
Enhancing Self-Adaptive Cyber-Physical Systems using
Federated Machine Learning

Nabila Azeri1, Ouided Hioual2 and Ouassila Hioual2, 3

1 ICOSI Laboratory, Abbes Laghrour University, Khenchela, Algeria
2 Abbes Laghrour University, Khenchela, Algeria
3 LIRE Laboratory, Constantine 2 University, Algeria

Abstract
Cyber-physical systems (CPS) seamlessly integrate physical elements with computing and communication
technologies for process monitoring and control. These systems, operating in dynamic environments, face
challenges due to shifting user requirements, device dynamics, and environmental fluctuations, potentially
impacting service quality. The development of adaptive CPS becomes essential to respond effectively to
these challenges, requiring dynamic reconfiguration, resource optimization, and intelligent responses.
While numerous self-adaptation approaches exist, most rely on Machine Learning (ML) techniques,
emphasizing performance gains but often neglecting security and privacy concerns tied to centralized data
processing.
To harness ML’s potential in CPS comprehensively, we advocate a holistic approach that prioritizes security,
data privacy, and adaptability. In this paper, we introduce an innovative approach to adaptive CPS
development, leveraging Federated Machine Learning (FML) technology. This approach reconciles
adaptability with data security and privacy.

Keywords
Cyber-physical systems, Federated Machine Learning, Multi-layer architecture, TensorFlow Federated 1

1. Introduction

Cyber-physical systems (CPS) are complex systems that integrate physical components with
computing and communication technologies to monitor and control physical processes [1]. These
systems are ubiquitous in various fields, including transportation, healthcare, manufacturing, and
energy [2]. Nowadays, CPS have evolved from stand-alone computers to highly dynamic and
complex systems with ability to synergize real-time data processing, control, and communication
to facilitate seamless interactions between the digital and physical worlds. As CPS grow in
complexity and functionality, they become instrumental in enhancing efficiency, optimizing
resource utilization, and enabling intelligent decision-making. However, this increasing
complexity brings forth a challenge: how to ensure that these systems not only meet their design
requirements but also adapt and evolve in response to rapid environmental change.

The need for adaptation within CPS stems from their inherently intricate nature [3]. Unlike
traditional systems, CPS exhibit a high degree of heterogeneity, involving diverse components
that operate at different levels of abstraction. Moreover, the dynamic and often unpredictable
nature of the physical world adds an additional layer of complexity. As a result, the design and
development of CPS that can effectively navigate this complexity and remain in compliance with
requirements have become a principal concern [4, 5].

In the face of these challenges, a paradigm shift is required in how we conceptualize the
design and operation of CPS. The conventional approach of designing systems with static, pre-
defined solutions is no longer sufficient. Instead, there is a growing demand for self-adapting CPS,
which is systems that can autonomously monitor their environment, assess the perturbations or

TACC 2023: Tunisian-Algerian Joint Conference on Applied Computing, November 6 - 8, Sousse, Tunisia

 azeri.nabila@gmail.com (N. Azeri); hioual.ouided@univ-khenchela.dz (O. Hioual); hioual_ouassila@univ-
khenchela.dz (O. Hioual)

© 2023 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

http://ceur-ws.org/

variations occurring within it, and dynamically adjust their behavior to ensure continued
functionality and compliance with performance criteria.

To support developing such new functionalities, Machine Learning (ML) algorithms were
merged. These latter have achieved impressive results providing solutions to practical large-scale
problems. ML offers a powerful set of approaches, techniques, and predictive models that can
process a large amount of information and help solve many use cases efficiently [6-8].

Numerous studies have explored the utilization of ML techniques to develop flexible and
adaptive CPS capable of responding to changing environmental conditions. These techniques
often involve a central storage of data, followed by the training of a model on this centralized data
repository. This approach facilitates comprehensive analysis and decision-making on a global
scale. However, this centralized approach gives rise to potential challenges concerning data
privacy and security, as all the information is consolidated in a single location. This situation calls
for the emergence of Federated Machine Learning (FML), a methodology that embraces a
decentralized perspective while retaining data on local devices or servers, such as mobile phones
or IoT devices. In this paradigm, the model is disseminated and trained locally on these
distributed datasets, eliminating the necessity of transferring data to a central repository [9].

This research introduces an innovative approach for the development of self-adaptive CPS.
The approach we propose is based on the FML paradigm, which gives CPS the ability to
dynamically adjust their behaviors in real time, while ensuring data privacy and security. Our
approach has been validated through a real-world case study focused on predicting faults in
industrial CP

The rest of the paper is structured as follows. Section 2 presents some related work. Section
3 introduces our previous work concerning a centralized architecture for CPS. Section 4 describes
the proposed FML-based architecture. The implementation and application of our architecture
on a real-world example are detailed in Section 5. Finally, some concluding remarks and
directions for future work are given in Section 6.

2. Related Work

In recent years, the implementation of CPS using ML has gained substantial attention in the
research community. This section explores some works in the domain of CPS implementation,
highlighting the integration of ML techniques. These works leverage centralized data processing
and model training, pooling data from various sources to build global models. For instance, in
Authors in [10] propose an innovative approach that harnesses the power of ML to enhance the
security and reliability of Medical Cyber-Physical Systems (MCPS). In their work, they introduce
the Improved Wireless Medical Cyber-Physical System, a framework that leverages ML
techniques to protect patient health data and ensure data integrity in wireless medical
environments. At the core of this framework is the use of ML, specifically deep neural networks,
for attack detection and classification. The authors recognize that the heterogeneity of devices in
MCPS, including mobile devices and body sensor nodes, poses security vulnerabilities. To
mitigate these threats, they employ ML as a robust security solution.

In [11], authors propose a complete real-world CPS implementation cycle, ranging from
machine data acquisition to processing and interpretation. In fact, they propose a CPS for machine
component knowledge discovery based on clustering algorithms using real data from a
machining process. More precisely, they propose the development of a component behavior
multidimensional pattern using machine learning clustering techniques. Clustering algorithms
aim to partition a centralized dataset into clusters, interpreted as behavior patterns. Some
properties of these clusters like the mean can give insight into their interpretation.

In [12], physical data machine learning approaches are developed and integrated for
detecting cyber physical attacks in cyber manufacturing system. Authors developed two
examples with simulation and experimentation to test and demonstrate the physical data
machine learning security approach. Three different machine learning algorithms are

implemented with image classification. The anomaly detection method returned the highest
accuracy of 96.1% in detecting a malicious defect in printing process.

Authors in [13] provide a self-adaptive and scalable prediction/detection mechanism for
CPS. They propose a framework called AAPF-CPS, which combines several machine learning
algorithms with statistical tests. With multiple classification algorithms, AAPF-CPS analyzes CPS
network logs simultaneously and in real-time. Friedman's test is also used to rank each classifier
for each context in AAPF-CPS.

In [14], authors present an approach for anomaly detection regarding predictive
maintenance in a CPS. In particular, they are focusing on historical sensor data from a real reflow
oven that is used for soldering surface mount electronic components to printed circuit boards.
The sensor data comprises information about the heat and the power consumption of individual
fans inside a reflow oven. The data set contains time annotated sensor measurements in
combination with additional process information over a period of more than seven years.

Authors in [15] propose a novel approach to address the challenges associated with
implementing CPS in Industry 4.0. To tackle this, the study introduces an integrative machine-
learning method aimed at reducing computational complexity and improving CPS applicability as
a virtual subsystem. The approach leverages the power of the Random Forest algorithm and a
time-series deep-learning model based on Long Short-Term Memory networks. This combination
enables real-time monitoring and facilitates faster corrective adjustments for machines within
the CPS environment. A key innovation in this method is the early fault detection mechanism,
which triggers an alarm well before a machine failure. This proactive approach empowers shop-
floor engineers to make necessary adjustments or perform maintenance, mitigating the impact of
machine shutdown.

Centralized ML solutions, while effective in optimizing CPS operations, inherently
concentrate sensitive data in a single location. This concentration poses significant risks, such as
potential data breaches, and raises concerns about user privacy. Additionally, centralization can
introduce single points of failure, compromising system reliability, especially in scenarios where
data transmission or the central processing unit becomes concealed. By embracing a
decentralized solution like FML, we aim in this paper to enhance adaptability while addressing
critical concerns surrounding data security and privacy in CPS, enabling a safer and more resilient
future for these systems.

In the next section, we will give and explain briefly our earlier research contributions. By
examining these pre-existing contributions, we can better explain the evolutionary way that has
led us to our current approach.

3. A Multi-layer Architecture for CPS

CPS are characterized by their distribution and loose coupling of both cyber systems and physical
systems, all of which are monitored and controlled according to user-defined semantic laws [3].
It is important to define the architecture of this system as well as its components and their
functionalities besides the used technology. The general objective of a CPS is to collect multiple
data from various sources such as the data received from the sensors installed in the different
production machines. Thereafter, we convert them into information in the cyber world in order
to process, to understand them, and then turn them into appropriate actions in the physical
world. Therefore, our architecture presented in [16] contains the main software modules that
will ensure CPS functionalities such as: resource/data management, process planning, and the
different modules which convert machines to be self-aware, self-learning and self-reconfiguring.
As shown in Figure 1, the proposed architecture consists of the following layers:

Figure 1. The proposed architecture [16]

Physical layer: It represents the basic local assembly of machines connected to the Internet via
the OPC-UA (Open Platform Communications Unified Architecture) protocol to ensure
communication standardization between different units. This layer consists mainly of sensors
and actuators. Sensors are used to collect signals from machines and then transform them.
Whereas, the actuators take electrical signals and combine them with a source of energy to create
a physical movement.
Data/Resource Processing Layer: This layer collects data from various sources, and then it
interacts directly with the data producer at the physical layer and the data storage in the
Fog/Cloud. It contains the following modules: the conditioner, the data management, the
resource management, the planning process, the monitoring and control module and the request
management module.
Data Storage Layer: This layer serves as the storage base for the CPS and it is distributed
between the Fog and the Cloud, and this depends on the nature of the data and the time required
to process it.
Learning Application Layer: This layer ensures different functionalities such as: Resource
allocation, QoS analysis, Process optimisation, Predictive maintenance and Fault detection.
Within this layer, a variety of ML techniques, including regression, classification, clustering, and
reinforcement learning, take center stage. These models are meticulously trained on a rich
dataset, combining historical knowledge with real-time information, culminating in the ability to
make predictions and informed decisions that drive the system's adaptive capabilities.

To demonstrate the viability and effectiveness of this layer, we have implemented it in a
practical context. This application aligns with the realm of : Failure Prediction Using Supervised
and Unsupervised Learning Algorithms [16]. In this real-world scenario, our system leveraged

the power of supervised and unsupervised learning algorithms to predict failures in a dynamic
environment such as CPS.

4. Towards a FML-Based architecture for CPS

This section provides an overview of the proposed FML-based architecture, focusing on the
components of the architecture and how they interact with each other. We will only present what
we have added compared to our previous architecture in terms of FML. As shown in Figure 2, the
architecture consists of three main entities: local collectors, local aggregators and a central
server.

4.1. Architecture Components

Local collectors: Local Collectors are responsible for collecting and managing data from the local
devices or nodes within a particular group or federation. They can encompass a wide range of
devices, including industrial equipment, individual smartphones, IoT devices, sensors, and other
endpoints. The Local Collectors ensure that data remains secure and private, often by aggregating
or summarizing the data before it’s sent to the aggregator. The primary focus of Local Collectors
is to prepare and send relevant information to the aggregator, respecting privacy and security
constraints.
Local Aggregators: Local Aggregators are responsible for aggregating the locally computed
model updates from devices or nodes within their own federation. Each device trains its model
locally using its own data, and then these local models are sent to the Local Aggregator. The Local
Aggregator combines the models in some way, often by averaging the model parameters, to
generate a global model update. Then, this global model update is shared with other federated
groups or used to update the global model maintained by the server. Local aggregators facilitate
collaborative learning across devices while ensuring that sensitive data remains on the local
devices.
Central Server: The Central Server has a crucial role in the FML framework. Its main goal is to
facilitate the aggregation of knowledge that originates from various local aggregators. Due to
privacy considerations, our architecture shares only the learned data that is coordinated by the
central server, while the private or sensitive data will stay at the local aggregators. Due to
potential variations in data types and machine learning models across local aggregators, the
Models Manager module in our architecture assumes the role of overseeing and harmonizing
these diverse models, ensuring effective management and coordination. The updating of the
global model is achieved through a synchronization process that involves both the global model
and the local aggregators. This synchronization is achieved by the Models Aggregation module,
which manages the coordination between these components.

Figure 2. The proposed FML-based architecture

4.2. Mode of Operation

In our architecture, the goal is to collaboratively train a global model using data from N clients,
each having their own local dataset denoted as Di. This dataset consists of a set of Ki labeled pairs:

𝐷𝑖 = {𝑋𝑖
𝑘𝑖 , 𝑌𝑖

𝑘𝑖}𝑘=1
𝑘𝑖 (1)

Where Xi
ki is referred to the training input, and Yi

ki is the corresponding label.

In our architecture, the process revolves around collaborative training between clients and a
central server. The goal is to update a global model by utilizing the local models trained on each
client's local data. Algorithm 1 captures the behavior of each client in our architecture.

Algorithm 1 : Client Side

 Input :M0 : initial global model

 D : Local data

 Output : the gradients of the local loss
1 Mlocal M0
2 Mlocal TrainLocalModel(Mlocal , D)
3 gradientsLocal ComputeGradients(Mlocal , D)
4 SendToServer(gradientsLocal)

The client-side process begins with the initialization of a local model (Mlocal) using the initial
global model (M0). This local model is provided by the central server and it serves as the starting
point for the client's training process (line 1). Subsequently, the local model is trained using the
client's local data (line 2). Through this local training, a client trains its local model Mlocal using its
local dataset D to minimize a local loss function : Li(Mlocal). This is done by the formula:

𝑀𝑙𝑜𝑐𝑎𝑙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑀 𝐿𝑖 (𝑀0) (2)

Following the training phase, the gradients of the local loss with respect to the model's
parameters are computed (line 3). As presented in formula 3, these gradients are computed based
on the local data and the current model parameters.

𝛻𝐿𝑖 = 𝛻𝐿𝑜𝑠𝑠(𝑀𝑙𝑜𝑐𝑎𝑙, 𝑋𝑖 , 𝑌𝑖) (3)

Finally, the client sends this gradient to the central server for aggregation and updating the

global model (line 4). We note that clients send only the gradients of their local model parameters
to the central server, rather than sending the entire model or raw data. This approach is essential
to maintaining data privacy and reducing communication overhead.

Regarding the server side, its process is described in Algorithm 2. The server plays a pivotal
role in managing the aggregation and updates of the global model by utilizing contributions from
the devices participating in the training. To begin, the server initializes the global model denoted
as Mglobal(line 1). This model serves as the starting point for the collaborative training process.
Then, the algorithm proceeds by iterating through a predetermined number of rounds, indicated
by the variable nbrRound (line 2). Within each round, the server performs several tasks. It first
distributes the current global model Mglobal to the participating clients (line 3). Then, it sets up an
accumulator named aggregated_gradients to gather the gradients sent by devices (line 4). After
that and for each device enlisted in the list of participating devices, the server receives the
gradients (gradients_local) transmitted by the device. The server subsequently aggregates these
local gradients by adding them to the aggregated_gradients accumulator (lines 4-8). Once all the
gradients have been aggregated, the server calculates the averaged gradients by dividing the
accumulated aggregated_gradients by the total number of participating devices (line 9).
Afterwards, the server employs the calculated averaged gradients to update the global model
(Mglobal) through the UpdateGlobalModel function (line 10).

That means that the global model at iteration t+1, denoted as Mglobalt+1
 , is obtained by

aggregating the local models from the participating clients. In our architecture the aggregation is
done using averaging method (where N is the number participating clients):

𝑀𝑔𝑙𝑜𝑏𝑎𝑙𝑡+1
=

1

𝑁
∑ 𝑀𝑔𝑙𝑜𝑏𝑎𝑙𝑡

𝑖
𝑁

𝑖=1
 (4)

We note that Mglobalt+1
is used as the new global model for the next iteration.

Algorithm 2 : Server Side

 Input : Devices: the participating devices for training

 nbrRound : positiveNumber

 Output :an updated global model
1 Mglobal InitializeGlobalModel()
2 for (round 0 to nbrRound - 1) do
3 broadcast Mglobal to all clients in Devices
4 aggregated_gradients 0
5 for (each device in Devices) do
6 gradients_local ReceiveGradientsFromClient()
7 aggregated_gradients aggregated_gradients + gradients_local
8 end for
9 averaged_gradients aggregated_gradients / nbr_devices

10 Mglobal UpdateGlobalModel(Mglobal , averaged_gradients)
11 end for
12 return (Mglobal)

5. Some Implementation Aspects of our Architecture

5.1. Data Preparation

Data collection and preparation are fundamental steps that influence the entire ML pipeline, and
in FML, they become even more critical due to the distributed and privacy-sensitive nature of the
data. Properly preparing and managing data across distributed clients sets the foundation for
successful federated learning. In this experiment, we used the same dataset as in our previous
architecture. This allows us to compare the two obtained results. The data is collected from
«Kaggle» known as predictive maintenance which offers a synthetic data set [17]. It reflects the
actual predictive maintenance data of a system encountered in the industry. The dataset consists
of 10,000 lines. Tab.1 presents the different columns of this dataset.

Table 1
Data set structure

Column Data type

UDI Int64

Product ID Object

Type Object

Air temperature [K] Float64

Process temperature [K] Float64

Rotational speed [rpm] Int64

Torque [Nm] Float64

Tool wear [min] Int64

Target Int64

Failure Type Object

In our approach the most important stages of data preparation is density estimation. It refers
to the process of estimating the underlying probability distribution of data within each client's
local dataset without aggregating the actual data itself. This estimation is performed locally on
individual clients. The results are used to guide the training process. In this step, we conducted
initial experimentation to analyze and study the data from our clients. With the aim of evaluating
our proposal, we partitioned the dataset across three distinct clients. This partitioning was
carried out over multiple iterative phases. Indeed, the goal is to achieve a reasonable correlation
among the datasets of the various clients.

Figure 3 shows a clear correlation among the data of the various clients, particularly in
relation to the variables Rotational speed, Torque, and Tool wear. A significant correlation in

density estimation suggests that the data distributions across clients are aligned. This can
simplify model training, aggregation, and result in faster convergence.

Figure 3 shows a clear correlation among the data of the various clients, particularly in
relation to the variables Rotational speed, Torque, and Tool wear. A significant correlation in
density estimation suggests that the data distributions across clients are aligned. This can
simplify model training, aggregation, and result in faster convergence.

Figure 3. Data visualization

5.2. Experimental Setup and Training Process

In this section, we explain the experimental setup we used to implement our FML-based
architecture. The TensorFlow Federated (TFF) [18] framework is employed for parallel client
training, and the training process involves data batch division and distribution to individual
clients. The federated model is constructed based on the same architecture as the global model
and is trained using the Federated Averaging (FedAvg) algorithm [19].

As we mentioned previously, the training process centers on a collaborative training task
involving both clients and a central server. The goal is to update a global model by utilizing the
local models trained on each client's local data. The first step of the training process is the
initialization of the global model. This step sets the model architecture and parameter values
before engaging in collaborative training. It involves setting up the architecture of the learning
model (specifying the number and types of layers, activation functions, and other architectural
components). In our case, we define the architecture of the global model using TensorFlow's Keras
API within TFF's context. We use the tff.learning.from_keras_model function to convert the Keras
model into a TFF-compatible federated learning model.

For clients selection, we have used the TFF’s built-in federated computations and functions. The
tff.federated module provides functionalities for creating federated computations, including the
selection of clients for each round of federated training. In our architecture, the select_clients
function is defined as a federated computation using the @tff.federated_computation decorator.
The function takes client_weights as an argument, which could be a federated integer type
representing the weights of each client.

Regarding the step of local training (client update) we define the function local training as
follow: local_training(global_model, data_batch). The function takes as parameters the
global_model as the model architecture and a data_batch representing the local data on the client

side. This function allows to initialize a copy from the global model using
tff.learning.ModelWeights.from_model. Local training is performed using TFF's gradient tape
mechanism. The loss is computed based on the model's predictions and actual labels, and gradients
are calculated. After executing the federated computation, the updated local model will contain the
local model with updated parameters after the local training process. The resulting local model
updates are sent to the central server.

For model aggregation we have used the Federated Averaging (FedAvg) algorithm. It permits
aggregation local model updates from clients to update the global model. In our case, we define
the function models_aggregation as a federated computation using the
@tff.federated_computation decorator as follow: models_aggregation(global_model,
local_models). The function takes as an input the global model and a list of local models
representing the updated models from selected clients. In this function, the predefined
with_weights method is used to attach the client weights to each local model. In addition, the
predefined tff.federated_mean method is applied to compute the weighted average of the local
models. This function calculates the weighted sum of model weights and divides it by the total
weight to obtain the aggregated weights.

After the global model has been updated through the aggregation process, it needs to be
broadcasted to all participating clients. This synchronization guarantees that each client has access
to the most up-to-date global model for the subsequent round of training.

5.3. Discussion

By comparing federated learning and centralized learning based on the provided metrics (see
Tab. 2), we observe the following results: federated learning achieves an accuracy of 0.95, a
precision of 0.94, and a recall of 0.95. In contrast, centralized learning demonstrates higher
values, with an accuracy of 0.97, a precision of 0.96, and a recall of 0.95.
Table 2
Federated vs. Centralized ML

 Recall Accuracy Precision
Federated 0.9584 0.9544 0.9420
Centralized 0.9580 0.9785 0.9695

Regarding accuracy, centralized learning outperforms federated learning, indicating a better
ability to make overall correct predictions on the data. In terms of precision, both approaches
maintain high precision values, with centralized learning slightly surpassing federated learning.
This suggests that centralized learning is slightly better at avoiding false positive predictions.
However, both centralized learning and federated learning exhibit the same recall value of 0.95,
indicating equal performance in correctly identifying true positives.

The trade-offs between these approaches stem from Federated Learning's training on
decentralized data from multiple clients, potentially leading to a more challenging optimization
problem. On the other hand, Centralized Learning benefits from a centralized, potentially more
comprehensive and well-curated dataset, which may account for its higher accuracy and
precision.

Centralized learning is favoured when access to a large, well-curated, and representative
dataset is available. This approach is particularly advantageous for tasks where centralizing data
is feasible and practical. However, it's essential to acknowledge that in many real-world
scenarios, especially in CPS, centralizing data may not always be a viable or desirable option CPS
systems often involve distributed and interconnected devices or sensors that generate data in
real-time.

6. Conclusion

In this paper, we have explored the development of adaptive CPS in dynamic environments,
emphasizing the need for dynamic reconfiguration, resource optimization, and intelligent
responses to ensure continued service quality. While ML techniques have been pivotal in
addressing these challenges, they have often raised concerns regarding data security and privacy
when centralized data processing is involved.

Our proposed approach introduced an innovative approach that leveraged FML technology
to reconcile adaptability with data security and privacy. By adopting a federated approach, we
demonstrated that CPS could become self-adaptive without compromising the confidentiality and
privacy of sensitive data. This architecture offered a promising pathway for the development of
self-adaptive and secure CPS.

As future work, we envision several directions for research and development:
- A crucial avenue is to conduct a comprehensive comparison of our FML-based architecture

with other federated learning techniques, including FedProx and FedDP. This analysis will
provide valuable insights into the relative strengths and weaknesses of each technique,
particularly in the context of enhancing CPS adaptability.

- We intend to conduct experiments with a larger set of clients, explore varying data
distributions, and assess the scalability of our architecture. These efforts will contribute to a
more thorough understanding of its robustness and suitability for real-world, large-scale CPS
deployments.

- We will focus also on the transition from controlled experimental settings to real-world CPS
deployments. By assessing the performance and adaptability of our architecture in practical
scenarios, we will validate its efficacy and its potential to address the evolving challenges of
dynamic environments.

References

1. Hamzah, M., et al., Distributed Control of Cyber Physical System on Various Domains: A
Critical Review. Systems, 2023. 11(4): p. 208.

2. Lee, E.A., et al, Cyber Physical Systems: Design Challenges. In Proceedings of the IEEE, 2015.
3. Lesch, V., et al., A literature review of IoT and CPS—What they are, and what they are not.

Journal of Systems and Software, 2023. 200: p. 111631.
4. Gerostathopoulos, I., et al., Tuning self-adaptation in cyber-physical systems through

architectural homeostasis. Journal of Systems and Software, 2019. 148: p. 37-55.
5. Muccini, H., M. Sharaf, and D. Weyns. Self-adaptation for cyber-physical systems: a

systematic literature review. in Proceedings of the 11th international symposium on
software engineering for adaptive and self-managing systems. 2016.

6. Awad, M. and R. Khanna, Efficient learning machines: theories, concepts, and applications
for engineers and system designers2015: Springer nature.

7. Carvalho, T.P., et al., A systematic literature review of machine learning methods applied to
predictive maintenance. Computers & Industrial Engineering, 2019. 137: p. 106024.

8. Merabet, F.Z. and D. Benmerzoug, Qos prediction for service selection and recommendation
with a deep latent features autoencoder. Computer Science and Information Systems,
2022. 19(2): p. 709-733.

9. Wong, K.-S., et al., An Empirical Study of Federated Learning on IoT-Edge Devices: Resource
Allocation and Heterogeneity. arXiv preprint arXiv:2305.19831, 2023.

10. Alzahrani, A., et al. Improved Wireless Medical Cyber-Physical System (IWMCPS) Based on
Machine Learning. in Healthcare. 2023. MDPI.

11. Diaz-Rozo, J., C. Bielza, and P. Larrañaga, Machine learning-based CPS for clustering high
throughput machining cycle conditions. Procedia Manufacturing, 2017. 10: p. 997-1008.

12. Wu, M., Z. Song, and Y.B. Moon, Detecting cyber-physical attacks in CyberManufacturing
systems with machine learning methods. Journal of intelligent manufacturing, 2019. 30: p.
1111-1123.

13. Babouche, S., S. Ouchani, and M. Zghal. An Adaptive Attack Prediction Framework in Cyber-
Physical Systems. in 2022 Ninth International Conference on Software Defined Systems
(SDS). 2022. IEEE.

14. Graß, A., C. Beecks, and J.A.C. Soto. Unsupervised anomaly detection in production lines. in
Machine Learning for Cyber Physical Systems: Selected papers from the International
Conference ML4CPS 2018. 2019. Springer.

15. Chiu, M.-C., C.-D. Tsai, and T.-L. Li, An integrative machine learning method to improve fault
detection and productivity performance in a cyber-physical system. Journal of Computing
and Information Science in Engineering, 2020. 20(2): p. 021009.

16. Azeri, N., et al. Fault Prediction Using Supervised and Unsupervised Learning Algorithms in
Cyber Physical Systems. in 2022 2nd International Conference on New Technologies of
Information and Communication (NTIC). 2022. IEEE.

17. Matzka, S. Explainable artificial intelligence for predictive maintenance applications. in
2020 Third International Conference on Artificial Intelligence for Industries (AI4I). 2020.
IEEE.

18. TFF. TensorFlow Federated: Machine Learning on Decentralized Data. 2023; Available
from: https://www.tensorflow.org/federated.

19. McMahan, B., et al. Communication-efficient learning of deep networks from decentralized
data. in Artificial intelligence and statistics. 2017. PMLR.

http://www.tensorflow.org/federated

