corresponding queries14. We keep entries whose #RE is at least equal to two,
since TS aims at retrieving a list of entities that could be ranked afterwards. Furthermore, we

9https://query.wikidata.org/
10https://dumps.wikimedia.org/wikidatawiki/entities/
11https://www.mediawiki.org/wiki/API:Main_page
12Three SQL dumps for each language: categorylinks, page, and page_props.
13SPARQL: ?entity wdt:P31/wdt:P279* ?target
14The #Concepts is always equal or lower than #Words (e.g., for query : “University of Houston” “human”,

#𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑠 = 2 and #𝑊𝑜𝑟𝑑𝑠 = 4).

https://query.wikidata.org/
https://dumps.wikimedia.org/wikidatawiki/entities/
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only keep queries having #Concepts below 7. The rationale is to reflect real-world user behavior,
where generally a small number of keywords is used [29, 30].

3.3. Complex Query Generation

At this stage, two types of complex queries are constructed: multi-keyword and multi-hop
queries15.

Multi-keyword. The process for multi-keyword entries generation is illustrated in Figure 3
based on an example iteration from the actual generation pipeline. The pipeline takes the
intermediate entries as input. For the sake of simplicity, consider having three intermediate
entries. Each entry corresponds to a set category given by a Wikidata IRI (e.g., Category:Computer
programmers (Q6624060)) and contains a query and a set of relevant entities. Similarly, relevant
entities are represented by Wikidata IRIs. For convenience, we use simple identifiers in the
illustration (e.g., entry1, iri1). Each query is given by a target and a set of keywords (e.g., query1:
“Programmer” “human” corresponds to instances of human that are described by the keyword
Programmer). Multi-keyword queries combine a number of queries that have the same target to
create a new query (e.g., query1 and query2 result in a new query “programmer” “University of
Houston” “human” ). To detect possible combinations, a RelevantEntities-Entry Inverted Index is
created in step 1○. This index aggregates entries that share at least one relevant entity. Separate
indices are created for each target to group only compatible queries. From those indices, we
select elements containing at least two different entries as Possible Entry Combinations in step
2○. The New Entry Construction step 3○ involves the creation of new queries and the new

relevant entity sets. New queries are created by merging the keywords and maintaining the
shared target: “programmer” “University of Houston” “human”. The new relevant entity set is
the intersection of relevant entities of the involved entries: (iri1, iri2). Multi-keyword entries
are then filtered in step 4○ based on the criteria defined in Subsection 3.2.

Multi-hop. The steps for multi-hop entry generation are explained in Figure 4, also using a
real iteration. The pipeline takes the intermediate entries as input. We consider four intermediate
entries as example and use simple identifiers for the sake of convenience (e.g., entry1, CH (first
two letters of entity label), or iri1). The algorithm traverses all intermediate entries by applying
steps 1○ to 4○. We consider one iteration (entry1). Multi-hop queries (2 hops for now) link two
entries where a relevant entity of one query is equal to a keyword of another query. For example,
from query1 “World Music Awards” “human” and query2 “EL” “album”, we can derive a new
query “World Music Awards” “album”. In contrast to query1 and query2, in the new query there
is no direct relation between target and keywords, i.e., album and World Music Awards. A system
needs to use another intermediate entity (e.g., EL, an artist that won a World Music Awards)
to connect keyword(s) and target. The Transitive Entry Linking 1○ links Relevant Entities of
the Current Entry (CERE) to other entries using one of those relevant entities as keyword.
Then an Entry Clustering 2○ groups linked entities by target and keywords different from the
CERE. With this, new entries can be constructed. The new multi-hop query is built in step 3○
by merging cluster keys (album) and current entry keywords (World Music Awards, album).

15Based on Figure 1, native queries could be seen as 1-hop queries since they include keywords that are directly
related to the target (e.g., entities of type human (Q5) directly related to television director (Q2059704) via the property
occupation (P106)).
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Figure 4: Example pipeline for multi-hop entries generation.

Clusters with the same target as the current entry are removed since they generate the same
query (if the cluster has no keywords), or multi-keyword queries. Relevant entities of the new
entry are derived from the union of relevant entities in the corresponding cluster. For example,
“World Music Awards” “albums” are albums from all human artists that won the World Music
Awards (here, CH, MI and EL). Applying the same algorithm recursively, yields queries of more
than two hops. For now, we limit the number of hops to two, though. The last step is Filtering
4○ using the criteria of Subsection 3.2 (#RE and #Concepts) as well as coverage. We define the

coverage as 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑠𝑖𝑧𝑒
𝐶𝐸𝑅𝐸 𝑠𝑖𝑧𝑒 , where 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 is the number of entries in the respective cluster and

𝐶𝐸𝑅𝐸 𝑠𝑖𝑧𝑒 is the number of relevant entities of the current entry. This metric represents the
completeness of the relevant entity set with regard to the new query. In the example of Figure 4,
the coverage of the new query is 0.66 ∼ 2

3 (in the actual dataset, the query World Music Awards
album has 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 0.44 with 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑠𝑖𝑧𝑒 = 109 and 𝐶𝐸𝑅𝐸 𝑠𝑖𝑧𝑒 = 250). A coverage of
1 is not reached here as no linking with relevant entity MI was found, i.e., the entry MI album
does not exist among the input entries. In general, this indicates a missing set category for this
combination. We empirically derived a minimum coverage requirement of 0.1 after analyzing
the distribution for all multi-hop queries.

3.4. Entry Selection

This step aims to ensure the diversity of generated entries. From sets of structurally highly
similar queries, one representative is chosen while others are discarded (e.g., “California State
University, Fullerton” “human” is semantically highly similar to “University of Houston” “human” ).
We define the query signature as: <Target> <Keyword-Types> (e.g., signature of “University of
Houston” “human” is <human (Q5)> <university (Q3918), public educational institution of US
(Q23002039)>). The three types of entries are merged (native/multi-keyword/multi-hop) and
grouped by their signature. From each group, one representative of each entry type is selected.



For native/multi-keyword entries, a pseudo-random16 selection is performed, whereas from
multi-hop entries, the one with the highest coverage is selected.

4. Dataset Characteristics and Availability

The current dataset version is generated using Wikidata JSON dump and Wikipedia SQL dumps
of 2021-09-2017. The final KeySearchWiki dataset consists of 16, 605 final entries (native: 1, 138,
multi-keyword: 15, 354, multi-hop: 113) with 3, 899, 135 unique relevant entities. It involves 73
different targets, 2, 797 unique keywords, and 739 different keyword types. Human (Q5) is the
most frequent target (13, 260), followed by album (Q482994) (1, 815), video game (Q7889) (757),
and song (Q7366) (303). Other insights about the dataset are documented on GitHub18.

The source code for KeySearchWiki is publicly available [31, 32] under an MIT License,
including a description of the dataset, its usage and characteristics, examples, and steps needed
to reproduce it. We publish our data on Zenodo [33] under a CC-BY 4.0 License to ensure
persistent and public access to all resources. The current dataset is provided in both TREC19

and JSON formats. The TREC format represents relevant entities and their RJs as follows20:
<queryID> 0 <RelevantEntityIRI> <judgment>. Queries are in a separate text file, following the
format in DBpedia-Entity v2 [15]: <queryID> <query>. We provide two types of query files: one
where queries are given by labels (e.g., <MK79540> <programmer University of Houston human>
and a second with entity IRIs (e.g., <MK79540> <Q5482740 Q1472358 Q5>). The latter can be
directly used by systems that omit a preceding entity linking step. We also provide an additional
list of queries that was partially adjusted (naturalized) to better reflect natural language query
formulation. For example, by transforming the query diplomat Germany 20th century human
into diplomat Germany 20th century. This is done by removing the target from the query if one
of its keywords is a descendant of the target via subclass of (P279). In the previous example,
diplomat is in the subclass hierarchy of human. Following this process, 1, 826 queries were
adjusted and the whole list was provided using the same format: <queryID> <query>. The
provided data contains:

• KeySearchWiki-JSON - the final dataset in JSON format.
• KeySearchWiki-queries-label - a text file containing the 16, 605 queries, each line

containing space-separated queryID and query text (labels).
• KeySearchWiki-queries-iri - a text file containing the 16, 605 queries, each line con-

taining space-separated queryID and IRIs of query elements.
• KeySearchWiki-queries-naturalized - a text file with all 16, 605 queries, including
1, 826 adjusted queries, each line containing space-separated queryID and query text
(labels).

16Entries in a group are sorted by queryID. Then the first element is selected to ensure a deterministic behavior
for reproducibility.

17A version where the Wikidata "Wikimedia set categories (Q59542487)" were not yet merged with their ini-
tially superclasses "Wikimedia categories (Q4167836)". https://github.com/fusion-jena/KeySearchWiki/blob/master/
README.md#remark

18https://github.com/fusion-jena/KeySearchWiki/tree/master/docs#dataset-characteristics
19https://trec.nist.gov/data/qrels_eng/
20The second field is unused and set to 0 according to the TREC qrels format.
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Table 2
Experiment results of the baseline methods.

Method Native Multi-Keyword Multi-hop

MAP P@10 MAP P@10 MAP P@10

BM25 0.211 0.225 0.025 0.039 0.014 0.032
DFR 0.209 0.211 0.023 0.029 0.015 0.024

LM Dirichlet 0.182 0.180 0.020 0.025 0.015 0.018
LM Jelinek-Mercer 0.212 0.215 0.023 0.029 0.018 0.022

• KeySearchWiki-qrels-trec - a text file containing relevant entities in TREC format.
• KeySearchWiki-cache [34] - a collection of SQLite database files containing all the data

retrieved from Wikidata JSON Dump and Wikipedia SQL Dumps of 2021-09-20.

Users can update KeySearchWiki anytime by running our code on a new dump of Wikidata and
Wikipedia. We plan to periodically publish new dataset releases.

5. Experiments and Evaluation

We use KeySearchWiki to evaluate Elas4RDF [35], a system based on indexing the textual
information of entities. Elas4RDF relies on a triple-based indexing using Elasticsearch21. We
use the best-performing approach where each triple is represented by a document with the
following fields: subject/predicate/object keywords22, description of IRI object/subject, and
label of IRI object/subject. Object fields are given higher weight. We use the Elas4RDF-index
Service23 to create an index of Wikidata entity triples. We perform our experiments on a subset
of queries. Considering all dataset queries would imply indexing triples involving all Wikidata
entities. We avoid that to keep the indexing time reasonable by selecting queries with one of the
top-10 targets and thus index triples involving Wikidata entities that are either instances of the
target itself or any of its subclasses. This way we keep 99% (only 112 queries discarded) of the
queries from all the types (native: 1, 037, multi-keyword: 15, 343, multi-hop: 113). 146, 211, 253
triples were indexed with an index size of 16.8 GB. We evaluate four ranking methods provided
by Elasticsearch with default settings as in [35]: BM25 [36], DFR [37], LM Dirichlet [38], and LM
Jelinek-Mercer [38]. For each baseline (run), the Elas4RDF-search Service24 is used to retrieve
the results which are then written in TREC format: <queryID> Q0 <RetrievedEntityIRI> <rank>
<score> <runID>. The second column is unused and should always be “Q0”.

Table 2 summarizes the experiment results. We use Mean Average Precision (MAP) and
Precision at rank 10 (P@10) (considering the top-1000 results). We notice that the different
query types reflect various degrees of difficulty. This corresponds to our intention of adding
complex queries. Native queries are less challenging and thus achieve better results across

21https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html
22Represented by the literal value. If a triple component is not a literal, the IRI’s namespace part is removed and

the remainder is tokenized into keywords.
23https://github.com/SemanticAccessAndRetrieval/Elas4RDF-index (adapted to Wikidata)
24https://github.com/SemanticAccessAndRetrieval/Elas4RDF-search (adapted to Wikidata)
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retrieval methods. These queries usually involve keywords that are directly related and hence
their textual information is mostly occurring within the triples of the same entity. Complex
queries are more difficult and show poor performance in general. Even though multi-keyword
queries still involve directly related keywords, they tend to be longer and thus seem more
challenging. Here, the performance has dropped by ∼ 0.18 points for both MAP and P@10
compared to native queries. Multi-hop queries are more difficult than their multi-keyword
counterparts as they involve keywords not directly related and thus their textual information
does not occur within triples of the same entity. This lowers the performance by ∼ 0.19 points
compared to native queries and by ∼ 0.01 points compared to the multi-keyword ones. The
results reveal no noticeable difference between the different retrieval methods. We only notice
an improvement between ∼ 0.01 − 0.05 points of the P@10 using BM25 for native queries.
A more detailed investigation is out of the scope for this paper. Overall, the performance of
the ranking methods over KeySearchWiki is in line with other published results (e.g., in [15]
and [39]). Further details about experiment data preparation, indexing, and the experimental
setup are provided in the dataset’s GitHub repository [31]. Runs, experiment results, queries,
and relevance judgments are published on Zenodo [40].
Evaluation. We evaluate the accuracy of relevant entities in KeySearchWiki by using

existing SPARQL queries as a baseline and comparing KeySeachWiki’s relevant entities with
the results of these queries. Evaluation scripts and results are available on GitHub. Some
Wikidata set categories have associated SPARQL queries using the property Wikidata SPARQL
query equivalent (P3921). These queries retrieve results corresponding to the set category and
are handcrafted by humans. They can be considered as another source of relevant entities
(baseline) that can be used for comparison and verification of the relevant entities provided
by KeySearchWiki. We extract native entries that contain such SPARQL queries (67 native
entries) and manually verify whether the corresponding SPARQL queries correctly represent
the information need expressed by the set category. One query was excluded which results in 66
queries used in this evaluation. For the selected queries, we calculate the Precision and Recall of
KeySearchWiki entities {𝑅𝐸𝑊𝐼𝐾𝐼} with respect to SPARQL query results {𝑅𝐸𝑆𝑃𝐴𝑅𝑄𝐿} [41]:
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

|{𝑅𝐸𝑆𝑃𝐴𝑅𝑄𝐿}∩{𝑅𝐸𝑊𝐼𝐾𝐼}|
|{𝑅𝐸𝑊𝐼𝐾𝐼}| , 𝑅𝑒𝑐𝑎𝑙𝑙 =

|{𝑅𝐸𝑆𝑃𝐴𝑅𝑄𝐿}∩{𝑅𝐸𝑊𝐼𝐾𝐼}|
|{𝑅𝐸𝑆𝑃𝐴𝑅𝑄𝐿}| . Results reveal

that KeySearchWiki is capable of catching most of the relevant entities retrieved by SPARQL
resulting in an Average Recall of ∼ 0.70 and an Average Precision of ∼ 0.54. A more detailed
analysis of the results is provided in GitHub25.

6. Limitations

In the following we describe the limitations of KeySearchWiki.
Matching between data sources and the target KG. In general, even though each Wikipedia

page has its corresponding Wikidata entity, the two sources do not always match with respect to
the knowledge contained. This is due to the fact that both are mostly independently maintained
by volunteers. Despite the overlap and collaboration between both communities, the information
in both projects will probably continue to differ in the foreseeable future. Other benchmarks
also suffer from this – especially those that collect queries independently from the actual KG

25https://github.com/fusion-jena/KeySearchWiki/tree/master/docs#evaluation-results
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(e.g., from logs). We attempt to mitigate the effects by using closely related sources (Wikipedia
and Wikidata) for queries and relevant entities.

Completeness of relevant results. Depending on the approach, completeness is rather hard
to achieve for benchmarks of reasonable size. Human relevance judgments may be feasible for
smaller datasets, but fail for larger ones that are built using pooling [42]. We try to increase the
completeness by considering all Wikipedia languages and traversing its hierarchy. Furthermore,
KeySearchWiki uses Wikipedia as relevant entity source to include also Wikidata entities with
missing semantic description.

Evaluation of approaches exploitingWikipedia categories. Systems following KeySearch-
Wiki’s strategy of exploiting Wikipedia categories may achieve close to perfect scores. However,
the task of KSKG assumes only two inputs: a query and a target KG. Additional sources alter
this task and result in systems heavily depending on a particular KG. In such scenarios (system
using Wikipedia categories), the dataset should not be used to avoid any bias.

7. Conclusion and Future Work

We introduced KeySearchWiki - a fully automatically generated, complex, large-scale, and
diverse dataset for evaluating keyword search systems over Wikidata. We leverage Wikidata
and Wikipedia set categories as data sources for both relevant entities and queries. We gather
relevant entities by carefully navigating the Wikipedia set categories hierarchy in all available
languages. In the future, we plan to extend the dataset by also generalizing to Wikimedia
categories (Q4167836) that are superclasses of the currently used set categories. This will allow
us to increase the number of dataset entries and to also generate more high-coverage multi-hop
entries.
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