
Runtime verification of distributed algorithms using
high-level Petri nets
Fateh Latreche1,*, Hichem Talbi2

1LIRE Laboratory, Abdelhamid Mehri Constantine 2 University, Algeria
2MISC Laboratory, Abdelhamid Mehri Constantine 2 University, Algeria

Abstract
Distributed algorithms play an important role for current IT applications and systems. The formal
verification of the correctness of distributed algorithms is a challenging task. Distributed algorithms
are frequently deployed on dynamic and scalable distributed systems. Therefore, these algorithms will
generate a huge space-state and require an long checking time. The aim of this work is explore the
use of high-level algebraic Petri nets, Recursive ECATNets, for the specification and formal verification
of distributed algorithms. The proposed modelling formalism supports the inherent multi-threading
aspect of distributed algorithms. Furthermore, it allows specifying compactly distributed algorithms with
complex synchronisation constraints and advanced data structures. In order to show the effectiveness
of our approach, the proposed model is applied on the Zusuki and Kasami mutual exclusion algorithm.
Recursive ECATNets’ models of distributed algorithms are implemented in this work using the Maude
system. In order to alleviate the state explosion problem, the runtime dynamic verification approach is
used to check whether a distributed algorithm respect the recursive ECTANet model.

Keywords
Distributed algorithms verification, Recursive ECATNets, Runtime verification, Maude system

1. Introduction

Thanks to the technological advances in the fields of computers and communication networks,
distributed systems have become feasible. Distributed systems can be found at several facets
of our daily life. This is due to the widespread use of wireless networks, mobile devices and
Internet of Things. Distributed systems are now more and more able to meet the growing and
renewable needs of users in terms of computing power and storage space.

Several definitions of the concept "distributed systems" exist. In [1], a distributed system is
defined as a collection of interacting autonomous computing elements. The collection appears
to their users as a single coherent system. This first definition reveals that each component of a
distributed system may behave independently of other components. Despite this, the clients
of the distributed system believe that they are dealing with a single coherent system, i.e. the
existence of stand-alone components is hidden from users.

Leslie Lamport [2], defines a distributed system by : “A distributed system is one in which the

TACC 2023: Tunisian-Algerian Joint Conference on Applied Computing, November 06–08, 2023, Sousse, Tunisia
*Corresponding author.
$ fateh.latreche@univ-constantine2.dz (F. Latreche); hichem.talbi@univ-constantine2.dz (H. Talbi)
� 0000-0003-1220-6586 (F. Latreche); 0000-0001-7320-5312 (H. Talbi)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:fateh.latreche@univ-constantine2.dz
mailto:hichem.talbi@univ-constantine2.dz
https://orcid.org/0000-0003-1220-6586
https://orcid.org/0000-0001-7320-5312
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

failure of a computer you didn’t even know existed can render your own computer unusable”.
This definition suggests that a user is aware of the use of a distributed system, if the failure of
another computer of the system prevents him/her from completing his/her work. The definition
refers to the fault tolerance challenge. Due to the heterogeneity and the physical distribution
of its components, parts of a distributed system may fail. In this case, the distributed system
should automatically recover from failures without affecting the overall performance.

Distributed systems provide several advantages. The well-known advantage of a distributed
system is that it enables resource sharing among users. This will facilitate collaboration and
reduce costs. In addition, distributed systems improve calculation speed and efficiency thanks
to the parallel execution of requests over multiple components [1].

Distributed computing has grown rapidly in recent years and has become able to tackle
advanced topics. However, distributed applications can be safety-critical for users since an
unwanted behaviour can lead to serious risks. Thus, the designers of distributed applications
should ensure the accuracy of used algorithms before deploying them for real exploitation.

Checking the correctness of distributed algorithms was the aim of several studies. Formal-
based methods are good candidates for specifying and checking distributed algorithms. They
provide notation with well-defined semantics and are amenable to sound analyses.

The formal checking of distributed algorithms is challenging. This is due to multiple factors,
such as the potential interleaving of events, the asynchronous communication and the possible
failures [3]. Checking the correctness of distributed algorithms can be approached using model
checking techniques and theorem proving. However, these techniques suffer from the state
space explosion problem and the need for user intervention.

Some research works have proposed to combine model checking and theorem proving to
model and check correctness of distributed algorithms. However, they have used restrictive
specification notations. In addition, these works still need intervention from users with an
appropriate level of experience.

In this paper, we propose to formally specify distributed algorithms using recursive ECATNets
[4] and then check their correctness using a runtime verification approach. Recursive ECATNets
have a graphical notation that facilitates design of distributed algorithms models. They also
allow modelling the multithreading aspect inherent to distributed algorithms. The runtime
checking approach is formal and provides a lightweight yet rigorous method for analysing the
runtime behaviour of systems [5].

The paper is organised as follows: Section 2 presents some important related works. The
third section gives some preliminary concepts. In section 4, we describe the proposed approach
for modelling and checking at runtime distributed algorithms. Finally, section 5 gives some
final remarks and future extensions.

2. Literature review

Ensuring the correctness of distributed algorithms was the aim of several research works
[6]. These research efforts have focused on proposing models that are suitable for distributed
algorithms and/or proposing verification techniques that mitigate the state space explosion
problem.

In [7], the author has proposed a hybrid approach that combines deductive reasoning and
bounded model-checking to formally verify distributed algorithms. At first, the distributed
mutual exclusion algorithm of Ricart and Agrawala [8] is checked using the calculus of inductive
constructions of Coq proof assistant using assertional reasoning. Then, a fault tolerant extension
of the same algorithm is implemented using TLA (Temporal Logic of Actions) [9] and checked
on a bounded model.

Combining proof and model-checking to validate distributed algorithms is an interesting
technique. However, the proposed model deals with a simplified distributed system having few
processes with few critical section access requests. Furthermore, the approach still needs expert
intervention when proving properties. In addition, the author has not mentioned how to scale
up the checking and modelling approaches to deal with complex distributed systems.

In [10], the author proposed the use of a refinement-based construction of distributed al-
gorithms. At first, a starting abstract formal model of a distributed algorithm is built. Then,
the model is refined iteratively by adding required behaviours. A verification by construction
approach is followed to ensure correctness of distributed algorithms. The work uses Event-B
modelling language [11] that allows the gradual development of systems through refinement.

In [12], authors have tackled the challenge of checking correctness of distributed algorithms
running on dynamic environments. Their approach proposes a set of reusable patterns that
facilitate the specification and verification efforts of distributed algorithms. More precisely, a
basic pattern that deals with topological events is first defined. Then, the pattern is extended
using the refinement technique to specify particular distributed systems topologies. A leader
election distributed algorithm is used to show the efficiency of the approach and a set of proofs
associated with the development of the algorithm are presented. The pattern-based approach is
implemented using Event-B and the correctness of resulting specification is ensured by a set of
automatic and interactive proof obligations (POs).

Despite the importance of gradual verification of distributed algorithms, both [10, 12] works
need expert skills in discharging interactive POs. In addition, the authors have not shown how
to generalize their approaches to be applied to other distributed algorithms.

In [3], authors have proposed a reusable formal framework for model checking round-based
distributed algorithms. To mitigate the space-explosion problem, two reduction techniques
were proposed: partition symerty reduction and message order reduction. The partition symmetry
technique exploits the symmetry that arises when processes choose non-deterministic initial
value, that is, rather than exploring all possible combinations of processes’ initial states, only a
subset of initial states are visited. The message order reduction technique is applied when the
order in which messages are sent or received is irrelevant for the final result of the algorithm.
The proposed reduction techniques have been implemented using Promela language for the
spin model checker. Reducing the space state will make it possible to automatically check
distributed algorithms. However, the proposed framework suggests reduction techniques that
are closely related to only round-based distributed algorithms. Furthermore, to reuse the
provided verification template written for the spin model checker, users must master promela
language.

In [13], authors have proposed a framework for programming and checking distributed
algorithms. Authors have used DistAlgo language for writing distributed algorithms and for
expressing safety and liveness properties. The DistAlgo language is an object oriented program-

ming language that has a formal semantics and an open source implementation. Authors have
proposed the use of runtime verification technique for fighting the state space explosion when
checking distributed algorithms’ properties. An external checker observes messages exchanged
between nodes. Then, it verifies safety and liveness properties of the considered algorithms.

The main drawback of the work is its use of a restrictive specification language for expressing
checked properties. These properties can only be related to bounded reachability. In addition,
DistAlgo language has no graphical notations facilitating the reuse of the proposed framework.

In this work, a formal approach for checking distributed algorithms is proposed. In order to
tackle the problem of state space explosion, the approach makes use of runtime verification. The
expected behaviours of the considered distributed algorithms are specified using a high-level
Petri net model: Recursive ECATNets. The Verification process consists in examining compliance
of extracted execution traces with the recursive ECATNet model of the distributed algorithm.
The proposed specification formalism (Recursive ECATNets) is expressive; it allows expressing
data flow, control flow as well as advanced synchronisation constraints. Recursive ECATNets are
also equipped with graphical notation that facilitates the specification of distributed algorithms.

The recursive ECATNet model and the monitor that checks conformance are implemented
using the Maude system. Maude [14] is one of the most efficient implementations of rewriting
logic. In fact, we have benefited from the reflective properties of rewriting logic. The Maude
built-in descent functions have been used to check whether tackled actions are possible over
the recursive ECATNet model.

3. Preliminaries

Recursive ECATNets extend ECATNets with useful modelling features, such as creation of
multiple sub-processes and exception handling. Recursive ECATNets can be naturally expressed
using the Maude system.

The aim of this section is to present basic concepts on Maude, ECATNets and recursive
ECATNets. These concepts will allow a good comprehension of the proposed modelling and
checking methods.

3.1. The Maude system

Rewriting logic is a logic of concurrent change that can deal naturally with highly nondetermin-
istic and concurrent computation [15]. Rewriting logic contains an equational subtheory for
representing the systems’ distributed states. It includes also a rewrite theory for implementing
systems’ concurrent transitions [16].

Maude is a high-level language for specification and programming in rewriting logic [14].
Maude supports equational programming using its functional modules. Maude’s system modules
implement concurrent and dynamic systems’ evolution. They implement rewriting logic rewrite
theory. Maude supports reflection and metaprogramming. This can be achieved using decent
functions provided by the module META-LEVEL. The Reflection mechanism of Maude provides
powerful capabilities. Particularly, it allows to guide and adapt the process of applying rewriting
rules at an object level.

ECATNets can be naturally implemented in Maude. In this case, the algebraic equational
specification depicts the abstract data type underlining the ECATNet, and the set of rewriting
rules implements the dynamic evolution between markings of the ECATNet.

3.2. ECATNets

ECATNets (Extended Concurrent Algebraic Term Nets) are a kind of high-level and algebraic
Petri nets, proposed by [17]. ECATNets combine expressiveness and strength of both Petri
nets with abstract data types. ECATNets are endowed with a natural implementation in terms
of rewriting logic, which has allowed to expand their area of use. ECATNets have been used
to model and analyse different kinds of systems. Furthermore, ECATNets allow to describe
complex synchronisation constraints and advanced abstract data types [4].

In an ECATNet, places, transitions and arcs are labelled with elements of a multi-set of
algebraic terms. Firing rules of ECATNets’ transitions establish a clear distinction between
enabling marking and consumed tokens. When firing an ECATNet transition, adding and
removing tokens take place on a multi-set of ground algebraic terms.

Figure 1 depicts a simple ECATNet having one transition and two places. An ECATNet E is
defined by the tuple E = (𝑆𝑝𝑒𝑐, 𝑃, 𝑇, 𝑠𝑜𝑟𝑡, 𝐼𝐶,𝐷𝑇,𝐶𝑇, 𝑇𝐶), where

• 𝑆𝑝𝑒𝑐 = (Σ, 𝐸) is the underlining equational algebraic specification of 𝐸.
• 𝑃 is the set of places and 𝑇 is the set of transitions, with 𝑃 ∩ 𝑇 = ∅.
• 𝑠𝑜𝑟𝑡 is a function that associates to each place of 𝑃 a sort. In Figure 1, 𝑠 and 𝑠′ are the

sorts of places 𝑝 and 𝑝′.
• 𝐼𝐶(𝑝, 𝑡) is a function that defines a partial condition on input places for firing the

transition 𝑡.
• 𝐷𝑇 (𝑝, 𝑡) is a function that determines the deleted tokens from input places when firing

the transition 𝑡.
• 𝐶𝑇 (𝑝′, 𝑡) is a function specifying the set of tokens to be created in the output places

when firing the transition 𝑡.
• 𝑇𝐶(𝑡) is a function that expresses further conditions for firing the transition 𝑡.

6 xxxx

• P = IO ∪ ST , with IO is a set of Input and Output places having a well-
defined sort and ST is a set of state places;

• T is the set of transitions, with P ∩ T = ∅;

• sort : P → S is a function that associates to each place an algebraic sort s
belonging to Σ;

• IC (Input Condition): P × T →MTΣ/EUA(X)), is a function that specifies
partial conditions on input place markings;

• DT (Destroyed Tokens): P × T →MTΣ/EUA(X)), is a function that
associates to each input arc (p× t) of a transition t, a multi-set of algebraic
terms to be consumed from input place;

• CT (Created Tokens): P × T →MTΣ/EUA(X) associates to each output
place of P , a multiset of algebraic terms which may be added when a transition
is fired;

• TC (Transition Condition) is an additional condition, its default value is the
term true;

• Mi and Mf are respectively the initial and the final markings.

Figure 1 Graphical Representation of an Open ECATNets

In order to illustrate Open-ECATNets notations, Figure 2 shows a simple hotel
booking service modelled as an Open-ECATNet. For this service, the process is
started by receiving a hotel request (transition t1) for a given date and location
through the interface place pi1, then, either a hotel offer or a not available message
is sent (transition t2). Thus, in this Open-ECATNet example: IO={pi1, pi2},
ST={p1, p2, p3}, Mi = {(1, 0, 0)} and Mf = {(0, 0, 1)}.

The Open-ECATNet behaviour is defined by rewriting logic based concurrent
computations. Each transition is materialized by a local rewriting rule of a given
rewrite theory; it defines the distributed structure of states. A nice consequence of
the proposed model is that analysis of specified open systems is directly achieved
using the existing formal tools around the Maude system.

2.3 Mop-ECATNets Review

Mop-ECATNets (Latreche and Belala, 2014) are a combination of Meta Petri nets
and Open ECATNets, introduced to make possible formal modelling of dynamic
Web service processes.

Meta Petri nets (Savolainen and Terziyan, 1999) are a multilevel Petri net model
that makes easy flexible modelling and control of dynamic processes. By using

Figure 1: A one transition ECATNet

3.3. Recursive ECATNets

Recursive ECATNets (abbreviated RECATNets) [18] extend ordinary ECATNets with the concept
of recursion. RECATNets are well-suited for modelling concurrent systems characterized by
dynamic creation and deletion of threads and sub-processes.

In a RECATNet two types of transitions can be distinguished :

• Elementary transitions that describe ordinary actions, and allow the termination of running
sub-processes. Elementary transitions are graphically depicted by simple rectangles, and

• Abstract transitions that are able to dynamically create new child processes that start their
execution with a specific initial marking. Abstract transitions are graphically represented
by double border rectangles. Their starting marking is mentioned in a rectangle beside
the transition.

The space state generated by a RECATNet is a tree of processes (an extended marking). Each
sub-process has a set of termination markings that indicate the states in which the sub-process
terminates. When a process ends, it terminates all of its child processes and creates in the father
process the output tokens of the abstract transition which has created them.

Elementary transitions of RECATNets are fired in the same way as for ECATNets. However,
the outgoing arcs of an abstract transition are labelled with an integer index associated with a
termination marking. When a sub-process reaches a termination marking, it generates tokens
only in the output place linked by an edge having the same index as the index of the termination
marking.

The events that can take place in a RECATNet are:

• Firing an abstract transition, and creating at the same time a sub-process,
• Firing an elementary transition that can end a running sub-process (executing a cut step),
• Reaching a termination marking and producing tokens in output places of the creating

abstract transition.

A RECATNet is defined by the tuple 𝑅𝑒𝑐 = (𝐸𝑐𝑡, 𝐼,Υ, 𝐼𝐶𝑇), where

• 𝐸𝑐𝑡 = (𝑆𝑝𝑒𝑐, 𝑃, 𝑇, 𝑠𝑜𝑟𝑡, 𝐼𝐶,𝐷𝑇,𝐶𝑇, 𝑇𝐶), is the underlying ECATNet, with 𝑇 = 𝑇𝑒𝑙 ∪
𝑇𝑎𝑏𝑠 is the set of abstract and elementary transitions,

• 𝐼 is a finite set of termination indexes,
• Υ is a family indexed by 𝐼 of final markings,
• 𝐼𝐶𝑇 : 𝑃 × 𝑇𝑎𝑏𝑠 × 𝐼 → 𝑇Σ(𝑋) is a function specifying the tokens created in output

places of abstract transitions.

4. Runtime verification of distributed algorithms using recursive
ECATNets

Unlike centralized systems, distributed systems have no common physical clock and mem-
ory. This will complicate the processes synchronisation task. Furthermore, partial failure,
unpredictable communication delays and difference in node processing speed make distributed
algorithms managing and control more difficult and challenging.

The aim of this section is to detail the proposed runtime verification of distributed algorithms.
The process is organized in two steps: specifying the desired behaviour of the distributed
algorithm as a RECATNet model, and then generating the monitor that extracts the necessary
information for monitoring and checks whether the the runtime behaviour of the distributed
algorithm conforms to the RECANet model.

This section starts by describing the adopted system model and the chosen case study. Then,
the proposed RECATNet model is depicted. Lastly, we show how to check at runtime the
distributed algorithm regarding the RECATNet model.

4.1. The system model and case study

The addressed problem in this work is a synchronization problem: the mutual exclusion. The
issue is to ensure that, at any moment, at most one process is authorized to use a resource.

Two kinds of distributed algorithms were proposed to ensure the exclusive access to a shared
resource: token-based algorithms and non-token-based (permission-based) algorithms [19]. In
permission-based algorithms, a node that needs to use the critical resource must at first receive
permission from other nodes. Contrariwise, when using token-based algorithms, the right to
access a critical resource is conditioned by obtaining the token.

The case study algorithm of this work is the well-known token-based mutual exclusion
algorithm of Suzuki and Kasami [20]. In this algorithm, a unique token (a special message) is
shared among all the nodes of the distributed system. A node is allowed to access the critical
section only if it possesses the token. When a site wants to use the critical resource and it has
not the token, it broadcasts request messages to all other sites. A site releases the token only
if it has completed its use of the critical resource. When a site terminates its execution of the
critical section, it sends the token to another requesting site.

The algorithm of Suzuki and kasami provides several advantages: it has a low message over-
head, it offers a clear and intuitive approach for achieving mutual exclusion, and it demonstrates
robustness against failure events within a distributed system.

Through this paper, the following conventions are adopted:

• The system is composed of 𝑛 nodes (sites).
• It is assumed that only one process runs on each site. Thus, the terms site, node and

process are used interchangeably.
• The nodes are linked by reliable communication channels.
• The processes do not share the memory or the physical clock. So, they only communicate

by exchanging messages.
• The communication delays are finite.
• The distributed system is conceptually fully connected; every site in the system can send

messages to any other site of the system.
• Nodes use the critical resource for fixed durations.

4.2. RECATNet model of Suzuki and kasami algorithm

The expected behaviour of the distributed algorithm is expressed using a RECATNet. The
adopted modelling approach makes use of several threads. In this case, a thread may send
requests to access the critical section, while another thread responds to messages received from
other sites. The RECATNet model associated to a distributed system executing Suzuki and
Kasami distributed algorithm is shown in Figure 2.

Let us first mention that initially, the place p1 contains n tokens, each token is associated
to a site. Tokens of the place p1 have a well defined structure: any token has a component

of the sort natural numbers (Nat) that represents the site identifier, the second and the third
components mention the state of the site and whether the site has the right to use the critical
resource.

Informally the model of Figure 2 can be explained as follows. At first, the transition
initialize is fired, it consumes all the tokens from the place p1 and produces copies of
these tokens in the output places p2 and p3. This will allow for each site to respond to messages
received from other sites, and to send requests for acquiring the critical resource.

When the place p2 becomes marked, a site can receive requests from other sites by executing
the transition t4. Then, the site can either emit the token (by firing the transition t5) or going
back (executing the transition t3) if it has not the token or if it is needing the resource. In
addition, when the place p2 is marked, a site can receive the token from other sites by firing
the transition t2.

Moreover, the place p3 allows nodes to become requesters. If the site is already requester and
has the token, then it directly uses the resource (it fires the transition t6). Otherwise, the site
executes a call to acquire the resource through launching the abstract transition Request-CS.

The execution of the abstract transition Rquest-CS dynamically creates a new sub-process
that starts its execution with n-1 tokens in place p6. This process is responsible for sending
requests to the remaining sites to obtain the token.

The execution of the sub-process launched by the transition Rquest-CS is interrupted
automatically when the elementary transition t2 (receipt of the token) is fired with the index
<0>. The execution of this cut step also produces a token in place p3. This will subsequently
allow the access to the critical resource.

The place p5 contains the token associated to the site using the critical resource. When the
abstract transition Realeas-CS is fired, a sub-process for releasing the resource is launched.
This process starts with a token at the place p8. At first, the process leaving the critical section
goes to the outside state (firing of the transition t9). Then, if there is a pending request from
another site, the token will be passed to it (firing the transition t11). Otherwise, the token will
be maintained (execution of the transition t10).

The end of a call to release the resource is mentioned by the presence of a token in place
p10 (see termination state Υ1). During this termination, a token is produced in place p3. This
allows a site to become requester of the critical resource.

The RECATNet model of the Figure 2 is implemented using Maude. Places identifiers are
specified by algebraic ground terms of the sort PlaceId.

ops localVar p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 : -> PlaceId .

Additionally, the states through which sites pass, as well as the number of sites are specified
by algebraic constructor terms:

ops InCs Reqstr outside : -> State [ctor] . op nbS : -> Nat [ctor] .

Then, one equation is needed to define overall Maude RECATNet model. In fact, the equation
defines the marking of the RECATNet, it associates each place identifier with a set of tokens.

eq inits = (p1,’tk 0 ’tk 1 ’tk 2...) (p2,noneTk) (p3,noneTk) (p4,
noneTk) (p5, noneTk) (p6, noneTk) (localVar, outside TkAv 0 outside
tkNav 1 outside tkNav 2 ...) < "" > .

Figure 2: The RECATNet model specifying the expected behaviour of Suzuki and Kasami distributed
algorithm

The last implementation step of Zusuki and Kasami algorithm RECATNet is to associate to
each transition a Maude rewriting rule. The left-hand side of each rule is a term that represents
conditions on input places to fire the transition. If conditions of the left-hand side are matched
by the RECATNet marking, then the marking will be updated according the right-hand side
term of the rule. The condition part of each rewrite rule implements further constraints on
input marking to fire the RECATNet transitions.

The following code shows the rewriting rules associated with the transition that receives a
request and the transition for requesting the critical resource.

crl [Receive-request]:{M(p2,’tk i tks)(p4,tks’)<M’,(p7,’tk j s)(p8,’tk
j),M’’>} => {M(p2, tks)(p4,’tk i tks’)<M’,(p7,’tk j i.s)(p8, ’tk j),

M’’>} if in(i,s)==false/\(i =/= j).
rl [Reques-Cs] :{ M (localVar, Reqstr tkNav i tks)(p3,’tk itks’)<M’>}=>

{M (localVar,Reqstr tkNav itks)(p3,tks’)<M’,(p7,’tk i e-l)(p8,’tk i
(INF))>} .

4.3. Runtime monitoring of Zusuki and Kasami algorithm against the
RECATNet model

Figure 3 shows all the elements involved in the monitoring task. The monitor is a Maude
module that accepts as input traces of events extracted from the considered distributed algorithm
execution. As a second input, the monitor accepts the Maude implementation of the RECATNet
model.

Figure 3: The RECATNets model specifying the expected behaviour of Suzuki and Kasami algorithm

The algorithm under scrutiny is implemented using MPI (Message Passing Interface) for
Python which is a standardized communication protocol widely used for implementing dis-
tributed applications. Each node of the distributed system encapsulates an events catching
mechanism that records important events as an execution trace. In fact, we have adopted an
asynchronous online monitoring. That is, while the distributed algorithm is checked during its
execution, the monitor receives the system’s trace of events asynchronously without suspending
any node of the system. Then, the monitor analyses traces at its own pace. This checking
strategy allows to significantly reduce overhead.

The Maude monitor module benefits from the metaprogramming capabilities of Maude. The
monitor module uses the decent function metaXapply to check whether the transitions of
the RECATNet model (implemented as rewriting rule) corresponding to the traces’ events are
fireable. In this case, the monitor passes to the following events and update the RECATNet
model according to the fired transition. If no event is possible in the RECATNet model, then
the monitor concludes that the events traces violate the correctness of the analysed distributed

algorithm.
The following listing includes a slightly modified version of the MONITOR Maude module. The

module declares the operation Verify that accepts as a first parameter the meta representation
of a term denoting the marking of the Suzuki and kasami algorithm’s RECATNet model. The
second parameter of the operation Verify is a term that gathers all traces. The module MONITOR
uses two rewriting rules to check the conformance of the finite execution traces against the
RECATNet model. The first rule checks execution of events having one parameter, whereas the
second checks execution of events having two parameters.

mod MONITOR is
including TRACES .
protecting META-LEVEL .
*** declaring used variables
var N : Nat . vars n n’ : Nat . var T : Term .
var qd : Qid . vars Tr Tr’ Tr’’ : Traces . var Result? : [Result4Tuple].
*** declaring paramaters of the operation that check execution of traces’
events

op Verify : Term Traces -> Term .
*** implmenting the operation Verify using two rewriting rules
crl Verify(T , (qd n) . Tr x Tr’x Tr’’)
=> if Result?::Result4Tuple then Verify(getTerm(Result?), TrxTr’xTr’’)
else Verify(T , Tr’xTr’’x(qd n) . Tr) fi
if Result? := metaXapply(upModule(’Suzuki, false), T, qd, ’i:Nat <- upTerm
(n), 0, unbounded, 0) .

crl Verify(T, (qd n n’) . Tr x Tr’ x Tr’’)
=> if Result?::Result4Tuple then Verify(getTerm(Result?), Trx Tr’xTr’’)
else Verify(T , Tr’ x Tr’’ x (qd n n’) . Tr) fi
if Result? := metaXapply(upModule(’Suzuki, false), T, qd, ’i:Nat <- upTerm
(n’); ’j:Nat <- upTerm(n), 0, unbounded, 0) .

endm

The following Maude code shows how to use the operation Verify to check at runtime
the correctness of Suzuki and kasami algorithm. In fact, we have checked an execution of the
algorithm that involves three nodes having three traces. In order to check conformance, users
need only to execute the Maude search command that checks whether it is possible to reach a
state in which all traces events where applied on the RECATNet model, i.e. reaching the term
: (’End-trace 0) x (’End-trace 1) x (’End-trace 2) as traces, which is the case
for the following code.

=================
Maude> search in MONITOR : Verify(upTerm(inits),Traces) =>* Verify(T,Tr)
such that Tr == (’End-trace 0) x (’End-trace 1) x (’End-trace 2) .

=================
Solution 1 (state 46)
states: 47 rewrites: 515 in 5811094365ms cpu (1194ms real) (0 rewrites/
second)

T --> ’‘{_‘}[’_<_>[’__[’‘(_‘,_‘)[’localVar.PlaceId,’__[’___[’InCs.State, ’
TkAv.Availabilaty,’0.Zero],’___[’outside.State,’tkNav.Availabilaty ... Tr
--> (’End-trace 0) x (’End-trace 1) x (’End-trace 2)

No more solutions.
=================

5. Conclusion

The motivation of the proposed specification and modelling approach presented in this paper
comes from the need to cope with the state space explosion problem when formally checking
distributed algorithms. Hence a runtime verification approach is used in this work to verify the
distributed algorithms correctness.

The desired behaviour of a distributed algorithm is expressed using RECATNets. This has
enabled a natural modelling of multithreaded and interruptible computation. The proposed
modelling and checking approach was implemented using Maude language, especially by
leveraging its metalevel capabilities. The modelling and checking approach presented in this
section can be easily reused to check the correctness of other distributed algorithms.

As a future extension of the work, we plan to extend the proposed model to take in con-
sideration timed and fault-tolerant behaviour of distributed algorithms. We intend also to
explore how to achieve a choreographed runtime checking where monitors are deployed across
more than one node. This is more in harmony with distributed algorithms principles. Besides,
implementing a graphical editor for creating distributed algorithms RECATNets models and
then translating them into Maude programs will be very useful.

Acknowledgment

This work was partially supported by the LABEX-TA project MeFoGL: "Méthode Formelles
pour le Génie Logiciel"

References

[1] M. Van Steen, A. S. Tanenbaum, A brief introduction to distributed systems, Computing
98 (2016) 967–1009.

[2] L. Lamport, A distributed system is one in which the failure of a computer you didn’t even
know existed can render your own computer unusable." á cacm, 1992.

[3] R. Barbosa, A. Fonseca, F. Araujo, Reductions and abstractions for formal verification of
distributed round-based algorithms, Software Quality Journal 29 (2021) 705–731.

[4] A. Hicheur, K. Barkaoui, N. Boudiaf, Modeling workflows with recursive ecatnets, in:
2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing, 2006, pp. 389–398. doi:10.1109/SYNASC.2006.52.

[5] A. Francalanza, J. A. Pérez, C. Sánchez, Runtime verification for decentralised and dis-
tributed systems, Lectures on Runtime Verification: Introductory and Advanced Topics
(2018) 176–210.

[6] F. Fakhfakh, M. Tounsi, M. Mosbah, A. H. Kacem, Formal verification approaches for dis-
tributed algorithms: A systematic literature review, in: R. J. Howlett, L. C. Jain, Z. Popovic,

http://dx.doi.org/10.1109/SYNASC.2006.52

D. B. Popovic, S. N. Vukosavic, C. Toro, Y. Hicks (Eds.), Knowledge-Based and Intelligent
Information & Engineering Systems: Proceedings of the 22nd International Conference
KES-2018, Belgrade, Serbia, 3-5 September 2018, volume 126 of Procedia Computer Science,
Elsevier, 2018, pp. 1551–1560. doi:10.1016/j.procs.2018.08.128.

[7] E. Shishkin, Construction and formal verification of a fault-tolerant distributed mutual
exclusion algorithm, in: N. Chechina, S. L. Fritchie (Eds.), Proceedings of the 16th ACM
SIGPLAN International Workshop on Erlang, Oxford, United Kingdom, September 3-9,
2017, ACM, 2017, pp. 1–12. doi:10.1145/3123569.3123571.

[8] G. Ricart, A. K. Agrawala, An optimal algorithm for mutual exclusion in computer networks,
Communications of the ACM 24 (1981) 9–17.

[9] L. Lamport, Specifying Systems, The TLA+ Language and Tools for Hardware and Software
Engineers, Addison-Wesley, 2002.

[10] D. Méry, Refinement-based construction of correct distributed algorithms, in: 2021 Second
International Conference on Information Systems and Software Technologies (ICI2ST),
IEEE, 2021, pp. 46–53.

[11] J.-R. Abrial, Modeling in Event-B: system and software engineering, Cambridge University
Press, 2010.

[12] F. Fakhfakh, M. Tounsi, M. Mosbah, Modeling and proving distributed algorithms for dy-
namic graphs, Future Gener. Comput. Syst. 108 (2020) 751–761. doi:10.1016/j.future.
2020.03.003.

[13] Y. A. Liu, S. D. Stoller, Assurance of distributed algorithms and systems: Runtime checking
of safety and liveness, in: J. Deshmukh, D. Nickovic (Eds.), Runtime Verification - 20th
International Conference, RV 2020, Los Angeles, CA, USA, October 6-9, 2020, Proceedings,
volume 12399 of Lecture Notes in Computer Science, Springer, 2020, pp. 47–66. doi:10.
1007/978-3-030-60508-7_3.

[14] M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Martı-Oliet, J. Meseguer, R. Rubio,
C. Talcott, Maude manual (version 3.1), SRI International University of Illinois at Urbana-
Champaign http://maude. lcc. uma. es/maude31-manual-html/maude-manual. html (2020).

[15] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı-Oliet, J. Meseguer, J. F. Quesada, Maude:
Specification and programming in rewriting logic, Theoretical Computer Science 285
(2002) 187–243.

[16] J. Meseguer, Twenty years of rewriting logic, The Journal of Logic and Algebraic Program-
ming 81 (2012) 721–781.

[17] M. Bettaz, M. Maouche, How to specify non determinism and true concurrency with
algebraic term nets, in: Recent Trends in Data Type Specification, Springer, 1991, pp.
164–180.

[18] K. Barkaoui, A. Hicheur, Towards analysis of flexible and collaborative workflow using
recursive ecatnets, in: Business Process Management Workshops: BPM 2007 Interna-
tional Workshops, BPI, BPD, CBP, ProHealth, RefMod, semantics4ws, Brisbane, Australia,
September 24, 2007, Revised Selected Papers 5, Springer, 2008, pp. 232–244.

[19] M. Raynal, Distributed Algorithms for Message-Passing Systems, Springer, 2013. doi:10.
1007/978-3-642-38123-2.

[20] I. Suzuki, T. Kasami, A distributed mutual exclusion algorithm, ACM Trans. Comput. Syst.
3 (1985) 344–349. doi:10.1145/6110.214406.

http://dx.doi.org/10.1016/j.procs.2018.08.128
http://dx.doi.org/10.1145/3123569.3123571
http://dx.doi.org/10.1016/j.future.2020.03.003
http://dx.doi.org/10.1016/j.future.2020.03.003
http://dx.doi.org/10.1007/978-3-030-60508-7_3
http://dx.doi.org/10.1007/978-3-030-60508-7_3
http://dx.doi.org/10.1007/978-3-642-38123-2
http://dx.doi.org/10.1007/978-3-642-38123-2
http://dx.doi.org/10.1145/6110.214406

	1 Introduction
	2 Literature review
	3 Preliminaries
	3.1 The Maude system
	3.2 ECATNets
	3.3 Recursive ECATNets

	4 Runtime verification of distributed algorithms using recursive ECATNets
	4.1 The system model and case study
	4.2 RECATNet model of Suzuki and kasami algorithm
	4.3 Runtime monitoring of Zusuki and Kasami algorithm against the RECATNet model

	5 Conclusion

