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Abstract 
Cyber-physical systems (CPS) seamlessly integrate physical elements with computing and communication 
technologies for process monitoring and control. These systems, operating in dynamic environments, face 
challenges due to shifting user requirements, device dynamics, and environmental fluctuations, potentially 
impacting service quality. The development of adaptive CPS becomes essential to respond effectively to 
these challenges, requiring dynamic reconfiguration, resource optimization, and intelligent responses. 
While numerous self-adaptation approaches exist, most rely on Machine Learning (ML) techniques, 
emphasizing performance gains but often neglecting security and privacy concerns tied to centralized data 
processing. 
To harness ML’s potential in CPS comprehensively, we advocate a holistic approach that prioritizes security, 
data privacy, and adaptability. In this paper, we introduce an innovative approach to adaptive CPS 
development, leveraging Federated Machine Learning (FML) technology. This approach reconciles 
adaptability with data security and privacy. 
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1. Introduction 

Cyber-physical systems (CPS) are complex systems that integrate physical components with 
computing and communication technologies to monitor and control physical processes [1]. These 
systems are ubiquitous in various fields, including transportation, healthcare, manufacturing, and 
energy [2]. Nowadays, CPS have evolved from stand-alone computers to highly dynamic and 
complex systems with ability to synergize real-time data processing, control, and communication 
to facilitate seamless interactions between the digital and physical worlds. As CPS grow in 
complexity and functionality, they become instrumental in enhancing efficiency, optimizing 
resource utilization, and enabling intelligent decision-making. However, this increasing 
complexity brings forth a challenge: how to ensure that these systems not only meet their design 
requirements but also adapt and evolve in response to rapid environmental change. 

The need for adaptation within CPS stems from their inherently intricate nature [3]. Unlike 
traditional systems, CPS exhibit a high degree of heterogeneity, involving diverse components 
that operate at different levels of abstraction. Moreover, the dynamic and often unpredictable 
nature of the physical world adds an additional layer of complexity. As a result, the design and 
development of CPS that can effectively navigate this complexity and remain in compliance with 
requirements have become a principal concern [4, 5]. 

In the face of these challenges, a paradigm shift is required in how we conceptualize the 
design and operation of CPS. The conventional approach of designing systems with static, pre-
defined solutions is no longer sufficient. Instead, there is a growing demand for self-adapting CPS, 
which is systems that can autonomously monitor their environment, assess the perturbations or 
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variations occurring within it, and dynamically adjust their behavior to ensure continued 
functionality and compliance with performance criteria. 

To support developing such new functionalities, Machine Learning (ML) algorithms were 
merged. These latter have achieved impressive results providing solutions to practical large-scale 
problems. ML offers a powerful set of approaches, techniques, and predictive models that can 
process a large amount of information and help solve many use cases efficiently [6-8].  

Numerous studies have explored the utilization of ML techniques to develop flexible and 
adaptive CPS capable of responding to changing environmental conditions. These techniques 
often involve a central storage of data, followed by the training of a model on this centralized data 
repository. This approach facilitates comprehensive analysis and decision-making on a global 
scale. However, this centralized approach gives rise to potential challenges concerning data 
privacy and security, as all the information is consolidated in a single location. This situation calls 
for the emergence of Federated Machine Learning (FML), a methodology that embraces a 
decentralized perspective while retaining data on local devices or servers, such as mobile phones 
or IoT devices. In this paradigm, the model is disseminated and trained locally on these 
distributed datasets, eliminating the necessity of transferring data to a central repository [9].  

This research introduces an innovative approach for the development of self-adaptive CPS. 
The approach we propose is based on the FML paradigm, which gives CPS the ability to 
dynamically adjust their behaviors in real time, while ensuring data privacy and security. Our 
approach has been validated through a real-world case study focused on predicting faults in 
industrial CP 

The rest of the paper is structured as follows. Section 2 presents some related work. Section 
3 introduces our previous work concerning a centralized architecture for CPS. Section 4 describes 
the proposed FML-based architecture. The implementation and application of our architecture 
on a real-world example are detailed in Section 5. Finally, some concluding remarks and 
directions for future work are given in Section 6. 

2. Related Work 

In recent years, the implementation of CPS using ML has gained substantial attention in the 
research community. This section explores some works in the domain of CPS implementation, 
highlighting the integration of ML techniques. These works leverage centralized data processing 
and model training, pooling data from various sources to build global models. For instance, in 
Authors in [10] propose an innovative approach that harnesses the power of ML to enhance the 
security and reliability of Medical Cyber-Physical Systems (MCPS). In their work, they introduce 
the Improved Wireless Medical Cyber-Physical System, a framework that leverages ML 
techniques to protect patient health data and ensure data integrity in wireless medical 
environments. At the core of this framework is the use of ML, specifically deep neural networks, 
for attack detection and classification. The authors recognize that the heterogeneity of devices in 
MCPS, including mobile devices and body sensor nodes, poses security vulnerabilities. To 
mitigate these threats, they employ ML as a robust security solution. 

In [11], authors propose a complete real-world CPS implementation cycle, ranging from 
machine data acquisition to processing and interpretation. In fact, they propose a CPS for machine 
component knowledge discovery based on clustering algorithms using real data from a 
machining process. More precisely, they propose the development of a component behavior 
multidimensional pattern using machine learning clustering techniques. Clustering algorithms 
aim to partition a centralized dataset into clusters, interpreted as behavior patterns. Some 
properties of these clusters like the mean can give insight into their interpretation.  

In [12], physical data machine learning approaches are developed and integrated for 
detecting cyber physical attacks in cyber manufacturing system. Authors developed two 
examples with simulation and experimentation to test and demonstrate the physical data 
machine learning security approach. Three different machine learning algorithms are 



implemented with image classification. The anomaly detection method returned the highest 
accuracy of 96.1% in detecting a malicious defect in printing process.  

Authors in [13] provide a self-adaptive and scalable prediction/detection mechanism for 
CPS. They propose a framework called AAPF-CPS, which combines several machine learning 
algorithms with statistical tests. With multiple classification algorithms, AAPF-CPS analyzes CPS 
network logs simultaneously and in real-time. Friedman's test is also used to rank each classifier 
for each context in AAPF-CPS.  

In [14], authors present an approach for anomaly detection regarding predictive 
maintenance in a CPS. In particular, they are focusing on historical sensor data from a real reflow 
oven that is used for soldering surface mount electronic components to printed circuit boards. 
The sensor data comprises information about the heat and the power consumption of individual 
fans inside a reflow oven. The data set contains time annotated sensor measurements in 
combination with additional process information over a period of more than seven years. 

Authors in [15] propose a novel approach to address the challenges associated with 
implementing CPS in Industry 4.0. To tackle this, the study introduces an integrative machine-
learning method aimed at reducing computational complexity and improving CPS applicability as 
a virtual subsystem. The approach leverages the power of the Random Forest algorithm and a 
time-series deep-learning model based on Long Short-Term Memory networks. This combination 
enables real-time monitoring and facilitates faster corrective adjustments for machines within 
the CPS environment. A key innovation in this method is the early fault detection mechanism, 
which triggers an alarm well before a machine failure. This proactive approach empowers shop-
floor engineers to make necessary adjustments or perform maintenance, mitigating the impact of 
machine shutdown. 

Centralized ML solutions, while effective in optimizing CPS operations, inherently 
concentrate sensitive data in a single location. This concentration poses significant risks, such as 
potential data breaches, and raises concerns about user privacy. Additionally, centralization can 
introduce single points of failure, compromising system reliability, especially in scenarios where 
data transmission or the central processing unit becomes concealed. By embracing a 
decentralized solution like FML, we aim in this paper to enhance adaptability while addressing 
critical concerns surrounding data security and privacy in CPS, enabling a safer and more resilient 
future for these systems. 

In the next section, we will give and explain briefly our earlier research contributions. By 
examining these pre-existing contributions, we can better explain the evolutionary way that has 
led us to our current approach. 

3. A Multi-layer Architecture for CPS 

CPS are characterized by their distribution and loose coupling of both cyber systems and physical 
systems, all of which are monitored and controlled according to user-defined semantic laws [3]. 
It is important to define the architecture of this system as well as its components and their 
functionalities besides the used technology. The general objective of a CPS is to collect multiple 
data from various sources such as the data received from the sensors installed in the different 
production machines. Thereafter, we convert them into information in the cyber world in order 
to process, to understand them, and then turn them into appropriate actions in the physical 
world. Therefore, our architecture presented in [16] contains the main software modules that 
will ensure CPS functionalities such as: resource/data management, process planning, and the 
different modules which convert machines to be self-aware, self-learning and self-reconfiguring. 
As shown in Figure 1, the proposed architecture consists of the following layers: 

 



 

 
Figure 1. The proposed architecture [16] 

 
Physical layer: It represents the basic local assembly of machines connected to the Internet via 
the OPC-UA (Open Platform Communications Unified Architecture) protocol to ensure 
communication standardization between different units. This layer consists mainly of sensors 
and actuators. Sensors are used to collect signals from machines and then transform them. 
Whereas, the actuators take electrical signals and combine them with a source of energy to create 
a physical movement. 
Data/Resource Processing Layer: This layer collects data from various sources, and then it 
interacts directly with the data producer at the physical layer and the data storage in the 
Fog/Cloud.  It contains the following modules: the conditioner, the data management, the 
resource management, the planning process, the monitoring and control module and the request 
management module. 
Data Storage Layer: This layer serves as the storage base for the CPS and it is distributed 
between the Fog and the Cloud, and this depends on the nature of the data and the time required 
to process it. 
Learning Application Layer: This layer ensures different functionalities such as: Resource 
allocation, QoS analysis, Process optimisation, Predictive maintenance and Fault detection.  
Within this layer, a variety of ML techniques, including regression, classification, clustering, and 
reinforcement learning, take center stage. These models are meticulously trained on a rich 
dataset, combining historical knowledge with real-time information, culminating in the ability to 
make predictions and informed decisions that drive the system's adaptive capabilities. 
 

To demonstrate the viability and effectiveness of this layer, we have implemented it in a 
practical context. This application aligns with the realm of : Failure Prediction Using Supervised 
and Unsupervised Learning Algorithms [16]. In this real-world scenario, our system leveraged 



the power of supervised and unsupervised learning algorithms to predict failures in a dynamic 
environment such as CPS. 

4. Towards a FML-Based architecture for CPS 

This section provides an overview of the proposed FML-based architecture, focusing on the 
components of the architecture and how they interact with each other. We will only present what 
we have added compared to our previous architecture in terms of FML. As shown in Figure 2, the 
architecture consists of three main entities: local collectors, local aggregators and a central 
server. 

 

4.1. Architecture Components 

Local collectors: Local Collectors are responsible for collecting and managing data from the local 
devices or nodes within a particular group or federation. They can encompass a wide range of 
devices, including industrial equipment, individual smartphones, IoT devices, sensors, and other 
endpoints. The Local Collectors ensure that data remains secure and private, often by aggregating 
or summarizing the data before it’s sent to the aggregator. The primary focus of Local Collectors 
is to prepare and send relevant information to the aggregator, respecting privacy and security 
constraints. 
Local Aggregators: Local Aggregators are responsible for aggregating the locally computed 
model updates from devices or nodes within their own federation. Each device trains its model 
locally using its own data, and then these local models are sent to the Local Aggregator. The Local 
Aggregator combines the models in some way, often by averaging the model parameters, to 
generate a global model update. Then, this global model update is shared with other federated 
groups or used to update the global model maintained by the server. Local aggregators facilitate 
collaborative learning across devices while ensuring that sensitive data remains on the local 
devices. 
Central Server: The Central Server has a crucial role in the FML framework. Its main goal is to 
facilitate the aggregation of knowledge that originates from various local aggregators. Due to 
privacy considerations, our architecture shares only the learned data that is coordinated by the 
central server, while the private or sensitive data will stay at the local aggregators. Due to 
potential variations in data types and machine learning models across local aggregators, the 
Models Manager module in our architecture assumes the role of overseeing and harmonizing 
these diverse models, ensuring effective management and coordination. The updating of the 
global model is achieved through a synchronization process that involves both the global model 
and the local aggregators. This synchronization is achieved by the Models Aggregation module, 
which manages the coordination between these components. 
 

 



 

 
Figure 2. The proposed FML-based architecture 

 

 

 

4.2. Mode of Operation 

In our architecture, the goal is to collaboratively train a global model using data from N clients, 
each having their own local dataset denoted as Di. This dataset consists of a set of Ki labeled pairs:  

𝐷𝑖 = {𝑋𝑖
𝑘𝑖 , 𝑌𝑖

𝑘𝑖}𝑘=1
𝑘𝑖   (1) 

 

Where Xi
ki  is referred to the training input, and Yi

ki  is the corresponding label.  

In our architecture, the process revolves around collaborative training between clients and a 
central server. The goal is to update a global model by utilizing the local models trained on each 
client's local data. Algorithm 1 captures the behavior of each client in our architecture.  

  
Algorithm 1 : Client Side 

 Input :M0 : initial global model 

          D : Local data 

 Output : the gradients of the local loss 
1 Mlocal          M0 
2 Mlocal           TrainLocalModel(Mlocal , D) 
3 gradientsLocal          ComputeGradients(Mlocal , D) 
4 SendToServer(gradientsLocal) 

 

The client-side process begins with the initialization of a local model (Mlocal) using the initial 
global model (M0). This local model is provided by the central server and it serves as the starting 
point for the client's training process (line 1). Subsequently, the local model is trained using the 
client's local data (line 2). Through this local training, a client trains its local model Mlocal using its 
local dataset D to minimize a local loss function : Li(Mlocal). This is done by the formula:  

𝑀𝑙𝑜𝑐𝑎𝑙 =  𝑎𝑟𝑔𝑚𝑖𝑛𝑀 𝐿𝑖  (𝑀0)  (2) 

 



Following the training phase, the gradients of the local loss with respect to the model's 
parameters are computed (line 3). As presented in formula 3, these gradients are computed based 
on the local data and the current model parameters.  

 
𝛻𝐿𝑖 = 𝛻𝐿𝑜𝑠𝑠(𝑀𝑙𝑜𝑐𝑎𝑙, 𝑋𝑖 , 𝑌𝑖)  (3) 

 
Finally, the client sends this gradient to the central server for aggregation and updating the 

global model (line 4). We note that clients send only the gradients of their local model parameters 
to the central server, rather than sending the entire model or raw data. This approach is essential 
to maintaining data privacy and reducing communication overhead. 

Regarding the server side, its process is described in Algorithm 2. The server plays a pivotal 
role in managing the aggregation and updates of the global model by utilizing contributions from 
the devices participating in the training. To begin, the server initializes the global model denoted 
as Mglobal(line 1). This model serves as the starting point for the collaborative training process. 
Then, the algorithm proceeds by iterating through a predetermined number of rounds, indicated 
by the variable nbrRound (line 2). Within each round, the server performs several tasks. It first 
distributes the current global model Mglobal to the participating clients (line 3). Then, it sets up an 
accumulator named aggregated_gradients to gather the gradients sent by devices (line 4). After 
that and for each device enlisted in the list of participating devices, the server receives the 
gradients (gradients_local) transmitted by the device. The server subsequently aggregates these 
local gradients by adding them to the aggregated_gradients accumulator (lines 4-8). Once all the 
gradients have been aggregated, the server calculates the averaged gradients by dividing the 
accumulated aggregated_gradients by the total number of participating devices (line 9). 
Afterwards, the server employs the calculated averaged gradients to update the global model 
(Mglobal) through the UpdateGlobalModel function (line 10).  

That means that the global model at iteration t+1, denoted as Mglobalt+1
 , is obtained by 

aggregating the local models from the participating clients. In our architecture the aggregation is 
done using averaging method (where N is the number participating clients):  

 

𝑀𝑔𝑙𝑜𝑏𝑎𝑙𝑡+1
=

1

𝑁
∑ 𝑀𝑔𝑙𝑜𝑏𝑎𝑙𝑡

𝑖
𝑁

𝑖=1
  (4) 

 

We note that Mglobalt+1
is used as the new global model for the next iteration. 

  



Algorithm 2 : Server Side 

 Input :  Devices:  the participating devices for training 

             nbrRound : positiveNumber 

 Output :an updated global model 
1 Mglobal              InitializeGlobalModel() 
2 for (round       0 to nbrRound - 1 ) do 
3  broadcast Mglobal to all clients in Devices 
4  aggregated_gradients        0 
5  for (each device in Devices) do 
6   gradients_local        ReceiveGradientsFromClient() 
7   aggregated_gradients       aggregated_gradients  + gradients_local 
8  end for 
9  averaged_gradients      aggregated_gradients / nbr_devices 

10  Mglobal          UpdateGlobalModel(Mglobal , averaged_gradients) 
11 end for 
12 return (Mglobal) 

 

5. Some Implementation Aspects of our Architecture 

5.1. Data Preparation 

Data collection and preparation are fundamental steps that influence the entire ML pipeline, and 
in FML, they become even more critical due to the distributed and privacy-sensitive nature of the 
data. Properly preparing and managing data across distributed clients sets the foundation for 
successful federated learning. In this experiment, we used the same dataset as in our previous 
architecture. This allows us to compare the two obtained results. The data is collected from 
«Kaggle» known as predictive maintenance which offers a synthetic data set [17]. It reflects the 
actual predictive maintenance data of a system encountered in the industry. The dataset consists 
of 10,000 lines. Tab.1 presents the different columns of this dataset.  

Table 1 
Data set structure 

Column Data type 

UDI  Int64  

Product ID Object 

Type Object 

Air temperature [K] Float64 

Process temperature [K] Float64 

Rotational speed [rpm] Int64 

Torque [Nm] Float64 

Tool wear [min] Int64 

Target  Int64 

Failure Type Object 

 

In our approach the most important stages of data preparation is density estimation. It refers 
to the process of estimating the underlying probability distribution of data within each client's 
local dataset without aggregating the actual data itself. This estimation is performed locally on 
individual clients. The results are used to guide the training process. In this step, we conducted 
initial experimentation to analyze and study the data from our clients. With the aim of evaluating 
our proposal, we partitioned the dataset across three distinct clients. This partitioning was 
carried out over multiple iterative phases. Indeed, the goal is to achieve a reasonable correlation 
among the datasets of the various clients.  

Figure 3 shows a clear correlation among the data of the various clients, particularly in 
relation to the variables Rotational speed, Torque, and Tool wear. A significant correlation in 



density estimation suggests that the data distributions across clients are aligned. This can 
simplify model training, aggregation, and result in faster convergence. 

Figure 3 shows a clear correlation among the data of the various clients, particularly in 
relation to the variables Rotational speed, Torque, and Tool wear. A significant correlation in 
density estimation suggests that the data distributions across clients are aligned. This can 
simplify model training, aggregation, and result in faster convergence. 

 

 

Figure 3. Data visualization 
 

 

 

5.2. Experimental Setup and Training Process 

In this section, we explain the experimental setup we used to implement our FML-based 
architecture. The TensorFlow Federated (TFF) [18] framework is employed for parallel client 
training, and the training process involves data batch division and distribution to individual 
clients. The federated model is constructed based on the same architecture as the global model 
and is trained using the Federated Averaging (FedAvg) algorithm [19]. 

As we mentioned previously, the training process centers on a collaborative training task 
involving both clients and a central server. The goal is to update a global model by utilizing the 
local models trained on each client's local data. The first step of the training process is the 
initialization of the global model. This step sets the model architecture and parameter values 
before engaging in collaborative training. It involves setting up the architecture of the learning 
model (specifying the number and types of layers, activation functions, and other architectural 
components). In our case, we define the architecture of the global model using TensorFlow's Keras 
API within TFF's context. We use the tff.learning.from_keras_model function to convert the Keras 
model into a TFF-compatible federated learning model.  

For clients selection, we have used the TFF’s built-in federated computations and functions. The 
tff.federated module provides functionalities for creating federated computations, including the 
selection of clients for each round of federated training. In our architecture, the select_clients 
function is defined as a federated computation using the @tff.federated_computation decorator. 
The function takes client_weights as an argument, which could be a federated integer type 
representing the weights of each client. 

Regarding the step of local training (client update) we define the function local training as 
follow: local_training(global_model, data_batch). The function takes as parameters the 
global_model as the model architecture and a data_batch representing the local data on the client 



side. This function allows to initialize a copy from the global model using 
tff.learning.ModelWeights.from_model. Local training is performed using TFF's gradient tape 
mechanism. The loss is computed based on the model's predictions and actual labels, and gradients 
are calculated. After executing the federated computation, the updated local model will contain the 
local model with updated parameters after the local training process. The resulting local model 
updates are sent to the central server. 

For model aggregation we have used the Federated Averaging (FedAvg) algorithm. It permits 
aggregation local model updates from clients to update the global model. In our case, we define 
the function models_aggregation as a federated computation using the 
@tff.federated_computation decorator as follow: models_aggregation(global_model, 
local_models). The function takes as an input the global model and a list of local models 
representing the updated models from selected clients. In this function, the predefined 
with_weights method is used to attach the client weights to each local model. In addition, the 
predefined tff.federated_mean method is applied to compute the weighted average of the local 
models. This function calculates the weighted sum of model weights and divides it by the total 
weight to obtain the aggregated weights.  

After the global model has been updated through the aggregation process, it needs to be 
broadcasted to all participating clients. This synchronization guarantees that each client has access 
to the most up-to-date global model for the subsequent round of training.  

5.3. Discussion 

By comparing federated learning and centralized learning based on the provided metrics (see 
Tab. 2), we observe the following results: federated learning achieves an accuracy of 0.95, a 
precision of 0.94, and a recall of 0.95. In contrast, centralized learning demonstrates higher 
values, with an accuracy of 0.97, a precision of 0.96, and a recall of 0.95. 
Table 2 
Federated vs. Centralized ML 

 

 Recall Accuracy Precision 
Federated 0.9584 0.9544 0.9420 
Centralized 0.9580 0.9785 0.9695 

 

Regarding accuracy, centralized learning outperforms federated learning, indicating a better 
ability to make overall correct predictions on the data. In terms of precision, both approaches 
maintain high precision values, with centralized learning slightly surpassing federated learning. 
This suggests that centralized learning is slightly better at avoiding false positive predictions. 
However, both centralized learning and federated learning exhibit the same recall value of 0.95, 
indicating equal performance in correctly identifying true positives. 

The trade-offs between these approaches stem from Federated Learning's training on 
decentralized data from multiple clients, potentially leading to a more challenging optimization 
problem. On the other hand, Centralized Learning benefits from a centralized, potentially more 
comprehensive and well-curated dataset, which may account for its higher accuracy and 
precision. 

Centralized learning is favoured when access to a large, well-curated, and representative 
dataset is available. This approach is particularly advantageous for tasks where centralizing data 
is feasible and practical. However, it's essential to acknowledge that in many real-world 
scenarios, especially in CPS, centralizing data may not always be a viable or desirable option CPS 
systems often involve distributed and interconnected devices or sensors that generate data in 
real-time.  

 

6. Conclusion 



In this paper, we have explored the development of adaptive CPS in dynamic environments, 
emphasizing the need for dynamic reconfiguration, resource optimization, and intelligent 
responses to ensure continued service quality. While ML techniques have been pivotal in 
addressing these challenges, they have often raised concerns regarding data security and privacy 
when centralized data processing is involved.  

Our proposed approach introduced an innovative approach that leveraged FML technology 
to reconcile adaptability with data security and privacy. By adopting a federated approach, we 
demonstrated that CPS could become self-adaptive without compromising the confidentiality and 
privacy of sensitive data. This architecture offered a promising pathway for the development of 
self-adaptive and secure CPS.  

As future work, we envision several directions for research and development: 
- A crucial avenue is to conduct a comprehensive comparison of our FML-based architecture 

with other federated learning techniques, including FedProx and FedDP. This analysis will 
provide valuable insights into the relative strengths and weaknesses of each technique, 
particularly in the context of enhancing CPS adaptability. 

- We intend to conduct experiments with a larger set of clients, explore varying data 
distributions, and assess the scalability of our architecture. These efforts will contribute to a 
more thorough understanding of its robustness and suitability for real-world, large-scale CPS 
deployments. 

- We will focus also on the transition from controlled experimental settings to real-world CPS 
deployments. By assessing the performance and adaptability of our architecture in practical 
scenarios, we will validate its efficacy and its potential to address the evolving challenges of 
dynamic environments. 
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