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Abstract 
The work is devoted to the development of a research methodology for one class of degenerate biological 
models. The work examines the critical states of systems consisting of several subpopulations, as well as 
the conditions under which bifurcations (catastrophes) are possible in the system. 
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1. Introduction 

The Rhesus factor, aF one of the quality indicators of blood, was first identified during the study of 
the body of the Rhesus monkey. Rhesus factor is an antigen (protein) located on the surface of red 
blood cells (erythrocytes). Scientists Landsteiner (Nobel prize winner for the discovery of the blood 
group) and Wiener found it about 55 years ago. Their discovery helped establish that about 85% of 
people have the Rh factor and are therefore Rh-positive, while the other 15% who do not have it 
are Rh-negative. For the most part, neither a positive nor a negative Rh factor poses any threat to a 
person. 

To understand the reasons for the phenomenon discussed above, consider a separate couple of a 
man and a woman, in which the man is Rh-positive and the woman is Rh-negative. In this case, 
theoretically, a Rhesus conflict between the organism of the mother and the child is possible. It 
begins when the child imitates the Rh factor of the father, which happens in most cases, because 
this genetic information is contained directly in the sperm shell. If the Rhesus gene is inherited 
from the father, the baby's blood in the mother's womb will become incompatible with her blood. 

The essence of the conflict is that the Rh factor of the fetus, passing through the placental 
barrier, enters the blood of the mother, her body, perceiving the fetus as a foreign body, produces 
protective antibodies (bilirubin). Bilirubin can affect the brain of the unborn child and cause 
hearing and vision defects in it. At the same time, since the number of fetal erythrocytes 
continuously increases, the liver and spleen, trying to quickly produce red blood cells, increase 
significantly in size. Over time, the content of erythrocytes and hemoglobin in the child's blood 
decreases and their level becomes dangerously low. Rh-conflict can sometimes cause dropsy in 
children or a tumor of the fetus, lead to a fatal case in an infant. 

During the first pregnancy, Rhesus conflict develops quite rarely, because the mother's immune 
system encounters foreign erythrocytes (red blood cells) for the first time, and, accordingly, the 
mother's body produces few antibodies that are unfavorable for her baby. With the next pregnancy, 
the probability of a threat during the conflict increases significantly. Since the antibodies are still in 
the woman's blood, they break through the placental barrier and begin to destroy the red blood 
cells of the unborn baby. 

The mass share of people with a positive Rh factor is approximately 85% of the total population 
of the planet, respectively, 15% of representatives of the −Rh  race. It is clear that if +Rh  
representatives were determined only by a combination of dominant alleles YY , the frequency of 
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birth of babies with −Rh  would be ( ) 0225,015,0
2
=  an order of magnitude less than known 

statistical data. And therefore, among the representatives there are individuals represented by a 
mixed genotype Yy , but at the same time have phenotypic features of the subpopulation +Rh . 

Applied problems, for which the mathematical model of intergroup interactions [3], [5-6] is 
applicable, take place in various fields of science, such as genetics [4], biology, demographic studies 
[7], ecology, etc. 

2. Problem statement 

Consider an Rh-positive person as two possible combinations:  
• two dominant genes YY and a combination of a dominant and a recessive gene Yy, the 
subgroups corresponding to them will acquire the values x1, x2, respectively;  
• Rh-negative people represented by a set of two recessive genes yy and subgroup x3. 
From now on, we will consider the system of interaction of two genomes - positive and negative 

Rh. Suppose that we have 100 people in a certain spatial area, 85 of whom are Rh+, and 15 are Rh-. 
In the corresponding system, there are 200 genes, 30 of which are recessive and are represented by 
the x3 subpopulation. And the total number N of the recessive gene y must satisfy the condition 
(N/200)^2=0.15. It is easy to show that the number of recessive genes will be N=77.5, 30 of which 
are represented by Rh-negative people with the yy gene combination. Therefore, in order to 
maintain the ratio (Rh+)/(Rh-)=85/15, there must be 15% Rh-negative people with the yy genome, 
47.5% Rh+ people with a mixed Yy genotype, and 37.5% Rh+ and combination of the YY genome. 

The main tasks of the study are: 
• development of a mathematical model of Rhesus agglutinogen dynamics among the human 
population; 
• identification of parameters and initial conditions of the mathematical model 
• resolution of the numerical experiment 
• analysis of the obtained results 

3. Mathematical modeling 

The research is based on the idea of a population as a set of individuals, which can be conditionally 
divided into n subpopulations that are genetically more or less homogeneous, but differ 
significantly from each other. They are not reproductively isolated, and there is a certain 
probability of the offspring of an individual from the i-th subpopulation entering the j-th 
subpopulation. The differential model of the system can be written in a general form as follows [1]: 
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where xj is the size of the j-th subpopulation, and fi(x) is a function describing the total 
reproductive capabilities of the i-th subpopulation, and Aji is the proportion of the offspring of the 
i-th subpopulation that goes to the j-th.  

We assume that for any i 

1=
j
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The function fi(x) reflects the well-known logistic law 

i

n

l

lii xx
K

axf 







−= 

=1

1
1)( .        (2) 

where ia  reflects the reproductive capabilities of the subpopulation with the index i and K is the 

capacity of the habitat of the population.  
According to (1), (2), the growth of a subpopulation approaches zero in the case when its 

number approaches zero or when the total number of all subpopulations approaches the maximum 
possible ecological capacity of the environment K. 



The system (1), (2) is not Voltaire in the sense that its trajectories can cross the coordinate axes 
and, for example, the local behavior of the system in the vicinity of the coordinate origin is 
determined by its properties not only in the first quarter. 

To study the equilibrium points [2] of the system (1), (2), we use the standard Lyapunov 
analysis. It is easy to see that one of the equilibrium points is the zero point (origin of coordinates).  

In addition, there is an infinite number of equilibrium points that lie on the plane 

Kx
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The nature of the location of the equilibrium points is quite natural from an ecological point of 
view. Of course, in the case of a complete absence of individuals of this species, they cannot arise 
from nothing. If the subpopulations occupy the same ecological niche and do not differ in the 
resources they consume, their arbitrary distribution of numbers in this niche is balanced. 

Theorem 1. The system (1), (2) is degenerate in the neighborhood of singular points of the 
stationary hyperplane (3). 

Proof. The general form of the i-th component of the Jacobian matrix of systems (1), (2) is as 
follows:  
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According to (3), the general form of the ith component of the Jacobi (J) matrix of the system (1), 
(2) at the points of the stationary hyperplane will take the form:  
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Since ijJ  does not directly depend on j , is valid  

hipi JJ = , 
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,1, nhp = , 

from which it follows that the column vectors of the Jacobian matrix are linearly dependent, 

( ) 0=JDet , 

and therefore the system is degenerate at singular points of the stationary hyperplane  
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The theorem is proved. 
We consider the model of Rhesus agglutinogen dynamics in the form of a system of intergroup 

dynamics (1) with a logistic function (2) in basic quality, which in the case will take the form 
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4. Solving of the problem 

When determining the coefficients ijA  of system (4), we will be guided by known data on the 

equilibrium distribution of subpopulations of people with different indicators of the Rh factor. The 

coefficient ijA  should be proportional to the mass fraction of the j-th subpopulation in the 

equilibrium distribution 15:5,47:5,37:: 321 =xxx  and the mass fraction of the increase of the 



subpopulation with the index i during interaction with other subpopulations. The structure of the 
corresponding interaction is presented in Table 1. 

 
Table 1 
Scheme of reproduction of the Rhesus factor dynamics model  

Father / mother 
1x  

2x  3x  

1x  1x  21 5,05,0 xx +  2x  

2x  21 5,05,0 xx +  321 25,05,025,0 xxx ++  32 5,05,0 xx +  

3x  2x  32 5,05,0 xx +  3x  

 

According to the closed system condition (
=

=
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_____

3,2,1=j ), the transition coefficients will 

acquire the values given in the Table 2. 
 
Table 2 

Coefficients ijA  of system (4) 

i / j 1 2 3 

1 0.67 0.14 0 
2 0.33 0.43 0.14 
3 0 0.43 0.86 

 
Taking into account the peculiarities of the interaction of Rhesus-agglutinogen among the 

human population and the stationary distribution 15,0:475,0:375,0:: 321 =xxx , the parameters of 

the growth rate will be presented in the following form: 
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where ia  is the reproductive potential of the i-th subpopulation; 

 ]1;0[iF  - probability of Rhesus conflict; 

 iQ  - compatibility of the i-th subpopulation in the equilibrium distribution. 

The values of parameters iF , ia , 
_____

3,2,1=i  are as follows: 

34,01 =F , 17,02 =F , 03 =F ,  66,01 =a , 83,02 =a , 13 =a .  

Proceeding from the provisions set out above, as well as from the assumption that the capacity 
of the area of human existence is limited to some finite value (this value is in most cases sufficiently 
large compared to the value of the initial conditions).  

The range capacity value was conditionally chosen equal to 100. We have a differential model of 
the dynamics of the Rhesus factor among the human population in the following form: 
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5. Numerical results 

In Figure 1 presents the dynamics of the system with rather small compared to the parameter K  
and different initial conditions. As we can see, with the passage of time, not only is the numerical 
priority of the respective subpopulations established, but also the final ratios are almost 
indistinguishable from each other. 

 

a)           b) 

Figure 1:  The dynamics of the system (5) at a) 50,1;75,4;75,3 0
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Note that in real ecological systems, the initial number of subpopulations can be arbitrary and 
even exceed the range's capacity. 

Another factor of the system, on which the end point on the attractor significantly depends, are 
its parameters. Figure 2 shows the diagram of the dependence of the final equilibrium point on the 

coefficients 33A  of the system and 3a  respectively. 

  

     a)           b) 

Figure 2: Graph of the dependence of the final equilibrium point on the coefficient a) 33A ; b) 3a  

When the coefficient 33A  (Figure 2a) changes, the relative share of the third subpopulation 

increases exponentially. Moreover, not only the first, but also the second derivative of the 
corresponding curve reaches a positive value. The other two curves, gradually decreasing, maintain 



a proportional relationship between them. It can be concluded that the transition coefficients in 

general and in particular 33A  are such parameters of the system that have a significant impact on 

its dynamics, therefore, by influencing them, it is possible to effectively control the system. 
The graph (Figure 2b) illustrates the change in the end point of equilibrium when the parameter 

3a  changes. The end point clearly depends on the propagation speed parameter ia , but it varies 

only within certain limits. Despite the fact that the influence of the system coefficients is quite 
significant, the topology of the phase portraits does not undergo significant changes. Such changes 
occur only when parameters pass through bifurcation values, along with a qualitative change in the 
topological structure of the system's phase portrait. 

6. Conclusions 

Based on a mathematical model of subpopulation dynamics with a logistic function as a basic 
quality, the system of Rhesus agglutinogen dynamics among the human population was 
investigated. The applied part of the problem is studied in detail, as a result of which an applied 
interpretation of the equilibrium points of the model is given and a methodology for parameter 
identification is proposed. A number of model stability studies were conducted, the results of which 
showed that the mathematical model of Rhesus agglutinogen dynamics is sufficiently resistant to 
disturbances and external influences.  

It was found that →t  the ratio of people with different indicators Rh does not significantly 
depend on the initial state of the system (initial ratio of numbers of subpopulations). The 
dependence of the final ratio of subpopulations of people with different indicators Rh on the 
reproduction rate coefficients and transition coefficients was investigated. According to the 
research results, it can be stated that the transition coefficients are decisive for the system, and 
when the growth rate coefficient changes, the dynamic changes, but the phase portrait of the 
system can undergo irreversible changes only when its sign changes. 

 

References 

[1] Kuzenkov, O., Serdiuk, T., Kuznetsova, A., Kuznetsova, Y., Tryputen, M.,  Mathematical model of 
dynamics of homomorphic objects, CEUR Workshop Proceedings, 2019, 2516, pages 190–205  

[2] Differential Equations, Dynamical Systems, and an Introduction to Chaos, 3rd edition, Robert 
Devaney, Morris W. Hirsch, Academic Press, 2012 

[3] Anana-Sapfo Malaspinas, Montgjmery Slatkin, Yun S. Song. Match probabilities in a finite, 
subdivided population Original Research Article/ Theoretical Population Biology, Volume 79, 
Issue3, May 2011, Pages 55-63 

[4] Torben Tvedebrink Overdispersion in allelic counts and  correction in forensic genetics / 
Theoretical Population Biology, Volume 78, Issue 3, November 2010, Pages 200-210 

[5] R. Aguilée, D. Claessen, A. Lambert. Allele fixation in a dynamic metapopulation: Founder effects 
vs refuge effects. Theoretical Population Biology, 2009, 76 (2), pp.105-117.  

[6] Yu Tian, Jianguo Wu, Andrew T. Smith, Tianming Wang, Xiaojun Kou, Jianping Ge, Population 
viability of the Siberian Tiger in a changing landscape: Going, going and gone?/ Ecological 
Modelling, Volume 222, Issue 17, September 2011, Pages 3166-3180 

[7] Jacob P. Kritzer, Campbell R. Davies, Demographic variation within spatially structured reef fish 
populations: when are larger-bodied subpopulations more important?/ Ecological Modelling 
,Volume 182,Issue 1,25 February 2005,Pages 49-65. 


	1. Introduction
	2. Problem statement
	3. Mathematical modeling
	4. Solving of the problem
	5. Numerical results
	6. Conclusions
	References

