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Abstract
The concept of service migration holds significant importance within the realm of Fog-Edge computing,
particularly in scenarios where mobile users are in constant motion, transitioning between various
Access Points (APs). While this dynamic mobility is a fundamental characteristic of modern networking
environments, it introduces the challenge of the frequent migration of services. The latter can potentially
lead to a degradation in the Quality of Service (QoS) experienced by users. This paper addresses this
critical issue by presenting a methodical Reinforcement Learning framework for necessary workflow
migration in Fog-Cloud Computing. Firstly, we examine the literature solutions and then, we introduce
our Markov Decision Model (MDP) for workflow migration.

Keywords
Workflow Migration, Fog, Cloud, Reinforcement Learning

1. Introduction

User mobility in Fog and Edge environments refers to scenarios where users are constantly
moving within the network, such as in a smart city or Internet of Things (IoT) deployment. As
users move, their proximity to Fog nodes may change, and it becomes necessary to migrate
services to Fog nodes that are closer to the users to provide seamless connectivity and optimal
performance [1, 2].

However, it is important to highlight that frequent migration could result in added migration
expenses, including delays and increased energy usage. Hence, there exists a need to minimize
the frequency of migrations while still adhering to users’ Quality of Service (QoS) requirements,
such as diminishing latency as perceived by users [3]. Moreover, the regions may have varying
levels of resources (computational capacity, memory, etc.) and network bandwidth [4]. These
differences in resource capacities and network capabilities need to be considered when mak-
ing decisions about where to migrate services to ensure optimal performance and resource
utilization.

Recently, researchers have shown an increasing interest in leveraging artificial intelligence
techniques to propose intelligent solutions for service migration problems in Fog and Edge

TACC 2023: Tunisian-Algerian Joint Conference on Applied Computing, November 6 - 8, Sousse, Tunisia
$ nour.boubaker@univ-constantine2.dz (N. E. H. Boubaker); zarour.karim@univ-constantine2.dz (K. Zarour);
nawal.guermouche@laas.fr (N. Guermouche); djamel.benmerzoug@univ-constantine2.dz (D. Benmerzoug)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:nour.boubaker@univ-constantine2.dz
mailto:zarour.karim@univ-constantine2.dz
mailto:nawal.guermouche@laas.fr
mailto:djamel.benmerzoug@univ-constantine2.dz
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


environments [5, 6]. These solutions aim to identify an optimal migration policy based on
user mobility patterns. Our approach will employ a specific machine-learning paradigm called
reinforcement learning. This letter is particularly well-suited for addressing the challenges posed
by complex environments that require adaptability in response to contextual factors. Through
this technique, we can develop a migration solution that dynamically adjusts the placement
strategy by considering the varying performance of resources and bandwidth links. In contrast
to existing solutions, our approach will primarily emphasize minimizing the frequency of
workflow migrations within such heterogeneous environment characteristics to maintain a
trade-off between QoS and migration costs.

The rest of the paper is organized as follows: In Section 2, we discuss the problem statement,
highlighting certain limitations in existing migration solutions that motivated our approach.
Section 3 provides an overview of the system modeling. In Section 4, we explain our MDP
modeling and RL framework.

2. Problem Statement

Serval works were proposed to solve the service migration problem in Fog-Edge Computing
[7], For instance, [5] proposed a deep Q-learning algorithm to solve the task migration problem
without knowing users’ mobility patterns. Wang and al.[6] proposed a Double Deep Q-Learning
(DDQN) for computation offloading and migration framework in vehicular networks, which con-
siders time-varying channel states and stochastically arriving computation tasks.[8], considered
a centralized controller for service allocation and migration. [9] designed a DRL approach to
deploying an optimal migration policy in order to improve user QoS in Mobile Edge Computing
(MEC). The approach consists of migrating data to another eNodeb (eNB) depending on the
user position and the current state of the network. Djemai et al. [10] presented a probabilistic
mobility-based Genetic Algorithm (MGA) and mobility greedy heuristic (MGH) for an efficient
services migration in the Fog environment that minimizes the infrastructure energy consump-
tion and applications delay violations over time. Huang and al. [11] proposed an intelligent
task migration scheme in MEC using the Q-learning technique. The authors aim to minimize
the overall service time. [12] focused on the problem of service migration where users move
between multiple edge nodes and propose a service migration strategy algorithm (SMSMA)
based on multi-attribute MDP to make migration decisions.

In many existing research studies [8, 10, 9, 12], the primary focus revolves around exploring
migration strategies that relocate services or workflows whenever users change locations.
However, it’s essential to recognize that such migration strategies can introduce computational
resource overhead, higher communication costs, and longer migration times. These unnecessary
migrations can deplete resources and disrupt service execution, potentially leading to suboptimal
performance and operational inefficiencies.

Conversely, studies aiming to reduce migration frequency [5, 6, 11] often focus on scenarios
involving a single service migration in relatively homogeneous environments. In real-world
situations, regions can significantly differ in characteristics, especially regarding resource
capacities and network conditions. This heterogeneity adds complexity, requiring a more
nuanced approach to service migration management.



3. System Model Overview

In our study, depicted in Fig. 4.2, we examine a typical industrial scenario where a robot
traverses geographic regions covered by Fog servers. These servers connect to Access Points
(APs) through wireless links. Initially, the robot assigns computation tasks to Fog resources
in the first region. However, as the user moves, the system must make informed decisions
about task migration. These decisions consider factors like resource performance and network
conditions. To accommodate user mobility, the system operates in time slots, with the timeline
represented by 𝑡 ∈ 𝑇 = {0, 1, 2, . . . , 𝑇}. The duration of each time slot 𝑡𝑡 is 𝛿 (e.g.,15 minutes).

The robot’s cyber workflow consists of tasks with dependencies. The robot’s physical compo-
nent continuously sends data gathered from various sensors, like images, to this workflow. This
data is processed and manipulated within the cyber workflow. After processing, the results are
returned to the physical component. The cyber workflow is formally represented as a directed
acyclic graph (DAG), denoted as 𝐺 = (𝑇𝑠,𝐸). Here, 𝑇𝑠 is the set of tasks, and 𝐸 represents
the dependencies or constraints between task pairs. Each task in this model has attributes like
size and computational requirements.

Fog resources are distributed in each region, forming a network of interconnected nodes.
These resources are linked together through wireless links, which can vary in characteristics
from one resource to another. Furthermore, the resources are characterized by a set of attributes
such as computational capacities. Our primary goal is to develop a decision-making algorithm
that efficiently minimizes both the overall delay and energy consumption associated with
processing in the system. This reduction includes offloading processing, execution processing,
and migration processing. It encompasses the time from when tasks are offloaded to the
resources of the initial region to the time the final task in the workflow completes its execution
in the last region.

Figure 1: Overview of the system model

4. Workflow migration-based RL Methodology

In contrast to other fields of Machine Learning, reinforcement learning relies on continuous
interaction with the environment, where the agent learns through feedback in the form of



values assessing its actions.

4.1. MDP Model

The workflow migration problem is formalized as a Markov Decision Process (MDP), denoted
as 𝑀𝐷𝑃 = ⟨𝑆,𝐴,𝑅, 𝑃 ⟩ [13], where 𝑆 represents the state space, 𝐴 is the action space
encompassing all possible actions at each state, 𝑅 is the reward function valuing state-action
pairs, and 𝑃 determines the probability of transitioning between states when specific actions
are taken. 𝑆 , 𝐴, and 𝑅 are represented as follows:

1. State Space: The state space is defined by several variables that collectively represent
the system state. These variables include the current time slot (𝑡𝑡), the information of the
current task (𝜏𝑖) that needs to be allocated, the information of resources at the current
region (𝑅𝑡), and the action taken for the task (𝐴𝑡−1

𝑖 ) in the previous time slot. The state
can be denoted as 𝑆𝑡

𝑖 = {𝑡𝑡, 𝜏𝑖, 𝑅𝑡, 𝐴𝑡−1
𝑖(𝑡>1)

}. The total number of states in one episode is
equal to 𝑁 × 𝑇 , where 𝑁 represents the number of tasks, and 𝑇 denotes the number of
time slots.

2. Action Space: In each time slot, an action 𝐴𝑡
𝑖 must be taken for each task 𝜏𝑖. The action

𝐴𝑡
𝑖 ∈ {𝑎0(𝑡>1)

, 𝑎1} consists of two options: 𝑎0 denotes no migration decision, while 𝑎1
involves migrating the task to the current region by selecting a suitable resource.

3. Reward: It represents delay and energy consumption associated with the execution of
action 𝐴𝑡

𝑖 within the context of state 𝑆𝑡
𝑖 .

4.2. Reinforcement Learning Framework

In RL, an agent interacts with an environment by taking actions, receiving rewards or penalties
based on those actions, and using this feedback to improve its decision-making process. The
agent’s actions are guided by a policy, which determines the mapping from system states to
actions [13]. The ultimate objective of the agent is to ascertain an optimal policy, denoted as 𝜋*,
which effectively maps a state 𝑠𝑛 to a probability distribution over possible actions 𝑎𝑛 and is
represented as follows:

𝜋* : 𝑆 → 𝑃 (𝐴) (1)

Figure 4.2 illustrates the workflow migration framework, consisting primarily of two core
components: the RL agent and the migration environment. The primary aim of the agent
revolves around enhancing its cumulative reward during system operations, a goal that is
achieved by minimizing both overall delay and energy consumption. This cumulative reward,
denoted as 𝑅𝑡𝑜𝑡𝑎𝑙, is defined as the summation of rewards of tasks across all time slots:

𝑅𝑡𝑜𝑡𝑎𝑙 =

𝑇∑︁
𝑖=1

𝑁∑︁
𝑖=1

𝛾𝑅(𝑆𝑡
𝑖 , 𝐴

𝑡
𝑖) (2)



In the initial stages, the agent operates without prior knowledge about the environment
and therefore initiates exploration by taking random actions that might not yield immediate
high rewards but offer valuable insights for discovering more rewarding actions over time.
Subsequently, the agent shifts to exploitation, where it selects actions aimed at maximizing the
expected future rewards, relying on its current understanding of the environment.

Figure 2: Reinforcement Learning Framework
At first, the agent receives the information related to the first state donated 𝑠21, including, the

information of the first task (CPU, RAM, and DISK) requirements, as well as information about
the available resources in the first region, including cloud resources (identified by id machine).
The Deep Neural Network (DNN) prediction module utilizes this information, in conjunction
with a timestamp to estimate the current resource utilization, specifically for CPU, RAM, and
Disk. This step is crucial in minimizing resource overhead, as the agent will only consider the
subset of resources that can adequately meet the requirements of the task. After the resource
selection, the agent receives a reward that reflects the resulting delay and energy consumption
from offloading and executing the task on the selected resource. To facilitate its decision-making
process, the agent relies on a value function, specifically the State Value Function V (s) or the
State-Action Value Function Q (s, a). This function estimates the anticipated future reward that
the agent can achieve by taking a specific action from the current system state. By utilizing
the value function, the agent can evaluate the potential advantages of different actions and
prioritize the most promising ones. Subsequently, the agent updates the value and requests the
next state, which represents the information regarding the second task to be allocated to the
resources in the first time slot. Once the agent has completed the task offloading process in
the first time slot, it requires information about the first task, denoted as 𝑠21, which includes
its previous host machine. This information is necessary for the agent to make a migration
decision 𝑎21 in the second time slot. The host machine’s identifier is used by the prediction
module to estimate the current resource utilization for this resource. This iterative process
continues as the agent makes migration decisions for each subsequent task across all regions
until decisions are made for all tasks.

The RL agent learns through multiple episodes, refining its value function from rewards and
new information gathered during interactions with the environment. This iterative process
enhances its decision-making, leading to the acquisition of an optimal policy. This value function



update is a fundamental aspect of RL algorithms like Q-learning and State-Action-Reward-State-
Action (SARSA).

In the inference phase, the agent leverages its acquired knowledge to make decisions and take
actions during interactions with its environment. This behavior reflects the wisdom accumulated
from its training, guiding it to navigate and interact in alignment with the optimal migration
policy 𝜋*.

5. Conclusion And Future Works

This position paper addresses Workflow Migration in the context of Fog-Cloud Computing,
especially in scenarios with varying resource capacities and bandwidth links. We began by
highlighting limitations and challenges in existing literature. We then outlined our system
model. We introduced an MDP model, defining its key components. Additionally, we presented
an RL framework for necessary workflow migration.

In the future, we aim to develop a Deep Learning resource prediction module using Google
cluster trace and Alibaba data, explore partial offloading for energy-constrained end-users, and
investigate multi-agent strategies for scalability in expanding resource scenarios.
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