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Abstract  
This research delves into the utilization of execution strategy-dependent program state information for 
the enhancement of compilers and interpreters across functional and object-oriented programming 
languages. Focusing on Lambda Calculus as a versatile representation, we employ Machine Learning 
models to ascertain reduction step counts for both the Leftmost Outermost and Rightmost Innermost 
strategies. Leveraging Convolution-based, LSTM-based, and Transformer-based models, we estimate 
reduction steps within a defined range. Employing a one-hot-encoded simplified term representation 
streamlines input dimensions, though at the expense of variable information. Our experiments reveal 
that this simplified representation suffices for estimating reduction counts within a significant range. 
Remarkably, predictions for the Rightmost Innermost strategy outperform those for the Leftmost 
Innermost strategy by nearly 25%. In conclusion, employing trained models to determine reduction step 
counts for specific terms shows great promise in automating the search for optimal reduction strategies 
tailored to individual terms. Our findings underscore the viability of simplified term representations for 
predicting reduction steps within a specified strategy, albeit with considerations for depth elimination. 
Experiments highlight the challenge of handling lengthy sequences and complex terms in models. 
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1. Introduction 

Information about program execution state depending on execution strategy helps in choosing 
reasonable, effective, in terms of computational resource amount, and robust execution strategies 
that would be implemented in improvements for compilers and interpreters, not only for 
functional but also for object-oriented programming languages. 

This work is a part of our series of works, where we focus on researching average optimal 
reduction procedures for Lambda Calculus terms. We used Lambda Calculus as a simple 
representation for any programming language, which in fact could implement any of them [1]. In 
this study, we consider using Machine Learning models to determine the number of reduction 
steps for the Leftmost Outermost (LO) and Rightmost Innermost (RI) strategies. We chose three 
Machine Learning models (Convolution-based ANN, LSTM-based ANN, and Transformer-based 
ANN) for the estimation count reduction steps from 0 to 30. As input, we use one-hot-encoded 
simplified term representation, which allows us to significantly shrink input dimensions into the 
model while saving terms tree structure, but we lose information about term variables. Losing 
this type of information introduces some sort of uncertainty to Lambda terms, but we are going 
to determine how much impact it has. 

Results of our experiments show that simplified term representation is enough for estimating 
the number of reductions with sufficient diapason. Interestingly, predicting count reduction steps 
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for the RI strategy was almost 25%  more precise than predicting count reduction steps for the 
LO strategy. 

In addition, we must admit the computational contradiction: is it more effective to just keep 
running Lambda term reduction in parallel for different strategies, and choose more preferable 
in some defined sense or convert a Lambda term to the simplified representation and feed to 
ANNs, and choose the most preferable strategy. 

2. Background and related work 

In previous works, we showed our Pure Lambda Calculus environment [2, 3], which we used for 
the Lambda Calculus normalization process research. In [3], we focused on investing in a new 
approach for estimating the reduction step complexity by estimating the computational 
resources required for this step using the basic parameters that characterize the term tree and 
its redex. 

The investigation of Lambda Calculus term reduction has been the main topic of many studies. 
Some studies have analyzed the influence of reduction strategies on count term reductions and 
detailed analysis of some standard strategies [4, 5, 6]. In the research [7], the author considers 
the computational aspects of reduction strategies. However, none of them try to extract some 
term features that signal the preference for some strategies over others. 

In addition, promising results were achieved in the case of solving mathematical problems [8], 
compile optimization, code execution [9], and code compilation optimization [10] with Large 
Language Models based on Transformer models. Type Inference in the Simply Typed Lambda 
Calculus with Transformer model was considered [11], although this article was about predicting 
a term type it still required a deep term understanding by the model, which is a key point in our 
work. The authors of [11] considered full-term representation via token sequences by encoding 
special symbols for Applications, Abstractions, and 32 possible term variables. 

3. Problem Statement 

In modern compilers, interpreters implement specific methods for optimizing the code 
execution process [10]. The problem with this approach is choosing the right optimization 
method for an infinite number of program variants. We investigated the automatization of the 
process by choosing the appropriate optimizer. 

As a popular method of automatization, we stopped on Artificial Neural Networks (ANN) 
methods, which are de facto automatic statistical collectors [12]. The program is a sequence of 
keywords, operators, and variables, so we consider state-of-art methods [13, 14, 15] for 
processing sequences: Convolutional Neural networks, Long-Short Term Memory (LSTM) 
networks, and Transformer networks. 

Another problem with testing exactly on any modern programming language is the large 
number of possible keywords, and as a result, it is difficult to collect or generate training data. 
Thus, the obvious solution is to use a programming language with simple syntax, such as Lambda 
Calculus, where only one operator Application exists; however, Lambda Calculus is Turing 
sufficient [1], which means that it can imitate any computational process available for other 
programming languages. In Lambda Terms, a choosing rule of a specific application called redex 
defines a reduction strategy (or, in other words, execution sequence), and as shown in articles [2, 
4, 5], can have an impact on count reduction steps. 

The main advantages of synthetic training data are that it is cheaper to obtain, covers as many 
data combinations as possible, and does not require special tuning for exact feature extraction. 
This allows the training of robust and widely tasked models. However, it might not cover real task 
combinations and introduce unnecessary complexity into models. 

Combining these, we aim to solve the following problems:  
1. Configure the hyperparameters of Machine Learning models and train them for as low as 

possible error rates for prediction count reduction steps for a specific strategy. 



 

2. Generate a sufficient amount of Lambda terms for training robust models, which can 
operate with real-term data with the same error rate. 

4. Hypothesis 

We deal with Lambda terms data, and the main issue with them is an infinite number of variables, 
which can be presented in Lambda terms. A possible solution is to limit the maximum number of 
variables, such as 64, 128, and 512, to save variable information. On the other hand, using variable 
information significantly increases the model input size, and as a result, increases the total weight 
requirements for ANNs, it also leads to the necessity to carefully configure training data in order 
of proper model coverage. 

Considering all this we decided to simplify term representation for models in the following 
way: mark all Abstraction and Atom variables as ‘x’, so we save a term as a tree without any 
additional information about inner relationships, losing information about detailed redexes 
representation. 

Therefore, we hypothesize that simplified term representation is sufficient for estimating 
count reduction steps for the LO and RI strategies using modern Machine Learning models for 
sequence processing. 

5. Methodology 

We assume that a simplified term representation is sufficient to estimate the count reduction 
steps. Our problem here is to show the relationship between the model's inputs and outputs and 
real values, and it has three solutions: 

1. Solving this as a regression problem, we cannot make the model as precise as possible, 
and we cannot collect terms with too large count reduction steps to save the normal 
distribution of expected and output data. 

2. Solving this as a classification problem allows us to make the model more precise. 
However, we should set a strict limit on count reduction steps for selected strategies, and 
it also imposes restrictions on the nature of the terms entering the training data. 

3. Solving this as a bin problem allows us to combine a regression problem and a 
classification problem and obtain some bins for defined term distributions such as 0–4, 
5–10, up to infinity. This solution does not guarantee a precise solution, but it gives us 
the possibility to analyze any kind of term. 

Taking into account our findings (as illustrated in Figure 5) that the majority of the generated 
terms are reduced within 0 to 30 steps, we opted to approach the problem as a classification task. 
In addition, we must admit that the accuracy metric is not suitable for the evaluation number of 
reduction steps prediction quality, because low accuracy does not mean that the count step error 
should be high; therefore, we are also considering the following regression metrics [16]: Mean 
Absolute Error (MAE), which measures the average absolute difference between the actual and 
predicted reduction steps, and Root Mean Squared Error (RMSE), which is the root of the squared 
difference between the actual and predicted reduction steps. Building on the hypothesis that 
terms requiring more reduction steps would exhibit a greater error value, we analyzed the MAE 
concerning the actual count of reduction steps. 

6. Models for sequence processing 

To process sequential data, we can consider the following methods: 
1. Hidden Markov models (HMMs) are a type of probabilistic model that can be used to model 

sequential data [17]. HMMs are often used for tasks, such as speech recognition and 
machine translation. 
Pros: relatively simple to train and deploy; able to learn long-range dependencies in 
sequential data. 



 

Cons: difficult to design for specific tasks; computationally expensive on large datasets. 
2. Support vector machines (SVMs): SVMs are a type of machine learning algorithm that can 

be used for various tasks, including classification and regression [18]. SVMs with Sequence 
Kernels are suitable for sequence-processing tasks, such as text classification and 
sentiment analysis. 
Pros: effective for the variance of sequence processing tasks, including text classification 
and efficient training and deployment. 
Cons: difficult to tune for specific tasks; prone to overfitting; computationally expensive to 
train. 

3. Rule-based systems are a type of expert systems that use a set of rules to make decisions 
[19]. Rule-based systems can be used for a variety of tasks, including sequence processing 
tasks such as text filtering and machine translation. 
Pros: easy to interpret and can be very accurate for tasks where the rules can be 
determined. 
Cons: difficult and time-consuming to develop and maintain, and scale to large datasets, 
and difficult to develop systems with good generalization capabilities. 

4. Artificial neural networks (ANNs) are powerful tools for processing sequential data such 
as text, audio, and video. They show a state-of-the-art level of productivity for many 
sequence-processing tasks [13, 14, 15]. ANNs can learn to extract patterns from sequential 
data and use these patterns to make predictions or generate new sequences. 
Pros: very flexible to variety sequences; can learn long-term dependencies in data; able to 
generalize unseen data. 
Cons: computationally expensive to train; difficult to interpret; hard to tune 
hyperparameters for proper generalizing and prevent overfitting. 

Because many ANN models show state-of-the-art productivity for many sequence processing 
tasks (especially tasks related to text processing), we decided to consider the three most 
advanced models for this purpose: 

1. Convolutional neural networks (CNNs) are a type of ANN that is particularly well suited 
for processing sequential data. CNNs use a series of convolutional layers to extract features 
from data. Convolutional layers work by sliding a filter over the data and calculating the 
dot product between the filter and the data. This process is repeated multiple times using 
different filters to extract different types of features from the data [13]. 
Pros: It is good at extracting spatial features from data, relatively efficient to train and 
deploy, and highly parallelizable. 
Cons: difficult to design and tune for specific tasks; prone to overfitting; can lose 
parallelizability due to the nature of sequence tasks. 

2. Long short-term memory (LSTM) networks are another type of ANN that is well suited for 
processing sequential data. LSTMs have a special architecture that allows them to learn 
long-term dependencies in data. LSTMs are often used in such a kind of task as machine 
translation and speech recognition [14]. 
Pros: very good at learning long-range dependencies in sequential data; relatively robust 
to noise in the data; shown state-of-the-art effectiveness on a wide variety of text 
processing tasks. 
Cons: computationally expensive to train, especially on long sequences; difficult to tune 
for specific tasks; and cannot be processed in parallel because of the nature of the LSTM 
node. 

3. Transformers are a newer type of ANN that has recently achieved state-of-the-art results 
on a variety of sequence-processing tasks, including machine translation and text 
summarization. Transformers use a self-attention mechanism to learn long-term 
dependencies in data [15]. 
Pros: achieve state-of-the-art results on a variety of sequence processing tasks, including 
those related to programming code and logical tasks; can learn long-range dependencies 
at once owing to the self-attention mechanism; relatively efficient to train and deploy, 
especially on large datasets. 



 

Cons: difficult to tune for specific tasks; hard restrictions on input sequence length. 

7. Selected Deep Learning models 

We decided to compare completely different ANN models and determine whether our hypothesis 
could be proven using these models. Let us consider the tuning of the three ANN models for this 
task, its overall architecture, and its hyperparameter configurations. 

The base principle for building Deep Learning ANN models involves segmenting the ANN 
architecture into distinct layers: the input layer, which receives the initial data; the feature 
extraction layers, which are some specific neuron layers that identify patterns and features within 
the data; the fully-connected layers, which synthesize the extracted features into a form suitable 
for making predictions or decisions; and finally, the output layer, which presents the final results 
of the model's computations [12].  Using this principle, all our models contain the required parts 
and mostly differ in the feature extraction part, which is based on the selected model architecture. 
By configuring the feature extraction part, one turns the complexity and volume of the feature 
vector. Similarly, by configuring the fully connected part, we can set both the output type and 
problem type to solve the model, also this part is important because of its capability to analyze 
extracted features. 

Consider our tuned convolutional-based model shown in Fig 1. There are two options for 
defining the entire model for processing sequences: the first is to use trunking and paddings to 
set the input sequence length, as shown in our practice, this option struggles due to a variety of 
term lengths, but trains much faster because data can be split in batches; the second is to use the 
entire sequence, but in this case, the feature extraction part always gives different output shapes 
to solve this problem, we use GlobalAveragePooling1D, which is shown in Fig 1. Our 
convolutional-based model has four Conv1D layers, each of which has a stride value of two, 
imitating the pooling layer. Thus, the basic idea of this solution is to extract features from N 1-d 
vectors representing terms, distributing them to a 128-dim feature vector with increasing feature 
complexity. Subsequently, we applied a 256-dim dense layer for collecting and transforming as 
much feature information as possible to classify the Softmax layer for 31 units, which represent 
count reduction steps from 0 to 30. 

 

 
Figure 1: Architecture of the convolutional-based model used to estimate the count term 
reduction steps for the selected strategy 
 

Fig 2 shows the LSTM-based model used in our experiments. As the convolution-based model 
LSTM-based models for sequence processing have two variants of implementation, we choose the 
second with allows different sequence lengths, which also decreases the required weights 
because only the last LSTM layer output is in the fully connected layer. Experiments show that 
the LSTM layer with 256 nodes is sufficient for extracting and saving required features. Applying 



 

the same principles as the convolutional-based model led to the use of the same fully connected 
part. 

 

 
Figure 2: Architecture of the LSTM-based model used to estimate the count term reduction 
steps for the selected strategy 
 

In Fig 3 you can find a Transformer-based model based on the Bert layer [15], which is an 
encoder-only or autoencoding model that can process limited sequences only, based on our 
sequence length distribution and classical Bert model [15], we set the input sequence length limit 
to 512 tokens. Consider the transformer architecture in Fig 3 in more detail. It has two input 
vectors: the input vector of IDs that are our trunked or padded input vector and the attention 
mask, which is simply a boolean vector, which indicates how the input IDs are filled. Our Bert 
layer consists of 2 hidden layers with 84 units each, the intermediate layer contains 64 units, and 
this module contains 6 self-attention heads which are kind of independent feature extractors. The 
output of the Bert layer is a sparse matrix 512 x 84 to prevent overfitting and minimize required 
computational resources we apply AveragePooling1D with pooling size and strides 50 which gave 
us a matrix 10 x 84 or after applying Flatten layer gives 840-dim feature vector, and Dropout with 
rate 0.1. As the fully connected we leave the Dense layer with 31 units. 

 

 
Figure 3: Architecture of the Transformer-based model used to estimate the count term 
reduction steps for the selected strategy 

 

The final model complexities and trainable weights are listed in Table 1. The LSTM-based 
model has the largest number of weights. The Convolution-based model has evenly distributed 
weights between the feature extractor and the fully connected parts, which is explained by the 
necessity of analyzing the collected features and the specificity of the convolutional feature 
extractor part, which does not require as many weights as fully connected layers. The smallest 
fully connected part has a transformer-based model owing to the high feature complexity of the 
Transformer-based feature extractor. 

 

Table 1 
Comparison of model weights 

 Convolution-based LSTM-based Transformer-based 

Feature extractor weights 43504 43504 43504 
Fully connected weights 267264 267264 267264 
All trainable weights 130832 130832 130832 



 

8. Experiments and data collection 

8.1. Data generation 

For the term generation procedure, we use a recursive random-based algorithm, which allows us 
to evenly distribute Variables, Applications, and Abstraction across the term body, which allows 
us to collect as many possible term variants for the defined distribution of variables. The 
algorithm consists of the following steps: 

1. Set probabilities for generation Abstraction, Application, and Atom terms.  
2. Set a list of variables used for the generation of terms. 
3. Set the maximum limit of vertices in the generated term. 
4. Considering probabilities, perform one of the three actions: 

a. Generate an Atom term based on a random variable from the list of variables. 
b. Generate an Abstraction term based on a head, which is a random variable from the 

list of variables, and a body, which is a randomly generated term with options 1 and 2 
and a decreased number of vertices. 

c. Generate an Application term based on the subject and object, which are randomly 
generated with terms with options 1 and 2, and a decreased number of vertices. 

5. Decrease the limit of vertices on one and return to 4 until the limit of the vertices reaches 
0.  

After generating a batch of terms, we filter them out on actual count vertices, similar terms, 
and reduction filtering; for example, in the LO strategy, we can filter out terms represented by 
quite long sequences appearing while reducing. 

8.2. Datasets and metrics 

To increase the collection of terms and obtain terms with different counts of steps for the selected 
strategies, we normalize the collected terms with the LO strategy. For each term, we obtain its 
simplified form and count steps for the LO and the RI strategies. After filtering out similar terms 
(in simplified terms) and formulating datasets for each strategy, we cut out terms that have 31 or 
more steps on the reduction left. To increase the complexity of the test/validation set, we 
introduced more filters into the term generation procedure, which gave us an independent 
dataset. 

 

Table 2 
Generated dataset sizes with simplified terms and its LO and RI reduction steps 

 LO datasets RI datasets 

Train set 
 

Samples 38272 (~91%) 34851 (~91%) 

Tokens ~4.5M ~3.8M 

Test / 
Validation set 

Samples 3691 (~9%) 3431 (~9%) 

Tokens ~405k ~340k 

Total 41963 38282 

 

It should be noted that generating and collecting current count training samples (shown in 
Table 2) was not random. We focused on the Chinchilla low recommendation for training the 
transformer model, which states that for training a transformer model, we should have the 
number of training tokens at least 20x from count trainable weights [21]. So as shown in Table 1 
our current Transformer-based model has 156k trainable weights, so we need at least 3M 
training tokens, and as shown in Table 2 we have a minimum of 3.8M training tokens which 
should be sufficient for training current models. 

 



 

 
Figure 4: Term sequences length distribution for (a) LO dataset, (b) RI dataset 

 

Consider analyzing the sequence distribution of collected terms, although datasets for LO and 
RI steps are built on the same terms, they can still have different reduction lengths, which impact 
on filtered out records in both datasets. The length sequences for LO terms and RI terms are 
shown in Fig 4, as you can see these plots are approximately the same, but LO terms have longer 
terms (see Fig 4(a)). In addition, we must admit that choosing 31 classes as model outputs 
stipulates count reduction step distributions, as shown in Fig 5. For distribution LO steps, as you 
can see in Fig 5(a) most terms are in boundaries 30 steps, and the same is true for distribution RI 
steps shown in Fig 5(b). 

 

 
Figure 5: Reduction steps number distribution for (a) LO dataset and (b) RI dataset 

9. Model Training 

We decided to solve this problem as a classification problem. The classical strategy for training a 
Machine Learning model for this problem is to select the categorical cross entropy as the loss 
function. We also determine a training procedure by training the model with checkpoints to save 
the best by the validation accuracy model to a file, so that we can train the model to an overfitting 
state of still having the most robust solution. It is also necessary to emphasize that we use the 
Adam optimizer, which allows automatic adjustment of the learning rate and takes into account 
the gradient momentum [21]; practically, it is the best for training models for sequential 
processing, especially transformers [11, 15]. 

 



 

 
Figure 6: Transformer-based model training curves on the LO dataset: (a) loss curve, (b) 
accuracy curve 

 

In total we trained 6 models: two models of each selected type were trained on LO and RI 
datasets. Typical curves for the training and validation sets representing the learning process are 
shown in Fig 6(a) for loss value and accuracy in Fig 6(b). The curves shown in Fig 6 represent the 
training of the Transformer-based model for the prediction of count LO steps. In these plots (both 
loss and accuracy), we should consider moments when the training and validation curves begin 
to diverge, which means that the model tends to overfit and cannot learn any more common 
features for the train and validation datasets; therefore, we should stop model training from here 
or save current model weights. Therefore, as a training strategy, we choose to set more count 
training epochs than required and validation accuracy tracking: saving model weights that 
provide the best validation accuracy. The saved models were used for further testing. 

10. Model performance and generalization 

As mentioned earlier, we evaluated model performance not only using accuracy metric, which is 
typical for classification problems but also using Mean Absolute Error and Root Mean Squared 
error. The results of the training Convolution-based, LSTM-based, and Transformer-based 
models on the LO-specific data are shown in Table 3. The overall performance did not seem high, 
and despite the high accuracy of the LSTM-based model, it still had the same MAE and RMSE 
levels, indicating that the model had many overestimations. In addition, we must admit that the 
high difference between MAE and RMSE values for all models indicates that for some cases, 
models made big mistakes like a term had 30 reduction steps, but the models predicted 0. In 
addition, the inherent performance of the Transformer-base model can be explained by the fact 
that it has limited input sequence lengths and cannot provide a full sequence view for some 
samples. 

 

Table 3:  
Result of training selected models on the LO dataset 

 Accuracy MAE RMSE 

train test train test train test 

Convolution-
based 

33.6% 31.7% 2.86 2.75 4.84 4.7 

LSTM-based 40.0% 37.8% 2.91 2.74 5.28 5.16 
Transformer-
based 

29.7% 27.2% 3.1 2.36 5.31 5.55 



 

The results of training the same models on RI-specific data are shown in Table 4. Comparing 
the results achieved on identical models on the LO and RI datasets shows that models trained on 
the RI dataset have better performance, which can be explained by the fact that, on average, LO 
term data have more tokens than RI term data (shown in Fig 4). The LSTM-based model trained 
on RI data exhibited the best performance and lowest error rate. In addition, we should 
emphasize that the models trained on RI had the lowest overall MAE and RMSE values, which 
indicates a low step prediction error. 

 

Table 4:  
Result of training selected models on the RI dataset 

 Accuracy MAE RMSE 

train test train test train test 

Convolution-
based 

48.7% 47% 1.33 1.44 2.59 2.76 

LSTM-based 68.8% 54.3% 0.509 1.29 1.25 2.7 
Transformer-
based 

33.4% 28.6% 1.77 2.25 2.98 3.63 

 

A detailed performance comparison is presented in Fig 7, here are plots with comparison MAE 
values depending on the actual reduction step count (term complexity, in other words). These 
plots are achieved in the following way: all data is split into 31 sets by actual reduction count and 
for each set tested on a corresponding model and using real and predicted values calculated MAE, 
that gives us one dot on the plot with coordinates: (step, MAE). This approach allows the analysis 
of model performance on different term complexities. 

As shown in Fig 7 a simpler term means a lower error, and the maximum error value is higher 
for LO-data trained models. For all plots except Fig 7(e), the training error is close to the test 
error, which indicates that our strategy for preventing overfitting works well on these datasets. 

 

 
Figure 7: MAE depending on term complexity for: (a) Convolution-model and LO-data, (b) 
LSTM-model and LO-data, (c) Transformer-model and LO-data, (d) Convolution-model and RI-
data, (e) LSTM-model and RI -data, (f) Transformer-model and RI -data 



 

11. Conclusions and Discussion 

Using trained models to define the number of reduction steps for a given term is a very promising 
approach for automating the search for the optimal reduction strategy for each term 
independently. In combination with our approach for estimating the computational resources 
required for one reduction step [3], it may decrease the time for the entire term normalization 
process. With these results, we can expand the scope of programming language optimization. 

Our findings show that a simplified term representation is sufficient for predicting count 
reduction steps for a given strategy, but for eliminated depth. The experiments demonstrate that 
models struggle to process long sequences, and terms that are more complex in terms of the 
number of reduction steps tend to yield less reliable predictions. Furthermore, it is crucial to 
consider the removal of information regarding term variables, as this has a substantial effect on 
the behavior of term reduction. 

12. Future work 

The high error rate for models trained on the LO dataset with longer token sequences and error 
growth due to increasing term complexity indicate that using these models for determining the 
optimal choice between the Leftmost Outermost and the Rightmost Innermost strategies is not 
sufficiently robust. Therefore, in future research, we can consider term representation with 
variables or term combinatorial representation [22], which eliminates the use of variables in 
some cases. 

However, training independent models for each reduction strategy and choosing an optimal 
strategy from a given strategy batch is not an effective solution. We can consider training a single 
model that provides the answer to which strategy is the most efficient. Furthermore, it would be 
beneficial to create generative models that identify the optimal redex for each term reduction 
step, which can help develop a balanced strategy in terms of reducing complexity and count 
reduction steps. 
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