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Abstract
Community Detection (CD) is a fundamental issue in Network Analysis, focusing on identifying densely con-
nected node groups within a network. Its broader interpretation, Constrained Community Detection (CCD),
emerges when supplementary constraints are applied, expanding the scope of the problem. CD has been ex-
tensively explored in Network Analysis, boasting numerous developed exact and approximate methods. Con-
versely, CCD encompasses a more extensive array of real-world issues and applications within Network Anal-
ysis. There is a significant need to broaden the spectrum of CD problem variants by establishing rigorous
mathematical models. These models would serve as the foundation for developing new exact and heuristic
algorithms to solve these problems. This paper investigates various approaches to CCD problem (CCDP) mod-
eling. Specifically, we introduce a novel method for problem modeling that encompasses a broader range of
constraints and establish its correlation with the conventional CCDP modeling approach. Additionally, we
demonstrate its distinct advantages. The integration of these approaches presents opportunities for extend-
ing the class of formalized CCDP as polynomial optimization problems. Consequently, these problems can be
efficiently addressed using contemporary nonlinear solvers and can also be transformed into solvable QUBO
models applicable to both quantum and digital annealing.
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Introduction

Network analysis (NA) aims to solve various problems and challenges related to understanding and
extracting meaningful insights from network data [1, 2]. The main problems encountered in NA are
Community Detection, Edge Clustering, Link Prediction, Centrality Analysis, Dynamic NA, Temporal
NA, Heterogeneous NA, Large-Scale NA, Network Alignment, Network Visualization, Network Pri-
vacy and Security, Network Robustness, Diffusion and Information Spread, Sampling and Sampling
Bias, Graph Isomorphism and Matching, etc. [1, 2]. This list demonstrates the breadth and complex-
ity of NA challenges. Therefore, researchers in NA actively work on developing novel algorithms,
techniques, and tools to address these issues and extract meaningful insights from network data of
various types.
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Community Detection and Edge Clustering are two main techniques of network analysis (NA)
aiming to uncover structures and patterns within networks [3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

Community detection (CD, graph partitioning or network clustering) is the process of identifying
groups of nodes within a network called clusters that are more densely connected than nodes in other
clusters.

CD aims to find natural subdivisions into dense clusters within the network called communities.
Community detection is a fundamental aspect of network analysis with wide-ranging implications
across various domains. Identifying communities within networks provides valuable insights into
complex systems’ structure, behavior, and function. Here are some reasons demonstrating the impor-
tance of community detection: it provides an understanding of complex systems, allows performing
Social Network Analysis in particular, to explore collaboration networks and detect criminal net-
works, performs Cultural and Societal Analysis; enables solving many research problems in Biol-
ogy and Bioinformatics, e.g., in Epidemiology and Disease Spread; helps to improve management of
Recommendation Systems, Urban Planning and Transportation Systems, made proper Market Seg-
mentation and study Customer Behavior; boost financial and economic systems by Fraud Detection
and enhancement Cybersecurity issues; rise performance of real networks by improving their Robust-
ness and Resilience; solve numerous problems of Natural Language processing by exploring Semantic
Web and Content Organization. Community detection has a wide range of applications across various
fields, where the goal is to uncover hidden structures, patterns, and relationships within networks.
To understand the numerous applications in the listed research domain, we outline some applications
[1, 2, 8, 11, 13, 14, 15, 16]:

1. Identifying groups of friends or communities in social networks, analyzing information flow
and influence propagation, detecting online communities in forums and social media platforms.

2. Discovering research communities and collaborations in academic citation networks, identify-
ing influential researchers or papers within specific fields.

3. Investigating criminal networks and identifying key actors and their associations, analyzing
patterns of criminal activity and connections.

4. Identifying protein complexes and functional modules in protein-protein interaction networks,
analyzing genetic regulatory networks and identifying co-regulated gene groups.

5. Tracking the spread of diseases through contact networks and identifying potential hotspots,
analyzing transmission patterns and identifying groups at higher risk.

6. Enhancing recommendation algorithms by considering communities of users with similar in-
terests, grouping web pages with similar content for better search results and content organi-
zation.

7. Optimizing routing and resource allocation in communication networks, Identifying clusters of
devices in network traffic analysis.

8. Analyzing transportation networks to identify hubs, sub-communities, and traffic patterns, de-
signing efficient public transportation routes based on community structure.

9. Segmenting customers based on purchasing behavior and preferences, analyzing social inter-
actions to understand consumer trends.

10. Identifying groups of users engaging in coordinated fraudulent activities, detecting anomalies
and security threats by analyzing network behavior.

11. Organizing and categorizing web content based on thematic communities, enhancing search
results by considering community relevance.

Real-world CD problems are often accompanied by additional constraints on nodes, edges and
communities, complicating their modeling and significantly affecting solution methods. This paper



studies the issue of modeling CD problems with additional constraints (Constraint Community De-
tection). In particular, we propose a new approach to modeling the problems as Boolean constraint
optimization problems.

1. Prerequisites

The application domain of CD is far from limited to the above list. Conducting CD is valuable when-
ever understanding network structure and relationships is important for making informed decisions
or gaining insights into complex systems.

CD is conducted on networks, and it is necessary to distinguish networks and graphs. The terms
"network" and "graph" are closely related concepts in the NA and Graph Theory field, but they are
used in slightly different ways and contexts.

A graph is a mathematical object that consists of a set of nodes (vertices) and a set of edges that
connect pairs of nodes. It is denoted as 𝐺 = (𝑉 , 𝐸), where 𝑉 = {1, ..., 𝑛} is a node-set (vertex set), 𝐸
is an edge set. Graphs represent relationships or connections between different entities of various
types. Graphs can be directed or undirected, weighted or unweighted.

A network is a collection of interconnected elements. Networks can represent a wide range of
real-world systems with relationships or interactions between entities. A network can be represented
by nodes representing entities and edges representing interactions of the entities, i.e. any network is
representable by a certain graph.

The community detection problem (CDP) in a network 𝐺 is formulated as an optimization problem,
where the goal is to find a partition of nodes into communities that maximizes a certain objective
function. Different objective functions capture different aspects of community structure. Modularity
[11] and conductance [12] are the two most common.

1.1. Modularity optimization CDP

Modularity 𝑄 quantifies the difference between the observed number of edges within communities
and the expected number of edges in a random graph. In this paper, modularity is chosen as a criterion
of optimization.

The popular formalization (CDP statement) is

• Input: a network 𝐺 by its weighted adjacency matrix 𝑊 = [𝑊𝑢𝑣]𝑢,𝑣∈𝑉 ; the number 𝑘 of desired
communities (or an upper bound on the number of communities).

• Output: a partition 𝐜 of the nodes 𝑉 into communities.

• Objective function: maximization of modularity 𝑄.

The modularity function 𝑄(𝐜|𝐺) assesses the extent to which a partition of network nodes corre-
sponds to the densely-connected node subsets in the network 𝐺 and is defined as

𝑄(𝐜|𝐺) =
1

2𝑚
∑

𝑢,𝑣∈𝑉

(𝑊𝑢𝑣 −
𝑑𝑢𝑑𝑣

2𝑚
)𝟏{𝑐𝑢 = 𝑐𝑣}, (1)

where

• 𝑑𝑢 = ∑𝑣∈𝑉 𝑊𝑢𝑣 is the weighted degree of the node 𝑢, 2𝑚 = ∑𝑢,𝑣∈𝑉 𝑊𝑢𝑣 is the total weight of the
network (in particular, 𝑚 is the number of edges in 𝐺 if the graph is unweighted),



• 𝟏{𝑐𝑢 = 𝑐𝑣} is an indicator function equal to one if 𝑐𝑢 = 𝑐𝑣, otherwise, it is annulled; 𝑐𝑢 = 𝑐(𝑢) ∈

[1, 𝑘] is the community assignment for the node 𝑢 ∈ 𝑉 .

The problem (further referred to as Problem 1) is to find the community assignment 𝐜∗ maximizing
the modularity function (1):

(Problem 1): 𝑄(𝐜∗|𝐺) = max
𝐜∈𝐺

𝑄(𝐜|𝐺), (2)

where 𝐺 is a set of community node assignment over 𝐺.
The vector of integer variables 𝐜 = [𝑐𝑢] ∈ ℤ𝑛

>0 is the network-wide node community assignment
satisfying the following constraints.

1. Labels of communities are in the range [1, 𝑘]:

1 ≤ 𝑐𝑢 ≤ 𝑘, 𝑢 ∈ 𝑉 . (3)

2. Partition constraints. Each node must belong to exactly one community. In other words, 𝐜
induces a partition of 𝑉 .
To formalize this condition, let 𝐶1, ..., 𝐶𝑘 be a set of communities induced by 𝐜. They form a
partition of the node set 𝑉 if

|𝐶1| + ...|𝐶𝑘 | = 𝑛,

𝐶𝑗 ∩ 𝐶𝑗 ′ = ∅, 𝑗 < 𝑗
′
, 𝑗 , 𝑗

′
∈ [1, 𝑘].

(4)

In terms of the introduced integer variables, now, the communities can be represented as

𝐶𝑗 = {𝑢 ∈ 𝑉 ∶ 𝑐𝑢 = 𝑗}, 𝑗 ∈ [1, 𝑘].

3. Symmetry constraints.
∀{𝑢, 𝑣} ⊆ 𝑉 𝑐𝑢 = 𝑐𝑣 ⇔ 𝑐𝑣 = 𝑐𝑢. (5)

4. Transitivity constraints:

• For every triple {𝑢, 𝑣, 𝑤} ⊆ 𝑉 , if 𝑢, 𝑣 are in the same community and 𝑢, 𝑤 are in the same
community, then 𝑣, 𝑤 are in the same community, i.e.

∀{𝑢, 𝑣, 𝑤} ⊆ 𝑉 𝑐𝑢 = 𝑐𝑣 and 𝑐𝑢 = 𝑐𝑤 ⇒ 𝑐𝑣 = 𝑐𝑤. (6)

• For every triple {𝑢, 𝑣, 𝑤} ⊆ 𝑉 , if 𝑢, 𝑣 are in the same community and 𝑢, 𝑤 are in different
communities, then 𝑣, 𝑤 are also in different communities, i.e.

∀{𝑢, 𝑣, 𝑤} ⊆ 𝑉 𝑐𝑢 = 𝑐𝑣 and 𝑐𝑢 ≠ 𝑐𝑤 ⇒ 𝑐𝑣 ≠ 𝑐𝑤. (7)

Also, if 𝑘 is an exact number of communities, the following constraints are used for mathematical
formalization: ∀𝜅 ∈ [1, 𝑘] ∃𝑢 ∈ 𝑉 ∶ 𝑐𝑢 = 𝜅 or

|𝐶𝑗 | ≥ 1, 𝑗 ∈ [1, 𝑘]. (8)



1.2. Approaches to CD

Since CDP is NP-hard, various heuristic and approximation community detection algorithms (CDAs)
are used to find approximate solutions effectively [3, 4, 5, 6, 7, 8, 10, 11, 12, 17, 18, 19, 20, 21]. The most
common algorithms are:

• Louvain Method [17], which is a greedy optimization algorithm iteratively improving modu-
larity by moving nodes between communities;

• Label Propagation [12], where nodes iteratively adopt the labels of their neighbors until stable
labeling is achieved;

• Spectral Clustering [11] involving computing the eigenvectors of specific matrices derived from
the graph to find clusters;

• The Girvan and Newman algorithm [22] is a hierarchical community detection method that
divides communities by eliminating edges with higher betweenness;

• The Clauset community detection algorithm [13] identifies communities by optimizing the
modularity of network partitions;

• The Brandes et al. Community Detection Algorithm is a greedy agglomerative method that
utilizes Linear Integer Programming to optimize modularity for community detection;

• The Spin Glass Algorithm [23] is a hierarchical agglomerative approach that minimizes the
Hamiltonian of the Potts-like spin model, with spin states symbolizing communities;

• The Walk Trap Algorithm developed by Pons and Latapy [24] is a hierarchical agglomerative
method rooted in random walks, initiating from individual clusters.

Most of these methods are applied directly to Problem 1, where the constraints (3)-(7) are present
in-explicitly. In addition, CDP can also be easily reformulated as a binary optimization problem (see
below) and, respectively, be solved by Integer Programming methods [25] and other Nonlinear Pro-
gramming techniques [26].

1.3. Modularity optimization CCDP

Constrained Community Detection (Constrained CD, CCD) [9, 14] is a generalization of the standard
community detection problem where additional constraints, such as (8), are introduced to guide the
process of identifying communities within a network. These constraints can be in the form of prior
knowledge, user preferences, or specific requirements related to the network’s properties. The goal
is to incorporate these constraints into the CD process while optimizing an objective function that
captures the desired community structure, such as modularity and conductance.

Among known constraints in CCD are:

• Community Size Constraints: for preventing the formation of very small or very large com-
munities, enforcing constraints on the sizes of communities are imposed;

Let 𝑛𝑗 , 𝑛𝑗 be a lower and an upper bound on the size of the community 𝐶𝑗 , 𝑗 ∈ [1, 𝑘]. In these
notations, the constraint is

𝑛𝑗 ≤ |𝐶𝑗 | ≤ 𝑛𝑗 , 𝑗 ∈ [1, 𝑘]. (9)



• Balance Constraints: balance requirement for certain community characteristics such as size
of communities, distribution of node degrees and node/edge attributes.

Suppose we are given an upper bound Δ on the difference of sizes of two communities in the
community assignment 𝐜. Mathematically, it can be expressed as

(|𝐶𝑗 | − |𝐶𝑗 ′ |)
2
≤ Δ

2
, 𝑗 < 𝑗

′
, 𝑗 , 𝑗

′
∈ [1, 𝑘]. (10)

• Seed Nodes or Labels: the goal is to ensure that certain nodes are assigned to the specified
communities.

Let 𝐈 ⊆ 𝑉 and 𝐽𝑢 ⊂ [1, 𝑘] be a set of communities, where the node 𝑢 can be assigned for 𝑢 ∈ 𝐈.
This can be written as

𝑐𝑢 ∈ 𝐽𝑢 ⊆ [1, 𝑘], 𝑢 ∈ 𝐈. (11)

• Conflicting constraints: these constraints express the condition that some nodes must be as-
signed to different communities. For their formalization, we introduce a set 𝐈𝑐 , whose elements
are collections of sets of conflicting nodes/ They are assigned to different communities if:

𝐈
𝑐
= {𝐼 ⊆ 𝑉 ∶ ∀{𝑢, 𝑣} ⊆ 𝐼 𝑐𝑢 ≠ 𝑐𝑣}. (12)

• Forcing constraints: these constraints require certain nodes to be assigned to the same com-
munity. Similar to conflict ones, we formalize them as follows. First, we introduce a set

𝐈
𝑓
= {𝐼 ⊆ 𝑉 ∶ ∀{𝑢, 𝑣} ⊆ 𝐼 𝑐𝑢 = 𝑐𝑣} (13)

consisting of the sets of forcing nodes, i.e. the ones that need to be assigned to the same com-
munity.

• Hierarchical Constraints: require hierarchical structuring of the detected communities, where
the communities are nested within larger communities;

• Similarity Constraints: the goal is to ensure a certain level of similarity between nodes and
edges, including their specific attributes.

To Problem 1 complemented by the constraints (9)-(13), we will refer to as Problem 1.G. It would
be very desirable to reformulate Problem 1 and Problem 1.G as integer optimization problems with
variables forming the vector 𝐜, and for this, the approaches described in [27, 28] can be applied.
However, this has not yet been achieved. That is why other modeling approaches are needed.

Additional constraints in CDP require implementing more complex optimization methods than the
standard CD approaches because it is complicated to incorporate additional constraints in the stan-
dard community detection heuristics. These methods utilize mathematical models of CCD problems
(CCDP) that are not uniquely determined. Accordingly, the effectiveness of using the CCD methods
highly depends on these underlying mathematical models.

In this paper, we study approaches to CCDP modelling. In particular, we present a new approach
to problem modeling that covers a larger number of constraints and establish its connection with
the standard approach to CCDP modeling. Combining these two approaches opens up prospects for
expanding the class of formalized CCD problems in the form of polynomial optimization problems.
Respectively, these CCDPs can be solved effectively using contemporary nonlinear solvers [29] and
also reduced to QUBO models [30] solvable by quantum and digital annealers.



2. Modelling CCD problems as binary programs

We will formalize additional constraints using binary variables. In order to accomplish this, first, we
reformulate the integer programming problem (2), whose dimension is 𝑛, as a binary optimization
problem of higher dimension.

2.1. Standard CCD modelling approach

First, we recall the standard approach [9, 14, 31, 32] that allows formalizing some of the abovemen-
tioned constraints.

Suppose variables form a square matrix of binary variables of the size 𝑛:

𝑌 = [𝑦𝑢𝑣]𝑢,𝑣∈𝑉 ∈ 𝔹
𝑛×𝑛

,

where 𝔹 = {0, 1},

𝑦𝑢𝑣 =

{

1 if the nodes 𝑢 and 𝑣 are in the same community,

0, otherwise.
(14)

Then the expressions (1) and (2) for the objective can be rewritten as

(Problem 2): 𝐹(𝑌
∗
) = max

𝑌 ∈𝔹𝑛×𝑛
𝐹(𝑌 ), (15)

𝐹(𝑌 ) =
1

2𝑚
∑

𝑢,𝑣∈𝑉

(𝑊𝑢𝑣 −
𝑑𝑢𝑑𝑣

2𝑚
)𝑦𝑢𝑣. (16)

When the matrix 𝑌 ∗ is found, then the community assignment 𝐜∗ is formed as follows: an arbitrary
node 𝑢 ∈ 𝑉 is selected and is assigned to the community 𝐶1 along with all other nodes belonging to
the same community as 𝑢. The process of community assignment continues iteratively for unassigned
nodes and the communities 𝐶2, ..., 𝐶𝑘 .

Certain constraints must be added to (15).

1. CDP constraints
a) The constraint (3) cannot be written in terms of the variables (14). However, there are CD

algorithms where the number of communities can be specified in advance [12].
b) The constraint (4) holds due to the above way of the node-to-community assignment.
c) The symmetry constraint (5) is formalized as

∀{𝑢, 𝑣} ⊆ 𝑉 𝑦𝑢𝑣 = 𝑦𝑣𝑢. (17)

d) The constraint (6) takes the form of

∀{𝑢, 𝑣, 𝑤} ⊆ 𝑉 𝑦𝑣𝑤 ≥ 𝑦𝑢𝑣 + 𝑦𝑢𝑤 − 1. (18)

e) The constraint (7) becomes

∀{𝑢, 𝑣, 𝑤} ⊆ 𝑉 𝑦𝑣𝑤 ≤ 𝑦𝑢𝑣 + 𝑦𝑢𝑤. (19)

f) Likewise (3), the constraint (8) cannot be written in terms of 𝑌 -entries.
2. CCDP constraints are only partially representable in terms of the 𝑌 -elements.

a) (9), (10) and (11) are not formalized in terms of 𝑦𝑢𝑣.



b) The condition (12) can be written as follows:

∀𝐼 ∈ 𝐈
𝑐
∶ ∀{𝑢, 𝑣} ⊆ 𝐼 𝑦𝑢𝑣 = 0. (20)

c) Similar to (20), the constraints (13) are rewritten as:

∀𝐼 ∈ 𝐈
𝑓
∶ ∀{𝑢, 𝑣} ⊆ 𝐼 𝑦𝑢𝑣 = 1. (21)

Thus, among the above CD and CCD constraints, five groups are not formalized in terms of 𝑦𝑢𝑣 and
require other approaches for formalization.

The dimension of this CCDP given by (15)-(21) (further referred to as Problem 2.G) is 𝑛2. It can be
reduced to 𝑛2−𝑛

2
if the symmetry constraint is utilized for eliminating the variables 𝑦𝑢𝑣 satisfying the

relation 𝑢 ≥ 𝑣.
The advantages of the formalized constraints in Problems 2, 2.G and objective functions are their

linearity, while the disadvantage is the unknown, at the moment, the approach to formalizing the rest
of the constraints in terms of entries of 𝑌 .

2.2. New CCD modelling approach

In this section, we present our approach to CCD modelling, also utilizing binary variables.
Let us introduce another matrix of binary variables

𝑋 = [𝑥𝑢𝑗 ]𝑢∈𝑉 ,𝑗∈[1,𝑘] ∈ 𝔹
𝑛×𝑘

,

where

𝑥𝑢𝑗 =

{

1 if 𝑐𝑢 = 𝑗 ,

0, otherwise.

In terms of these variables, the indicator function in (1) is representable as

𝟏{𝑐𝑢 = 𝑐𝑣} = 𝑓1(𝑋, 𝑢, 𝑣) = 1 −
1

2

𝑘

∑

𝑗=1

(𝑥𝑢𝑗 − 𝑥𝑣𝑗 )
2

that allows rewriting the modularity function (2) in terms of the introduced binary variables:

𝑄′(𝑋 ) = 1
2𝑚

∑𝑢,𝑣∈𝑉 (𝑊𝑢𝑣 −
𝑑𝑢𝑑𝑣
2𝑚

)𝑓1(𝑋, 𝑢, 𝑣) = (22)

𝐴0 +∑𝑢,𝑣∈𝑉 𝑎𝑢𝑣 ∑
𝑘
𝑗=1(𝑥𝑢𝑗 − 𝑥𝑣𝑗 )

2,

where

𝐴0 = 2∑𝑢,𝑣∈𝑉 𝑎𝑢𝑣;

𝐴 = [𝑎𝑢𝑣]𝑢,𝑣∈𝑉 ∶ 𝑎𝑢𝑣 = − 1
2
(𝑊𝑢𝑣 −

𝑑𝑢𝑑𝑣
2𝑚

), 𝑢, 𝑣 ∈ 𝑉 .

We came to the binary formulation of problem (2) (further referred to as Problem 3): find the
binary matrix 𝑋 ∗, where the minimum of 𝑄′(𝑋 ) is attained, i.e.,

(Problem 3): 𝑄′
(𝑋

∗
) = min

𝑋∈ℝ𝑚×𝑘
𝑄
′
(𝑋 ), (23)



where 𝑄′(𝑋 ) is given by (22), and the one-hot constraints hold:

𝑘

∑

𝑗=1

𝑥𝑢𝑗 = 1, 𝑢 ∈ 𝑉 . (24)

Problem 3 is the constrained binary optimization problem with the quadratic objective (22) and
linear equality constraints (24). Let us formalize in terms of 𝑋 -entries the rest of the above CDP and
CCDP constraints.

1. CDP constraints.
a) The condition (3) holds automatically since the matrix 𝑋 has 𝑘 columns.
b) Fulfillment of the condition (4) is ensured by the one-hot constraint (24).
c) In order to write out the symmetry constraint (5) in terms of 𝑋 , first, we establish con-

nection between elements of the matrices 𝑋 and 𝑌 :

𝑦𝑢𝑣 = ∑

𝑗∈[1,𝑘]

𝑥𝑢𝑗𝑥𝑣𝑗 , {𝑢, 𝑣} ⊆ 𝑉 . (25)

Making the substitution (25) into (17), we come to the quadratic equality constraint:

∀{𝑢, 𝑣} ⊆ 𝑉 ∑

𝑗∈[1,𝑘]

𝑥𝑢𝑗𝑥𝑣𝑗 = ∑

𝑗∈[1,𝑘]

𝑥𝑣𝑗𝑥𝑢𝑗 ,

which is, clearly, redundant.
d) The constraints (6) and (7) also hold automatically.
e) The condition (8) is easily written in terms of the new variables, taking into account that

|𝐶𝑗 | = ∑𝑢∈𝑉 𝑥𝑢𝑗 , 𝑗 ∈ [1, 𝑘]:

∑𝑢∈𝑉 𝑥𝑢𝑗 ≥ 1, 𝑗 ∈ [1, 𝑘].

2. CCDP constraints:
a) In terms of 𝑥𝑢𝑗 , the constraint (9) looks like:

𝑛𝑗 ≤ ∑

𝑢∈𝑉

𝑥𝑢𝑗 ≤ 𝑛𝑗 , 𝑗 ∈ [1, 𝑘]. (26)

b) In terms of 𝑋 -entries, the constraint (10) is:

(∑

𝑢∈𝑉

𝑥𝑢𝑗 −∑

𝑢∈𝑉

𝑥𝑢𝑗 ′)
2
≤ Δ

2
, 𝑗 < 𝑗

′
, 𝑗 , 𝑗

′
∈ [1, 𝑘]. (27)

c) In terms of 𝑥𝑢𝑗 , the condition (11) is represented as

∑

𝑗∈𝐽𝑢

𝑥𝑢𝑗 = 1, 𝑢 ∈ 𝐈. (28)

d) The binary representation of (12) is

∀𝐼 ⊆ 𝐈
𝑐
∶ ∑

{𝑢,𝑣}⊆𝐼

𝑘

∑

𝑗=1

(𝑥𝑢𝑗 − 𝑥𝑣𝑗 )
2
= 𝐶

2
|𝐼 | ⋅ 2 = |𝐼 |(|𝐼 | − 1). (29)



e) The constraint takes the form of

∀𝐼 ⊆ 𝐈𝑓 ∶ ∑

{𝑢,𝑣}⊆𝐼

(2 −

𝑘

∑

𝑗=1

(𝑥𝑢𝑗 − 𝑥𝑣𝑗 )
2
) = |𝐼 |(|𝐼 | − 1)

that can be simplified to

∀𝐼 ⊆ 𝐈𝑓 ∶ ∑{𝑢,𝑣}⊆𝐼 ∑
𝑘
𝑗=1(𝑥𝑢𝑗 − 𝑥𝑣𝑗 )

2 = 0. (30)

The dimension of Problem 3 is 𝑛 × 𝑘.
It is seen that Problem 3 is a binary problem with a convex quadratic objective function and linear

constraints, i.e. it is quadratic binary problem. Also, we came to its CCD generalization having the
form of Problem 3 with the additional constraints (26)-(30), further referred to as Problem 3.G. These
constraints can be present in any combination.

Due to the presence of the quadratic constraints (27)- (30), it belongs to the class of quadratically
constrained binary optimization problems with the quadratic objective and constraints. Moreover,
the constraints (29) and (30) are quadratic equality constraints, i.e. they are non-convex in contrast
to the convex objective (22) and the convex inequality constraints (27). Thus, attacking Problem 3.G
we deal with a non-convex binary optimization problem.

3. Discussion

Let us compare the models Problems 2 and 3 and their generalization, Problems 2.G and 3.G.
Comparing the dimensions of the models, the advantage remains with Problems 3 and 3.G since the

upper bound 𝑘 on the number of communities is normally much smaller than the number of nodes 𝑛,
respectively, 𝑛2 ≫ 𝑛 ⋅ 𝑘.

In contrast to Problem 3 and Problem 3.G, Problem 2 and its CCD generalization, Problem 2.G, are
linear binary problems but do not completely formalized.

Accordingly, only the models Problem 3 and Problem 3.G coped with formalizing the CDP and
CCDP as a binary optimization problem. The obtained models have the quadratic objective repre-
senting modularity and linear or quadratic constraints. Therefore, the models can be directly solved
by general nonlinear solvers, disregarding if the binary variables are supported.

The variables of the matrices 𝑋 and 𝑌 have different meanings. Namely, the elements of X reflect
the relationship between two nodes, while the elements of Y reflect the relationship between a node
and a community. Supposedly, other constraints can be formalized by a combination of 𝑋, 𝑌 -entries,
thus covering a much wider class of CCDPs.

4. Conclusion

This paper attacks a critical task in Network Analysis called Constrained Community Detection
(CCD). Binary optimization was chosen as a modeling tool. A new approach to modeling these
problems is presented, significantly expanding the set of formalized constraints. A comparison with
the standard modeling approach is made, demonstrating the advantages of our approach. Both ap-
proaches can be combined, forming new CCD models in the form of polynomial binary optimization
problems. Nonlinear, including polynomial, solvers can be used to solve them. The polynomial and
binary nature of the models also allows their reduction to popular QUBO models, which are solved
very effectively on quantum and digital annealers.
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